mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	C23 adds various <math.h> function families originally defined in TS 18661-4. Add the rootn functions, which compute the Yth root of X for integer Y (with a domain error if Y is 0, even if X is a NaN). The integer exponent has type long long int in C23; it was intmax_t in TS 18661-4, and as with other interfaces changed after their initial appearance in the TS, I don't think we need to support the original version of the interface. As with pown and compoundn, I strongly encourage searching for worst cases for ulps error for these implementations (necessarily non-exhaustively, given the size of the input space). I also expect a custom implementation for a given format could be much faster as well as more accurate, although the implementation is simpler than those for pown and compoundn. This completes adding to glibc those TS 18661-4 functions (ignoring DFP) that are included in C23. See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=118592 regarding the C23 mathematical functions (not just the TS 18661-4 ones) missing built-in functions in GCC, where such functions might usefully be added. Tested for x86_64 and x86, and with build-many-glibcs.py.
		
			
				
	
	
		
			2312 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			2312 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| @c We need some definitions here.
 | ||
| @ifclear mult
 | ||
| @ifhtml
 | ||
| @set mult @U{00B7}
 | ||
| @set infty @U{221E}
 | ||
| @set pie @U{03C0}
 | ||
| @end ifhtml
 | ||
| @iftex
 | ||
| @set mult @cdot
 | ||
| @set infty @infty
 | ||
| @end iftex
 | ||
| @ifclear mult
 | ||
| @set mult *
 | ||
| @set infty oo
 | ||
| @set pie pi
 | ||
| @end ifclear
 | ||
| @macro mul
 | ||
| @value{mult}
 | ||
| @end macro
 | ||
| @macro infinity
 | ||
| @value{infty}
 | ||
| @end macro
 | ||
| @ifnottex
 | ||
| @macro pi
 | ||
| @value{pie}
 | ||
| @end macro
 | ||
| @end ifnottex
 | ||
| @end ifclear
 | ||
| 
 | ||
| @node Mathematics, Arithmetic, Syslog, Top
 | ||
| @c %MENU% Math functions, useful constants, random numbers
 | ||
| @chapter Mathematics
 | ||
| 
 | ||
| This chapter contains information about functions for performing
 | ||
| mathematical computations, such as trigonometric functions.  Most of
 | ||
| these functions have prototypes declared in the header file
 | ||
| @file{math.h}.  The complex-valued functions are defined in
 | ||
| @file{complex.h}.
 | ||
| @pindex math.h
 | ||
| @pindex complex.h
 | ||
| 
 | ||
| All mathematical functions which take a floating-point argument
 | ||
| have three variants, one each for @code{double}, @code{float}, and
 | ||
| @code{long double} arguments.  The @code{double} versions are mostly
 | ||
| defined in @w{ISO C89}.  The @code{float} and @code{long double}
 | ||
| versions are from the numeric extensions to C included in @w{ISO C99}.
 | ||
| 
 | ||
| Which of the three versions of a function should be used depends on the
 | ||
| situation.  For most calculations, the @code{float} functions are the
 | ||
| fastest.  On the other hand, the @code{long double} functions have the
 | ||
| highest precision.  @code{double} is somewhere in between.  It is
 | ||
| usually wise to pick the narrowest type that can accommodate your data.
 | ||
| Not all machines have a distinct @code{long double} type; it may be the
 | ||
| same as @code{double}.
 | ||
| 
 | ||
| @Theglibc{} also provides @code{_Float@var{N}} and
 | ||
| @code{_Float@var{N}x} types.  These types are defined in @w{ISO/IEC TS
 | ||
| 18661-3}, which extends @w{ISO C} and defines floating-point types that
 | ||
| are not machine-dependent.  When such a type, such as @code{_Float128},
 | ||
| is supported by @theglibc{}, extra variants for most of the mathematical
 | ||
| functions provided for @code{double}, @code{float}, and @code{long
 | ||
| double} are also provided for the supported type.  Throughout this
 | ||
| manual, the @code{_Float@var{N}} and @code{_Float@var{N}x} variants of
 | ||
| these functions are described along with the @code{double},
 | ||
| @code{float}, and @code{long double} variants and they come from
 | ||
| @w{ISO/IEC TS 18661-3}, unless explicitly stated otherwise.
 | ||
| 
 | ||
| Support for @code{_Float@var{N}} or @code{_Float@var{N}x} types is
 | ||
| provided for @code{_Float32}, @code{_Float64} and @code{_Float32x} on
 | ||
| all platforms.
 | ||
| It is also provided for @code{_Float128} and @code{_Float64x} on
 | ||
| powerpc64le (PowerPC 64-bits little-endian), x86_64, x86,
 | ||
| aarch64, alpha, loongarch, mips64, riscv, s390 and sparc.
 | ||
| 
 | ||
| @menu
 | ||
| * Mathematical Constants::      Precise numeric values for often-used
 | ||
|                                  constants.
 | ||
| * Trig Functions::              Sine, cosine, tangent, and friends.
 | ||
| * Inverse Trig Functions::      Arcsine, arccosine, etc.
 | ||
| * Exponents and Logarithms::    Also pow and sqrt.
 | ||
| * Hyperbolic Functions::        sinh, cosh, tanh, etc.
 | ||
| * Special Functions::           Bessel, gamma, erf.
 | ||
| * Errors in Math Functions::    Remarks in Errors in Math Functions.
 | ||
| * Pseudo-Random Numbers::       Functions for generating pseudo-random
 | ||
| 				 numbers.
 | ||
| * FP Function Optimizations::   Fast code or small code.
 | ||
| @end menu
 | ||
| 
 | ||
| @node Mathematical Constants
 | ||
| @section Predefined Mathematical Constants
 | ||
| @cindex constants
 | ||
| @cindex mathematical constants
 | ||
| 
 | ||
| The header @file{math.h} defines several useful mathematical constants.
 | ||
| All values are defined as preprocessor macros starting with @code{M_}.
 | ||
| The values provided are:
 | ||
| 
 | ||
| @vtable @code
 | ||
| @item M_E
 | ||
| The base of natural logarithms.
