mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-11-03 20:53:13 +03:00 
			
		
		
		
	1998-04-03 23:38 Ulrich Drepper <drepper@cygnus.com> * sysdeps/libm-ieee754/e_acos.c: Optimize by splitting large expressions and using array variables. * sysdeps/libm-ieee754/e_asin.c: Likewise. * sysdeps/libm-ieee754/e_j0.c: Likewise. * sysdeps/libm-ieee754/e_j1.c: Likewise. * sysdeps/libm-ieee754/e_log.c: Likewise. * sysdeps/libm-ieee754/e_pow.c: Likewise. * sysdeps/libm-ieee754/k_cos.c: Likewise. * sysdeps/libm-ieee754/k_sin.c: Likewise. * sysdeps/libm-ieee754/k_tan.c: Likewise. * sysdeps/libm-ieee754/s_atan.c: Likewise. * sysdeps/libm-ieee754/s_erf.c: Likewise. * sysdeps/libm-ieee754/s_expm1.c: Likewise. * sysdeps/libm-ieee754/s_log1p.c: Likewise. Patch by Naohiko Shimizu <nshimizu@et.u-tokai.ac.jp>.
		
			
				
	
	
		
			161 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			161 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* @(#)e_log.c 5.1 93/09/24 */
 | 
						|
/*
 | 
						|
 * ====================================================
 | 
						|
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | 
						|
 *
 | 
						|
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 | 
						|
 * Permission to use, copy, modify, and distribute this
 | 
						|
 * software is freely granted, provided that this notice
 | 
						|
 * is preserved.
 | 
						|
 * ====================================================
 | 
						|
 */
 | 
						|
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
 | 
						|
   for performance improvement on pipelined processors.
 | 
						|
*/
 | 
						|
 | 
						|
#if defined(LIBM_SCCS) && !defined(lint)
 | 
						|
static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
 | 
						|
#endif
 | 
						|
 | 
						|
/* __ieee754_log(x)
 | 
						|
 * Return the logarithm of x
 | 
						|
 *
 | 
						|
 * Method :
 | 
						|
 *   1. Argument Reduction: find k and f such that
 | 
						|
 *			x = 2^k * (1+f),
 | 
						|
 *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
 | 
						|
 *
 | 
						|
 *   2. Approximation of log(1+f).
 | 
						|
 *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
 | 
						|
 *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 | 
						|
 *	     	 = 2s + s*R
 | 
						|
 *      We use a special Reme algorithm on [0,0.1716] to generate
 | 
						|
 * 	a polynomial of degree 14 to approximate R The maximum error
 | 
						|
 *	of this polynomial approximation is bounded by 2**-58.45. In
 | 
						|
 *	other words,
 | 
						|
 *		        2      4      6      8      10      12      14
 | 
						|
 *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
 | 
						|
 *  	(the values of Lg1 to Lg7 are listed in the program)
 | 
						|
 *	and
 | 
						|
 *	    |      2          14          |     -58.45
 | 
						|
 *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
 | 
						|
 *	    |                             |
 | 
						|
 *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
 | 
						|
 *	In order to guarantee error in log below 1ulp, we compute log
 | 
						|
 *	by
 | 
						|
 *		log(1+f) = f - s*(f - R)	(if f is not too large)
 | 
						|
 *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
 | 
						|
 *
 | 
						|
 *	3. Finally,  log(x) = k*ln2 + log(1+f).
 | 
						|
 *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
 | 
						|
 *	   Here ln2 is split into two floating point number:
 | 
						|
 *			ln2_hi + ln2_lo,
 | 
						|
 *	   where n*ln2_hi is always exact for |n| < 2000.
 | 
						|
 *
 | 
						|
 * Special cases:
 | 
						|
 *	log(x) is NaN with signal if x < 0 (including -INF) ;
 | 
						|
 *	log(+INF) is +INF; log(0) is -INF with signal;
 | 
						|
 *	log(NaN) is that NaN with no signal.
 | 
						|
 *
 | 
						|
 * Accuracy:
 | 
						|
 *	according to an error analysis, the error is always less than
