mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-26 00:57:39 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			209 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			209 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* mpn_divmod_1(quot_ptr, dividend_ptr, dividend_size, divisor_limb) --
 | |
|    Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
 | |
|    Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
 | |
|    Return the single-limb remainder.
 | |
|    There are no constraints on the value of the divisor.
 | |
| 
 | |
|    QUOT_PTR and DIVIDEND_PTR might point to the same limb.
 | |
| 
 | |
| Copyright (C) 1991, 1993, 1994, 1996 Free Software Foundation, Inc.
 | |
| 
 | |
| This file is part of the GNU MP Library.
 | |
| 
 | |
| The GNU MP Library is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU Lesser General Public License as published by
 | |
| the Free Software Foundation; either version 2.1 of the License, or (at your
 | |
| option) any later version.
 | |
| 
 | |
| The GNU MP Library is distributed in the hope that it will be useful, but
 | |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 | |
| or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 | |
| License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU Lesser General Public License
 | |
| along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
 | |
| the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 | |
| MA 02111-1307, USA. */
 | |
| 
 | |
| #include "gmp.h"
 | |
| #include "gmp-impl.h"
 | |
| #include "longlong.h"
 | |
| 
 | |
| #ifndef UMUL_TIME
 | |
| #define UMUL_TIME 1
 | |
| #endif
 | |
| 
 | |
| #ifndef UDIV_TIME
 | |
| #define UDIV_TIME UMUL_TIME
 | |
| #endif
 | |
| 
 | |
| /* FIXME: We should be using invert_limb (or invert_normalized_limb)
 | |
|    here (not udiv_qrnnd).  */
 | |
| 
 | |
| mp_limb_t
 | |
| #if __STDC__
 | |
| mpn_divmod_1 (mp_ptr quot_ptr,
 | |
| 	      mp_srcptr dividend_ptr, mp_size_t dividend_size,
 | |
| 	      mp_limb_t divisor_limb)
 | |
| #else
 | |
| mpn_divmod_1 (quot_ptr, dividend_ptr, dividend_size, divisor_limb)
 | |
|      mp_ptr quot_ptr;
 | |
|      mp_srcptr dividend_ptr;
 | |
|      mp_size_t dividend_size;
 | |
|      mp_limb_t divisor_limb;
 | |
| #endif
 | |
| {
 | |
|   mp_size_t i;
 | |
|   mp_limb_t n1, n0, r;
 | |
|   int dummy;
 | |
| 
 | |
|   /* ??? Should this be handled at all?  Rely on callers?  */
 | |
|   if (dividend_size == 0)
 | |
|     return 0;
 | |
| 
 | |
|   /* If multiplication is much faster than division, and the
 | |
|      dividend is large, pre-invert the divisor, and use
 | |
|      only multiplications in the inner loop.  */
 | |
| 
 | |
|   /* This test should be read:
 | |
|        Does it ever help to use udiv_qrnnd_preinv?
 | |
| 	 && Does what we save compensate for the inversion overhead?  */
 | |
|   if (UDIV_TIME > (2 * UMUL_TIME + 6)
 | |
|       && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME)
 | |
|     {
 | |
|       int normalization_steps;
 | |
| 
 | |
|       count_leading_zeros (normalization_steps, divisor_limb);
 | |
|       if (normalization_steps != 0)
 | |
| 	{
 | |
| 	  mp_limb_t divisor_limb_inverted;
 | |
| 
 | |
| 	  divisor_limb <<= normalization_steps;
 | |
| 
 | |
| 	  /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
 | |
| 	     result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
 | |
| 	     most significant bit (with weight 2**N) implicit.  */
 | |
| 
 | |
| 	  /* Special case for DIVISOR_LIMB == 100...000.  */
 | |
| 	  if (divisor_limb << 1 == 0)
 | |
| 	    divisor_limb_inverted = ~(mp_limb_t) 0;
 | |
| 	  else
 | |
| 	    udiv_qrnnd (divisor_limb_inverted, dummy,
 | |
| 			-divisor_limb, 0, divisor_limb);
 | |
| 
 | |
| 	  n1 = dividend_ptr[dividend_size - 1];
 | |
| 	  r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);
 | |
| 
 | |
| 	  /* Possible optimization:
 | |
| 	     if (r == 0
 | |
| 	     && divisor_limb > ((n1 << normalization_steps)
 | |
| 			     | (dividend_ptr[dividend_size - 2] >> ...)))