 | ||
| @item M_LOG2E
 | ||
| The logarithm to base @code{2} of @code{M_E}.
 | ||
| @item M_LOG10E
 | ||
| The logarithm to base @code{10} of @code{M_E}.
 | ||
| @item M_LN2
 | ||
| The natural logarithm of @code{2}.
 | ||
| @item M_LN10
 | ||
| The natural logarithm of @code{10}.
 | ||
| @item M_PI
 | ||
| Pi, the ratio of a circle's circumference to its diameter.
 | ||
| @item M_PI_2
 | ||
| Pi divided by two.
 | ||
| @item M_PI_4
 | ||
| Pi divided by four.
 | ||
| @item M_1_PI
 | ||
| The reciprocal of pi (1/pi)
 | ||
| @item M_2_PI
 | ||
| Two times the reciprocal of pi.
 | ||
| @item M_2_SQRTPI
 | ||
| Two times the reciprocal of the square root of pi.
 | ||
| @item M_SQRT2
 | ||
| The square root of two.
 | ||
| @item M_SQRT1_2
 | ||
| The reciprocal of the square root of two (also the square root of 1/2).
 | ||
| @end vtable
 | ||
| 
 | ||
| These constants come from the Unix98 standard and were also available in
 | ||
| 4.4BSD; therefore they are only defined if
 | ||
| @code{_XOPEN_SOURCE=500}, or a more general feature select macro, is
 | ||
| defined.  The default set of features includes these constants.
 | ||
| @xref{Feature Test Macros}.
 | ||
| 
 | ||
| All values are of type @code{double}.  As an extension, @theglibc{}
 | ||
| also defines these constants with type @code{long double} and
 | ||
| @code{float}.  The @code{long double} macros have a lowercase @samp{l}
 | ||
| while the @code{float} macros have a lowercase @samp{f} appended to
 | ||
| their names: @code{M_El}, @code{M_PIl}, and so forth.  These are only
 | ||
| available if @code{_GNU_SOURCE} is defined.
 | ||
| 
 | ||
| Likewise, @theglibc{} also defines these constants with the types
 | ||
| @code{_Float@var{N}} and @code{_Float@var{N}x} for the machines that
 | ||
| have support for such types enabled (@pxref{Mathematics}) and if
 | ||
| @code{_GNU_SOURCE} is defined.  When available, the macros names are
 | ||
| appended with @samp{f@var{N}} or @samp{f@var{N}x}, such as @samp{f128}
 | ||
| for the type @code{_Float128}.
 | ||
| 
 | ||
| @vindex PI
 | ||
| @emph{Note:} Some programs use a constant named @code{PI} which has the
 | ||
| same value as @code{M_PI}.  This constant is not standard; it may have
 | ||
| appeared in some old AT&T headers, and is mentioned in Stroustrup's book
 | ||
| on C++.  It infringes on the user's name space, so @theglibc{}
 | ||
| does not define it.  Fixing programs written to expect it is simple:
 | ||
| replace @code{PI} with @code{M_PI} throughout, or put @samp{-DPI=M_PI}
 | ||
| on the compiler command line.
 | ||
| 
 | ||
| @node Trig Functions
 | ||
| @section Trigonometric Functions
 | ||
| @cindex trigonometric functions
 | ||
| 
 | ||
| These are the familiar @code{sin}, @code{cos}, and @code{tan} functions.
 | ||
| The arguments to all of these functions are in units of radians; recall
 | ||
| that pi radians equals 180 degrees.
 | ||
| 
 | ||
| @cindex pi (trigonometric constant)
 | ||
| The math library normally defines @code{M_PI} to a @code{double}
 | ||
| approximation of pi.  If strict ISO and/or POSIX compliance
 | ||
| are requested this constant is not defined, but you can easily define it
 | ||
| yourself:
 | ||
| 
 | ||
| @smallexample
 | ||
| #define M_PI 3.14159265358979323846264338327
 | ||
| @end smallexample
 | ||
| 
 | ||
| @noindent
 | ||
| You can also compute the value of pi with the expression @code{acos
 | ||
| (-1.0)}.
 | ||
| 
 | ||
| @deftypefun double sin (double @var{x})
 | ||
| @deftypefunx float sinf (float @var{x})
 | ||
| @deftypefunx {long double} sinl (long double @var{x})
 | ||
| @deftypefunx _FloatN sinfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx sinfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{sinfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{sinfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the sine of @var{x}, where @var{x} is given in
 | ||
| radians.  The return value is in the range @code{-1} to @code{1}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double cos (double @var{x})
 | ||
| @deftypefunx float cosf (float @var{x})
 | ||
| @deftypefunx {long double} cosl (long double @var{x})
 | ||
| @deftypefunx _FloatN cosfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx cosfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{cosfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{cosfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the cosine of @var{x}, where @var{x} is given in
 | ||
| radians.  The return value is in the range @code{-1} to @code{1}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double tan (double @var{x})
 | ||
| @deftypefunx float tanf (float @var{x})
 | ||
| @deftypefunx {long double} tanl (long double @var{x})
 | ||
| @deftypefunx _FloatN tanfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx tanfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{tanfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{tanfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the tangent of @var{x}, where @var{x} is given in
 | ||
| radians.
 | ||
| 
 | ||
| Mathematically, the tangent function has singularities at odd multiples
 | ||
| of pi/2.  If the argument @var{x} is too close to one of these
 | ||
| singularities, @code{tan} will signal overflow.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| In many applications where @code{sin} and @code{cos} are used, the sine
 | ||
| and cosine of the same angle are needed at the same time.  It is more
 | ||
| efficient to compute them simultaneously, so the library provides a
 | ||
| function to do that.