 | 
						|
 *	1 ulp (unit in the last place).
 | 
						|
 *
 | 
						|
 * Constants:
 | 
						|
 * The hexadecimal values are the intended ones for the following
 | 
						|
 * constants. The decimal values may be used, provided that the
 | 
						|
 * compiler will convert from decimal to binary accurately enough
 | 
						|
 * to produce the hexadecimal values shown.
 | 
						|
 */
 | 
						|
 | 
						|
#include "math.h"
 | 
						|
#include "math_private.h"
 | 
						|
#define half Lg[8]
 | 
						|
#define two Lg[9]
 | 
						|
#ifdef __STDC__
 | 
						|
static const double
 | 
						|
#else
 | 
						|
static double
 | 
						|
#endif
 | 
						|
ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
 | 
						|
ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
 | 
						|
two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
 | 
						|
 Lg[] = {0.0,
 | 
						|
 6.666666666666735130e-01,  /* 3FE55555 55555593 */
 | 
						|
 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
 | 
						|
 2.857142874366239149e-01,  /* 3FD24924 94229359 */
 | 
						|
 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
 | 
						|
 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
 | 
						|
 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
 | 
						|
 1.479819860511658591e-01,  /* 3FC2F112 DF3E5244 */
 | 
						|
 0.5,
 | 
						|
 2.0};
 | 
						|
#ifdef __STDC__
 | 
						|
static const double zero   =  0.0;
 | 
						|
#else
 | 
						|
static double zero   =  0.0;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __STDC__
 | 
						|
	double __ieee754_log(double x)
 | 
						|
#else
 | 
						|
	double __ieee754_log(x)
 | 
						|
	double x;
 | 
						|
#endif
 | 
						|
{
 | 
						|
	double hfsq,f,s,z,R,w,t1,t2,dk,t11,t12,t21,t22,w2,zw2;
 | 
						|
	int32_t k,hx,i,j;
 | 
						|
	u_int32_t lx;
 | 
						|
 | 
						|
	EXTRACT_WORDS(hx,lx,x);
 | 
						|
 | 
						|
	k=0;
 | 
						|
	if (hx < 0x00100000) {			/* x < 2**-1022  */
 | 
						|
	    if (((hx&0x7fffffff)|lx)==0)
 | 
						|
		return -two54/(x-x);		/* log(+-0)=-inf */
 | 
						|
	    if (hx<0) return (x-x)/(x-x);	/* log(-#) = NaN */
 | 
						|
	    k -= 54; x *= two54; /* subnormal number, scale up x */
 | 
						|
	    GET_HIGH_WORD(hx,x);
 | 
						|
	}
 | 
						|
	if (hx >= 0x7ff00000) return x+x;
 | 
						|
	k += (hx>>20)-1023;
 | 
						|
	hx &= 0x000fffff;
 | 
						|
	i = (hx+0x95f64)&0x100000;
 | 
						|
	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
 | 
						|
	k += (i>>20);
 | 
						|
	f = x-1.0;
 | 
						|
	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */
 | 
						|
	    if(f==zero) if(k==0) return zero;  else {dk=(double)k;
 | 
						|
				 return dk*ln2_hi+dk*ln2_lo;}
 | 
						|
	    R = f*f*(half-0.33333333333333333*f);
 | 
						|
	    if(k==0) return f-R; else {dk=(double)k;
 | 
						|
	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
 | 
						|
	}
 | 
						|
 	s = f/(two+f);
 | 
						|
	dk = (double)k;
 | 
						|
	z = s*s;
 | 
						|
	i = hx-0x6147a;
 | 
						|
	w = z*z;
 | 
						|
	j = 0x6b851-hx;
 | 
						|
#ifdef DO_NOT_USE_THIS
 | 
						|
	t1= w*(Lg2+w*(Lg4+w*Lg6));
 | 
						|
	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
 | 
						|
	R = t2+t1;
 | 
						|
#else
 | 
						|
	t21 = Lg[5]+w*Lg[7]; w2=w*w;
 | 
						|
	t22 = Lg[1]+w*Lg[3]; zw2=z*w2;
 | 
						|
	t11 = Lg[4]+w*Lg[6];
 | 
						|
	t12 = w*Lg[2];
 | 
						|
	R = t12 + w2*t11 + z*t22 + zw2*t21;
 | 
						|
#endif
 | 
						|
	i |= j;
 | 
						|
	if(i>0) {
 | 
						|
	    hfsq=0.5*f*f;
 | 
						|
	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
 | 
						|
		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
 | 
						|
	} else {
 | 
						|
	    if(k==0) return f-s*(f-R); else
 | 
						|
		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
 | 
						|
	}
 | 
						|
}
 |