 | |
| 	     ...one division less... */
 | |
| 
 | |
| 	  for (i = dividend_size - 2; i >= 0; i--)
 | |
| 	    {
 | |
| 	      n0 = dividend_ptr[i];
 | |
| 	      udiv_qrnnd_preinv (quot_ptr[i + 1], r, r,
 | |
| 				 ((n1 << normalization_steps)
 | |
| 				  | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
 | |
| 				 divisor_limb, divisor_limb_inverted);
 | |
| 	      n1 = n0;
 | |
| 	    }
 | |
| 	  udiv_qrnnd_preinv (quot_ptr[0], r, r,
 | |
| 			     n1 << normalization_steps,
 | |
| 			     divisor_limb, divisor_limb_inverted);
 | |
| 	  return r >> normalization_steps;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  mp_limb_t divisor_limb_inverted;
 | |
| 
 | |
| 	  /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
 | |
| 	     result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
 | |
| 	     most significant bit (with weight 2**N) implicit.  */
 | |
| 
 | |
| 	  /* Special case for DIVISOR_LIMB == 100...000.  */
 | |
| 	  if (divisor_limb << 1 == 0)
 | |
| 	    divisor_limb_inverted = ~(mp_limb_t) 0;
 | |
| 	  else
 | |
| 	    udiv_qrnnd (divisor_limb_inverted, dummy,
 | |
| 			-divisor_limb, 0, divisor_limb);
 | |
| 
 | |
| 	  i = dividend_size - 1;
 | |
| 	  r = dividend_ptr[i];
 | |
| 
 | |
| 	  if (r >= divisor_limb)
 | |
| 	    r = 0;
 | |
| 	  else
 | |
| 	    {
 | |
| 	      quot_ptr[i] = 0;
 | |
| 	      i--;
 | |
| 	    }
 | |
| 
 | |
| 	  for (; i >= 0; i--)
 | |
| 	    {
 | |
| 	      n0 = dividend_ptr[i];
 | |
| 	      udiv_qrnnd_preinv (quot_ptr[i], r, r,
 | |
| 				 n0, divisor_limb, divisor_limb_inverted);
 | |
| 	    }
 | |
| 	  return r;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (UDIV_NEEDS_NORMALIZATION)
 | |
| 	{
 | |
| 	  int normalization_steps;
 | |
| 
 | |
| 	  count_leading_zeros (normalization_steps, divisor_limb);
 | |
| 	  if (normalization_steps != 0)
 | |
| 	    {
 | |
| 	      divisor_limb <<= normalization_steps;
 | |
| 
 | |
| 	      n1 = dividend_ptr[dividend_size - 1];
 | |
| 	      r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);
 | |
| 
 | |
| 	      /* Possible optimization:
 | |
| 		 if (r == 0
 | |
| 		 && divisor_limb > ((n1 << normalization_steps)
 | |
| 				 | (dividend_ptr[dividend_size - 2] >> ...)))
 | |
| 		 ...one division less... */
 | |
| 
 | |
| 	      for (i = dividend_size - 2; i >= 0; i--)
 | |
| 		{
 | |
| 		  n0 = dividend_ptr[i];
 | |
| 		  udiv_qrnnd (quot_ptr[i + 1], r, r,
 | |
| 			      ((n1 << normalization_steps)
 | |
| 			       | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
 | |
| 			      divisor_limb);
 | |
| 		  n1 = n0;
 | |
| 		}
 | |
| 	      udiv_qrnnd (quot_ptr[0], r, r,
 | |
| 			  n1 << normalization_steps,
 | |
| 			  divisor_limb);
 | |
| 	      return r >> normalization_steps;
 | |
| 	    }
 | |
| 	}
 | |
|       /* No normalization needed, either because udiv_qrnnd doesn't require
 | |
| 	 it, or because DIVISOR_LIMB is already normalized.  */
 | |
| 
 | |
|       i = dividend_size - 1;
 | |
|       r = dividend_ptr[i];
 | |
| 
 | |
|       if (r >= divisor_limb)
 | |
| 	r = 0;
 | |
|       else
 | |
| 	{
 | |
| 	  quot_ptr[i] = 0;
 | |
| 	  i--;
 | |
| 	}
 | |
| 
 | |
|       for (; i >= 0; i--)
 | |
| 	{
 | |
| 	  n0 = dividend_ptr[i];
 | |
| 	  udiv_qrnnd (quot_ptr[i], r, r, n0, divisor_limb);
 | |
| 	}
 | |
|       return r;
 | |
|     }
 | |
| }
 |