 | ||
| 
 | ||
| @deftypefun void sincos (double @var{x}, double *@var{sinx}, double *@var{cosx})
 | ||
| @deftypefunx void sincosf (float @var{x}, float *@var{sinx}, float *@var{cosx})
 | ||
| @deftypefunx void sincosl (long double @var{x}, long double *@var{sinx}, long double *@var{cosx})
 | ||
| @deftypefunx _FloatN sincosfN (_Float@var{N} @var{x}, _Float@var{N} *@var{sinx}, _Float@var{N} *@var{cosx})
 | ||
| @deftypefunx _FloatNx sincosfNx (_Float@var{N}x @var{x}, _Float@var{N}x *@var{sinx}, _Float@var{N}x *@var{cosx})
 | ||
| @standards{GNU, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the sine of @var{x} in @code{*@var{sinx}} and the
 | ||
| cosine of @var{x} in @code{*@var{cosx}}, where @var{x} is given in
 | ||
| radians.  Both values, @code{*@var{sinx}} and @code{*@var{cosx}}, are in
 | ||
| the range of @code{-1} to @code{1}.
 | ||
| 
 | ||
| All these functions, including the @code{_Float@var{N}} and
 | ||
| @code{_Float@var{N}x} variants, are GNU extensions.  Portable programs
 | ||
| should be prepared to cope with their absence.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double sinpi (double @var{x})
 | ||
| @deftypefunx float sinpif (float @var{x})
 | ||
| @deftypefunx {long double} sinpil (long double @var{x})
 | ||
| @deftypefunx _FloatN sinpifN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx sinpifNx (_Float@var{N}x @var{x})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the sine of pi multiplied by @var{x}.  The
 | ||
| return value is in the range @code{-1} to @code{1}.
 | ||
| 
 | ||
| The @code{sinpi} functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double cospi (double @var{x})
 | ||
| @deftypefunx float cospif (float @var{x})
 | ||
| @deftypefunx {long double} cospil (long double @var{x})
 | ||
| @deftypefunx _FloatN cospifN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx cospifNx (_Float@var{N}x @var{x})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the cosine of pi multiplied by @var{x}.  The
 | ||
| return value is in the range @code{-1} to @code{1}.
 | ||
| 
 | ||
| The @code{cospi} functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double tanpi (double @var{x})
 | ||
| @deftypefunx float tanpif (float @var{x})
 | ||
| @deftypefunx {long double} tanpil (long double @var{x})
 | ||
| @deftypefunx _FloatN tanpifN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx tanpifNx (_Float@var{N}x @var{x})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the tangent of pi multiplied by @var{x}.
 | ||
| 
 | ||
| The @code{tanpi} functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @cindex complex trigonometric functions
 | ||
| 
 | ||
| @w{ISO C99} defines variants of the trig functions which work on
 | ||
| complex numbers.  @Theglibc{} provides these functions, but they
 | ||
| are only useful if your compiler supports the new complex types defined
 | ||
| by the standard.
 | ||
| @c XXX Change this when gcc is fixed. -zw
 | ||
| (As of this writing GCC supports complex numbers, but there are bugs in
 | ||
| the implementation.)
 | ||
| 
 | ||
| @deftypefun {complex double} csin (complex double @var{z})
 | ||
| @deftypefunx {complex float} csinf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} csinl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} csinfN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} csinfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{csinfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{csinfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| @c There are calls to nan* that could trigger @mtslocale if they didn't get
 | ||
| @c empty strings.
 | ||
| These functions return the complex sine of @var{z}.
 | ||
| The mathematical definition of the complex sine is
 | ||
| 
 | ||
| @ifnottex
 | ||
| @math{sin (z) = 1/(2*i) * (exp (z*i) - exp (-z*i))}.
 | ||
| @end ifnottex
 | ||
| @tex
 | ||
| $$\sin(z) = {1\over 2i} (e^{zi} - e^{-zi})$$
 | ||
| @end tex
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {complex double} ccos (complex double @var{z})
 | ||
| @deftypefunx {complex float} ccosf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} ccosl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} ccosfN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} ccosfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{ccosfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{ccosfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the complex cosine of @var{z}.
 | ||
| The mathematical definition of the complex cosine is
 | ||
| 
 | ||
| @ifnottex
 | ||
| @math{cos (z) = 1/2 * (exp (z*i) + exp (-z*i))}
 | ||
| @end ifnottex
 | ||
| @tex
 | ||
| $$\cos(z) = {1\over 2} (e^{zi} + e^{-zi})$$
 | ||
| @end tex
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {complex double} ctan (complex double @var{z})
 | ||
| @deftypefunx {complex float} ctanf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} ctanl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} ctanfN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} ctanfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{ctanfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{ctanfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the complex tangent of @var{z}.
 | ||
| The mathematical definition of the complex tangent is
 | ||
| 
 | ||
| @ifnottex
 | ||
| @math{tan (z) = -i * (exp (z*i) - exp (-z*i)) / (exp (z*i) + exp (-z*i))}
 | ||
| @end ifnottex
 | ||
| @tex
 | ||
| $$\tan(z) = -i \cdot {e^{zi} - e^{-zi}\over e^{zi} + e^{-zi}}$$
 | ||
| @end tex
 | ||
| 
 | ||
| @noindent
 | ||
| The complex tangent has poles at @math{pi/2 + 2n}, where @math{n} is an
 | ||
| integer.  @code{ctan} may signal overflow if @var{z} is too close to a
 | ||
| pole.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| 
 | ||
| @node Inverse Trig Functions
 | ||
| @section Inverse Trigonometric Functions
 | ||
| @cindex inverse trigonometric functions
 | ||
| 
 | ||
| These are the usual arcsine, arccosine and arctangent functions,
 | ||
| which are the inverses of the sine, cosine and tangent functions
 | ||
| respectively.
 | ||
| 
 | ||
| @deftypefun double asin (double @var{x})
 | ||
| @deftypefunx float asinf (float @var{x})
 | ||
| @deftypefunx {long double} asinl (long double @var{x})
 | ||
| @deftypefunx _FloatN asinfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx asinfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{asinfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{asinfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions compute the arcsine of @var{x}---that is, the value whose
 | ||
| sine is @var{x}.  The value is in units of radians.  Mathematically,
 | ||
| there are infinitely many such values; the one actually returned is the
 | ||
| one between @code{-pi/2} and @code{pi/2} (inclusive).
 | ||
| 
 | ||
| The arcsine function is defined mathematically only
 | ||
| over the domain @code{-1} to @code{1}.  If @var{x} is outside the
 | ||
| domain, @code{asin} signals a domain error.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double acos (double @var{x})
 | ||
| @deftypefunx float acosf (float @var{x})
 | ||
| @deftypefunx {long double} acosl (long double @var{x})
 | ||
| @deftypefunx _FloatN acosfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx acosfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{acosfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{acosfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions compute the arccosine of @var{x}---that is, the value
 | ||
| whose cosine is @var{x}.  The value is in units of radians.
 | ||
| Mathematically, there are infinitely many such values; the one actually
 | ||
| returned is the one between @code{0} and @code{pi} (inclusive).
 | ||
| 
 | ||
| The arccosine function is defined mathematically only
 | ||
| over the domain @code{-1} to @code{1}.  If @var{x} is outside the
 | ||
| domain, @code{acos} signals a domain error.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double atan (double @var{x})
 | ||
| @deftypefunx float atanf (float @var{x})
 | ||
| @deftypefunx {long double} atanl (long double @var{x})
 | ||
| @deftypefunx _FloatN atanfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx atanfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{atanfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{atanfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions compute the arctangent of @var{x}---that is, the value
 | ||
| whose tangent is @var{x}.  The value is in units of radians.
 | ||
| Mathematically, there are infinitely many such values; the one actually
 | ||
| returned is the one between @code{-pi/2} and @code{pi/2} (inclusive).
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double atan2 (double @var{y}, double @var{x})
 | ||
| @deftypefunx float atan2f (float @var{y}, float @var{x})
 | ||
| @deftypefunx {long double} atan2l (long double @var{y}, long double @var{x})
 | ||
| @deftypefunx _FloatN atan2fN (_Float@var{N} @var{y}, _Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx atan2fNx (_Float@var{N}x @var{y}, _Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{atan2fN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{atan2fNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| This function computes the arctangent of @var{y}/@var{x}, but the signs
 | ||
| of both arguments are used to determine the quadrant of the result, and
 | ||
| @var{x} is permitted to be zero.  The return value is given in radians
 | ||
| and is in the range @code{-pi} to @code{pi}, inclusive.
 | ||
| 
 | ||
| If @var{x} and @var{y} are coordinates of a point in the plane,
 | ||
| @code{atan2} returns the signed angle between the line from the origin
 | ||
| to that point and the x-axis.  Thus, @code{atan2} is useful for
 | ||
| converting Cartesian coordinates to polar coordinates.  (To compute the
 | ||
| radial coordinate, use @code{hypot}; see @ref{Exponents and
 | ||
| Logarithms}.)
 | ||
| 
 | ||
| @c This is experimentally true.  Should it be so? -zw
 | ||
| If both @var{x} and @var{y} are zero, @code{atan2} returns zero.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double asinpi (double @var{x})
 | ||
| @deftypefunx float asinpif (float @var{x})
 | ||
| @deftypefunx {long double} asinpil (long double @var{x})
 | ||
| @deftypefunx _FloatN asinpifN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx asinpifNx (_Float@var{N}x @var{x})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions compute the arcsine of @var{x}, divided by pi.  The
 | ||
| result is in the interval between @code{-0.5} and @code{0.5} (inclusive).
 | ||
| 
 | ||
| The arcsine function is defined mathematically only over the domain
 | ||
| @code{-1} to @code{1}.  If @var{x} is outside the domain,
 | ||
| @code{asinpi} signals a domain error.
 | ||
| 
 | ||
| The @code{asinpi} functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double acospi (double @var{x})
 | ||
| @deftypefunx float acospif (float @var{x})
 | ||
| @deftypefunx {long double} acospil (long double @var{x})
 | ||
| @deftypefunx _FloatN acospifN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx acospifNx (_Float@var{N}x @var{x})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions compute the arccosine of @var{x}, divided by pi.  The
 | ||
| result is in the interval between @code{0} and @code{1} (inclusive).
 | ||
| 
 | ||
| The arccosine function is defined mathematically only
 | ||
| over the domain @code{-1} to @code{1}.  If @var{x} is outside the
 | ||
| domain, @code{acospi} signals a domain error.
 | ||
| 
 | ||
| The @code{acospi} functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double atanpi (double @var{x})
 | ||
| @deftypefunx float atanpif (float @var{x})
 | ||
| @deftypefunx {long double} atanpil (long double @var{x})
 | ||
| @deftypefunx _FloatN atanpifN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx atanpifNx (_Float@var{N}x @var{x})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions compute the arctangent of @var{x}, divided by pi.  The
 | ||
| result is in the interval between @code{-0.5} and @code{0.5}
 | ||
| (inclusive).
 | ||
| 
 | ||
| The @code{atanpi} functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double atan2pi (double @var{y}, double @var{x})
 | ||
| @deftypefunx float atan2pif (float @var{y}, float @var{x})
 | ||
| @deftypefunx {long double} atan2pil (long double @var{y}, long double @var{x})
 | ||
| @deftypefunx _FloatN atan2pifN (_Float@var{N} @var{y}, _Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx atan2pifNx (_Float@var{N}x @var{y}, _Float@var{N}x @var{x})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These function computes the arctangent of @var{y}/@var{x}, divided by
 | ||
| pi, with the signs of both arguments used to determine the quadrant of
 | ||
| the result, as for @code{atan2}.
 | ||
| 
 | ||
| The @code{atan2pi} functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @cindex inverse complex trigonometric functions
 | ||
| @w{ISO C99} defines complex versions of the inverse trig functions.
 | ||
| 
 | ||
| @deftypefun {complex double} casin (complex double @var{z})
 | ||
| @deftypefunx {complex float} casinf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} casinl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} casinfN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} casinfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{casinfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{casinfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions compute the complex arcsine of @var{z}---that is, the
 | ||
| value whose sine is @var{z}.  The value returned is in radians.
 | ||
| 
 | ||
| Unlike the real-valued functions, @code{casin} is defined for all
 | ||
| values of @var{z}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {complex double} cacos (complex double @var{z})
 | ||
| @deftypefunx {complex float} cacosf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} cacosl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} cacosfN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} cacosfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{cacosfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{cacosfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions compute the complex arccosine of @var{z}---that is, the
 | ||
| value whose cosine is @var{z}.  The value returned is in radians.
 | ||
| 
 | ||
| Unlike the real-valued functions, @code{cacos} is defined for all
 | ||
| values of @var{z}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| 
 | ||
| @deftypefun {complex double} catan (complex double @var{z})
 | ||
| @deftypefunx {complex float} catanf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} catanl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} catanfN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} catanfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{catanfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{catanfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions compute the complex arctangent of @var{z}---that is,
 | ||
| the value whose tangent is @var{z}.  The value is in units of radians.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| 
 | ||
| @node Exponents and Logarithms
 | ||
| @section Exponentiation and Logarithms
 | ||
| @cindex exponentiation functions
 | ||
| @cindex power functions
 | ||
| @cindex logarithm functions
 | ||
| 
 | ||
| @deftypefun double exp (double @var{x})
 | ||
| @deftypefunx float expf (float @var{x})
 | ||
| @deftypefunx {long double} expl (long double @var{x})
 | ||
| @deftypefunx _FloatN expfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx expfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{expfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{expfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions compute @code{e} (the base of natural logarithms) raised
 | ||
| to the power @var{x}.
 | ||
| 
 | ||
| If the magnitude of the result is too large to be representable,
 | ||
| @code{exp} signals overflow.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double exp2 (double @var{x})
 | ||
| @deftypefunx float exp2f (float @var{x})
 | ||
| @deftypefunx {long double} exp2l (long double @var{x})
 | ||
| @deftypefunx _FloatN exp2fN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx exp2fNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{exp2fN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{exp2fNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions compute @code{2} raised to the power @var{x}.
 | ||
| Mathematically, @code{exp2 (x)} is the same as @code{exp (x * log (2))}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double exp10 (double @var{x})
 | ||
| @deftypefunx float exp10f (float @var{x})
 | ||
| @deftypefunx {long double} exp10l (long double @var{x})
 | ||
| @deftypefunx _FloatN exp10fN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx exp10fNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{exp10fN, TS 18661-4:2015, math.h}
 | ||
| @standardsx{exp10fNx, TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions compute @code{10} raised to the power @var{x}.
 | ||
| Mathematically, @code{exp10 (x)} is the same as @code{exp (x * log (10))}.
 | ||
| 
 | ||
| The @code{exp10} functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| 
 | ||
| @deftypefun double log (double @var{x})
 | ||
| @deftypefunx float logf (float @var{x})
 | ||
| @deftypefunx {long double} logl (long double @var{x})
 | ||
| @deftypefunx _FloatN logfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx logfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{logfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{logfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions compute the natural logarithm of @var{x}.  @code{exp (log
 | ||
| (@var{x}))} equals @var{x}, exactly in mathematics and approximately in
 | ||
| C.
 | ||
| 
 | ||
| If @var{x} is negative, @code{log} signals a domain error.  If @var{x}
 | ||
| is zero, it returns negative infinity; if @var{x} is too close to zero,
 | ||
| it may signal overflow.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double log10 (double @var{x})
 | ||
| @deftypefunx float log10f (float @var{x})
 | ||
| @deftypefunx {long double} log10l (long double @var{x})
 | ||
| @deftypefunx _FloatN log10fN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx log10fNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{log10fN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{log10fNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the base-10 logarithm of @var{x}.
 | ||
| @code{log10 (@var{x})} equals @code{log (@var{x}) / log (10)}.
 | ||
| 
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double log2 (double @var{x})
 | ||
| @deftypefunx float log2f (float @var{x})
 | ||
| @deftypefunx {long double} log2l (long double @var{x})
 | ||
| @deftypefunx _FloatN log2fN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx log2fNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{log2fN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{log2fNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the base-2 logarithm of @var{x}.
 | ||
| @code{log2 (@var{x})} equals @code{log (@var{x}) / log (2)}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double logb (double @var{x})
 | ||
| @deftypefunx float logbf (float @var{x})
 | ||
| @deftypefunx {long double} logbl (long double @var{x})
 | ||
| @deftypefunx _FloatN logbfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx logbfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{logbfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{logbfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions extract the exponent of @var{x} and return it as a
 | ||
| floating-point value.
 | ||
| If @code{FLT_RADIX} is two,
 | ||
| @code{logb (x)} is similar to @code{floor (log2 (fabs (x)))},
 | ||
| except that the latter may give an incorrect integer
 | ||
| due to intermediate rounding.
 | ||
| 
 | ||
| If @var{x} is de-normalized, @code{logb} returns the exponent @var{x}
 | ||
| would have if it were normalized.  If @var{x} is infinity (positive or
 | ||
| negative), @code{logb} returns @math{@infinity{}}.  If @var{x} is zero,
 | ||
| @code{logb} returns @math{@infinity{}}.  It does not signal.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun int ilogb (double @var{x})
 | ||
| @deftypefunx int ilogbf (float @var{x})
 | ||
| @deftypefunx int ilogbl (long double @var{x})
 | ||
| @deftypefunx int ilogbfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx int ilogbfNx (_Float@var{N}x @var{x})
 | ||
| @deftypefunx {long int} llogb (double @var{x})
 | ||
| @deftypefunx {long int} llogbf (float @var{x})
 | ||
| @deftypefunx {long int} llogbl (long double @var{x})
 | ||
| @deftypefunx {long int} llogbfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx {long int} llogbfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{ilogbfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{ilogbfNx, TS 18661-3:2015, math.h}
 | ||
| @standardsx{llogbfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{llogbfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions are equivalent to the corresponding @code{logb}
 | ||
| functions except that they return signed integer values.  The
 | ||
| @code{ilogb}, @code{ilogbf}, and @code{ilogbl} functions are from ISO
 | ||
| C99; the @code{llogb}, @code{llogbf}, @code{llogbl} functions are from
 | ||
| TS 18661-1:2014; the @code{ilogbfN}, @code{ilogbfNx}, @code{llogbfN},
 | ||
| and @code{llogbfNx} functions are from TS 18661-3:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @noindent
 | ||
| Since integers cannot represent infinity and NaN, @code{ilogb} instead
 | ||
| returns an integer that can't be the exponent of a normal floating-point
 | ||
| number.  @file{math.h} defines constants so you can check for this.
 | ||
| 
 | ||
| @deftypevr Macro int FP_ILOGB0
 | ||
| @standards{ISO, math.h}
 | ||
| @code{ilogb} returns this value if its argument is @code{0}.  The
 | ||
| numeric value is either @code{INT_MIN} or @code{-INT_MAX}.
 | ||
| 
 | ||
| This macro is defined in @w{ISO C99}.
 | ||
| @end deftypevr
 | ||
| 
 | ||
| @deftypevr Macro {long int} FP_LLOGB0
 | ||
| @standards{ISO, math.h}
 | ||
| @code{llogb} returns this value if its argument is @code{0}.  The
 | ||
| numeric value is either @code{LONG_MIN} or @code{-LONG_MAX}.
 | ||
| 
 | ||
| This macro is defined in TS 18661-1:2014.
 | ||
| @end deftypevr
 | ||
| 
 | ||
| @deftypevr Macro int FP_ILOGBNAN
 | ||
| @standards{ISO, math.h}
 | ||
| @code{ilogb} returns this value if its argument is @code{NaN}.  The
 | ||
| numeric value is either @code{INT_MIN} or @code{INT_MAX}.
 | ||
| 
 | ||
| This macro is defined in @w{ISO C99}.
 | ||
| @end deftypevr
 | ||
| 
 | ||
| @deftypevr Macro {long int} FP_LLOGBNAN
 | ||
| @standards{ISO, math.h}
 | ||
| @code{llogb} returns this value if its argument is @code{NaN}.  The
 | ||
| numeric value is either @code{LONG_MIN} or @code{LONG_MAX}.
 | ||
| 
 | ||
| This macro is defined in TS 18661-1:2014.
 | ||
| @end deftypevr
 | ||
| 
 | ||
| These values are system specific.  They might even be the same.  The
 | ||
| proper way to test the result of @code{ilogb} is as follows:
 | ||
| 
 | ||
| @smallexample
 | ||
| i = ilogb (f);
 | ||
| if (i == FP_ILOGB0 || i == FP_ILOGBNAN)
 | ||
|   @{
 | ||
|     if (isnan (f))
 | ||
|       @{
 | ||
|         /* @r{Handle NaN.}  */
 | ||
|       @}
 | ||
|     else if (f  == 0.0)
 | ||
|       @{
 | ||
|         /* @r{Handle 0.0.}  */
 | ||
|       @}
 | ||
|     else
 | ||
|       @{
 | ||
|         /* @r{Some other value with large exponent,}
 | ||
|            @r{perhaps +Inf.}  */
 | ||
|       @}
 | ||
|   @}
 | ||
| @end smallexample
 | ||
| 
 | ||
| @deftypefun double pow (double @var{base}, double @var{power})
 | ||
| @deftypefunx float powf (float @var{base}, float @var{power})
 | ||
| @deftypefunx {long double} powl (long double @var{base}, long double @var{power})
 | ||
| @deftypefunx _FloatN powfN (_Float@var{N} @var{base}, _Float@var{N} @var{power})
 | ||
| @deftypefunx _FloatNx powfNx (_Float@var{N}x @var{base}, _Float@var{N}x @var{power})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{powfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{powfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These are general exponentiation functions, returning @var{base} raised
 | ||
| to @var{power}.
 | ||
| 
 | ||
| Mathematically, @code{pow} would return a complex number when @var{base}
 | ||
| is negative and @var{power} is not an integral value.  @code{pow} can't
 | ||
| do that, so instead it signals a domain error. @code{pow} may also
 | ||
| underflow or overflow the destination type.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double powr (double @var{base}, double @var{power})
 | ||
| @deftypefunx float powrf (float @var{base}, float @var{power})
 | ||
| @deftypefunx {long double} powrl (long double @var{base}, long double @var{power})
 | ||
| @deftypefunx _FloatN powrfN (_Float@var{N} @var{base}, _Float@var{N} @var{power})
 | ||
| @deftypefunx _FloatNx powrfNx (_Float@var{N}x @var{base}, _Float@var{N}x @var{power})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These return @var{base} raised to @var{power}, but with special cases
 | ||
| based on @code{exp (power * log (base))}.  For example, if @var{base}
 | ||
| is negative, the @code{powr} functions always signal a domain error,
 | ||
| but this is valid for @code{pow} if @var{power} is an integer.
 | ||
| 
 | ||
| The @code{powr} functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double pown (double @var{base}, long long int @var{power})
 | ||
| @deftypefunx float pownf (float @var{base}, long long int @var{power})
 | ||
| @deftypefunx {long double} pownl (long double @var{base}, long long int @var{power})
 | ||
| @deftypefunx _FloatN pownfN (_Float@var{N} @var{base}, long long int @var{power})
 | ||
| @deftypefunx _FloatNx pownfNx (_Float@var{N}x @var{base}, long long int @var{power})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These return @var{base} raised to @var{power} (an integer).
 | ||
| 
 | ||
| The @code{pown} functions are from TS 18661-4:2015 (which used
 | ||
| @code{intmax_t} as the type of @var{power}; the type changed to
 | ||
| @code{long long int} in C23).
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double compoundn (double @var{x}, long long int @var{power})
 | ||
| @deftypefunx float compoundnf (float @var{x}, long long int @var{power})
 | ||
| @deftypefunx {long double} compoundnl (long double @var{x}, long long int @var{power})
 | ||
| @deftypefunx _FloatN compoundnfN (_Float@var{N} @var{x}, long long int @var{power})
 | ||
| @deftypefunx _FloatNx compoundnfNx (_Float@var{N}x @var{x}, long long int @var{power})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These return @code{1 + @var{x}} raised to @var{power} (an integer).
 | ||
| If @var{x} is less than @minus{}1, @code{compoundn} signals a domain
 | ||
| error.
 | ||
| 
 | ||
| The @code{compoundn} functions are from TS 18661-4:2015 (which used
 | ||
| @code{intmax_t} as the type of @var{power}; the type changed to
 | ||
| @code{long long int} in C23).
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @cindex square root function
 | ||
| @deftypefun double sqrt (double @var{x})
 | ||
| @deftypefunx float sqrtf (float @var{x})
 | ||
| @deftypefunx {long double} sqrtl (long double @var{x})
 | ||
| @deftypefunx _FloatN sqrtfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx sqrtfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{sqrtfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{sqrtfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the nonnegative square root of @var{x}.
 | ||
| 
 | ||
| If @var{x} is negative, @code{sqrt} signals a domain error.
 | ||
| Mathematically, it should return a complex number.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double rsqrt (double @var{x})
 | ||
| @deftypefunx float rsqrtf (float @var{x})
 | ||
| @deftypefunx {long double} rsqrtl (long double @var{x})
 | ||
| @deftypefunx _FloatN rsqrtfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx rsqrtfNx (_Float@var{N}x @var{x})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the reciprocal of the nonnegative square root of @var{x}.
 | ||
| If @var{x} is negative, @code{rsqrt} signals a domain error.
 | ||
| 
 | ||
| The @code{rsqrt} functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @cindex cube root function
 | ||
| @deftypefun double cbrt (double @var{x})
 | ||
| @deftypefunx float cbrtf (float @var{x})
 | ||
| @deftypefunx {long double} cbrtl (long double @var{x})
 | ||
| @deftypefunx _FloatN cbrtfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx cbrtfNx (_Float@var{N}x @var{x})
 | ||
| @standards{BSD, math.h}
 | ||
| @standardsx{cbrtfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{cbrtfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the cube root of @var{x}.
 | ||
| They cannot fail;
 | ||
| every representable real value
 | ||
| has a real cube root,
 | ||
| and rounding it to a representable value
 | ||
| never causes overflow nor underflow.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double hypot (double @var{x}, double @var{y})
 | ||
| @deftypefunx float hypotf (float @var{x}, float @var{y})
 | ||
| @deftypefunx {long double} hypotl (long double @var{x}, long double @var{y})
 | ||
| @deftypefunx _FloatN hypotfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
 | ||
| @deftypefunx _FloatNx hypotfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{hypotfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{hypotfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return @code{sqrt (@var{x}*@var{x} +
 | ||
| @var{y}*@var{y})}.  This is the length of the hypotenuse of a right
 | ||
| triangle with sides of length @var{x} and @var{y}, or the distance
 | ||
| of the point (@var{x}, @var{y}) from the origin.  Using this function
 | ||
| instead of the direct formula is wise, since the error is
 | ||
| much smaller.  See also the function @code{cabs} in @ref{Absolute Value}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double rootn (double @var{x}, long long int @var{n})
 | ||
| @deftypefunx float rootnf (float @var{x}, long long int @var{n})
 | ||
| @deftypefunx {long double} rootnl (long double @var{x}, long long int @var{n})
 | ||
| @deftypefunx _FloatN rootnfN (_Float@var{N} @var{x}, long long int @var{n})
 | ||
| @deftypefunx _FloatNx rootnfNx (_Float@var{N}x @var{x}, long long int @var{n})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These return the @var{n}th root of @var{x}.  If @var{n} is zero, or if
 | ||
| @var{x} is negative and @var{n} is even, @code{rootn} signals a domain
 | ||
| error.
 | ||
| 
 | ||
| The @code{rootn} functions are from TS 18661-4:2015 (which used
 | ||
| @code{intmax_t} as the type of @var{n}; the type changed to
 | ||
| @code{long long int} in C23).
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double expm1 (double @var{x})
 | ||
| @deftypefunx float expm1f (float @var{x})
 | ||
| @deftypefunx {long double} expm1l (long double @var{x})
 | ||
| @deftypefunx _FloatN expm1fN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx expm1fNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{expm1fN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{expm1fNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return a value equivalent to @code{exp (@var{x}) - 1}.
 | ||
| They are computed in a way that is accurate even if @var{x} is
 | ||
| near zero---a case where @code{exp (@var{x}) - 1} would be inaccurate owing
 | ||
| to subtraction of two numbers that are nearly equal.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double exp2m1 (double @var{x})
 | ||
| @deftypefunx float exp2m1f (float @var{x})
 | ||
| @deftypefunx {long double} exp2m1l (long double @var{x})
 | ||
| @deftypefunx _FloatN exp2m1fN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx exp2m1fNx (_Float@var{N}x @var{x})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return a value equivalent to @code{exp2 (@var{x}) - 1}.
 | ||
| They are computed in a way that is accurate even if @var{x} is
 | ||
| near zero---a case where @code{exp2 (@var{x}) - 1} would be inaccurate owing
 | ||
| to subtraction of two numbers that are nearly equal.
 | ||
| 
 | ||
| The @code{exp2m1} functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double exp10m1 (double @var{x})
 | ||
| @deftypefunx float exp10m1f (float @var{x})
 | ||
| @deftypefunx {long double} exp10m1l (long double @var{x})
 | ||
| @deftypefunx _FloatN exp10m1fN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx exp10m1fNx (_Float@var{N}x @var{x})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return a value equivalent to @code{exp10 (@var{x}) - 1}.
 | ||
| They are computed in a way that is accurate even if @var{x} is
 | ||
| near zero---a case where @code{exp10 (@var{x}) - 1} would be inaccurate owing
 | ||
| to subtraction of two numbers that are nearly equal.
 | ||
| 
 | ||
| The @code{exp10m1} functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double log1p (double @var{x})
 | ||
| @deftypefunx float log1pf (float @var{x})
 | ||
| @deftypefunx {long double} log1pl (long double @var{x})
 | ||
| @deftypefunx _FloatN log1pfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx log1pfNx (_Float@var{N}x @var{x})
 | ||
| @deftypefunx double logp1 (double @var{x})
 | ||
| @deftypefunx float logp1f (float @var{x})
 | ||
| @deftypefunx {long double} logp1l (long double @var{x})
 | ||
| @deftypefunx _FloatN logp1fN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx logp1fNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{log1pfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{log1pfNx, TS 18661-3:2015, math.h}
 | ||
| @standardsx{logp1, TS 18661-4:2015, math.h}
 | ||
| @standardsx{logp1f, TS 18661-4:2015, math.h}
 | ||
| @standardsx{logp1l, TS 18661-4:2015, math.h}
 | ||
| @standardsx{logp1fN, TS 18661-4:2015, math.h}
 | ||
| @standardsx{logp1fNx, TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return a value equivalent to @w{@code{log (1 + @var{x})}}.
 | ||
| They are computed in a way that is accurate even if @var{x} is
 | ||
| near zero.
 | ||
| 
 | ||
| The @code{logp1} names for these functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double log2p1 (double @var{x})
 | ||
| @deftypefunx float log2p1f (float @var{x})
 | ||
| @deftypefunx {long double} log2p1l (long double @var{x})
 | ||
| @deftypefunx _FloatN log2p1fN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx log2p1fNx (_Float@var{N}x @var{x})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return a value equivalent to @w{@code{log2 (1 + @var{x})}}.
 | ||
| They are computed in a way that is accurate even if @var{x} is
 | ||
| near zero.
 | ||
| 
 | ||
| The @code{log2p1} functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double log10p1 (double @var{x})
 | ||
| @deftypefunx float log10p1f (float @var{x})
 | ||
| @deftypefunx {long double} log10p1l (long double @var{x})
 | ||
| @deftypefunx _FloatN log10p1fN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx log10p1fNx (_Float@var{N}x @var{x})
 | ||
| @standards{TS 18661-4:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return a value equivalent to @w{@code{log10 (1 + @var{x})}}.
 | ||
| They are computed in a way that is accurate even if @var{x} is
 | ||
| near zero.
 | ||
| 
 | ||
| The @code{log10p1} functions are from TS 18661-4:2015.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @cindex complex exponentiation functions
 | ||
| @cindex complex logarithm functions
 | ||
| 
 | ||
| @w{ISO C99} defines complex variants of some of the exponentiation and
 | ||
| logarithm functions.
 | ||
| 
 | ||
| @deftypefun {complex double} cexp (complex double @var{z})
 | ||
| @deftypefunx {complex float} cexpf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} cexpl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} cexpfN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} cexpfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{cexpfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{cexpfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return @code{e} (the base of natural
 | ||
| logarithms) raised to the power of @var{z}.
 | ||
| Mathematically, this corresponds to the value
 | ||
| 
 | ||
| @ifnottex
 | ||
| @math{exp (z) = exp (creal (z)) * (cos (cimag (z)) + I * sin (cimag (z)))}
 | ||
| @end ifnottex
 | ||
| @tex
 | ||
| $$\exp(z) = e^z = e^{{\rm Re}\,z} (\cos ({\rm Im}\,z) + i \sin ({\rm Im}\,z))$$
 | ||
| @end tex
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {complex double} clog (complex double @var{z})
 | ||
| @deftypefunx {complex float} clogf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} clogl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} clogfN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} clogfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{clogfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{clogfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the natural logarithm of @var{z}.
 | ||
| Mathematically, this corresponds to the value
 | ||
| 
 | ||
| @ifnottex
 | ||
| @math{log (z) = log (cabs (z)) + I * carg (z)}
 | ||
| @end ifnottex
 | ||
| @tex
 | ||
| $$\log(z) = \log |z| + i \arg z$$
 | ||
| @end tex
 | ||
| 
 | ||
| @noindent
 | ||
| @code{clog} has a pole at 0, and will signal overflow if @var{z} equals
 | ||
| or is very close to 0.  It is well-defined for all other values of
 | ||
| @var{z}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| 
 | ||
| @deftypefun {complex double} clog10 (complex double @var{z})
 | ||
| @deftypefunx {complex float} clog10f (complex float @var{z})
 | ||
| @deftypefunx {complex long double} clog10l (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} clog10fN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} clog10fNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{GNU, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the base 10 logarithm of the complex value
 | ||
| @var{z}.  Mathematically, this corresponds to the value
 | ||
| 
 | ||
| @ifnottex
 | ||
| @math{log10 (z) = log10 (cabs (z)) + I * carg (z) / log (10)}
 | ||
| @end ifnottex
 | ||
| @tex
 | ||
| $$\log_{10}(z) = \log_{10}|z| + i \arg z / \log (10)$$
 | ||
| @end tex
 | ||
| 
 | ||
| All these functions, including the @code{_Float@var{N}} and
 | ||
| @code{_Float@var{N}x} variants, are GNU extensions.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {complex double} csqrt (complex double @var{z})
 | ||
| @deftypefunx {complex float} csqrtf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} csqrtl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} csqrtfN (_Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} csqrtfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{csqrtfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{csqrtfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the complex square root of the argument @var{z}.  Unlike
 | ||
| the real-valued functions, they are defined for all values of @var{z}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {complex double} cpow (complex double @var{base}, complex double @var{power})
 | ||
| @deftypefunx {complex float} cpowf (complex float @var{base}, complex float @var{power})
 | ||
| @deftypefunx {complex long double} cpowl (complex long double @var{base}, complex long double @var{power})
 | ||
| @deftypefunx {complex _FloatN} cpowfN (complex _Float@var{N} @var{base}, complex _Float@var{N} @var{power})
 | ||
| @deftypefunx {complex _FloatNx} cpowfNx (complex _Float@var{N}x @var{base}, complex _Float@var{N}x @var{power})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{cpowfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{cpowfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return @var{base} raised to the power of
 | ||
| @var{power}.  This is equivalent to @w{@code{cexp (y * clog (x))}}
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @node Hyperbolic Functions
 | ||
| @section Hyperbolic Functions
 | ||
| @cindex hyperbolic functions
 | ||
| 
 | ||
| The functions in this section are related to the exponential functions;
 | ||
| see @ref{Exponents and Logarithms}.
 | ||
| 
 | ||
| @deftypefun double sinh (double @var{x})
 | ||
| @deftypefunx float sinhf (float @var{x})
 | ||
| @deftypefunx {long double} sinhl (long double @var{x})
 | ||
| @deftypefunx _FloatN sinhfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx sinhfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{sinhfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{sinhfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the hyperbolic sine of @var{x}, defined
 | ||
| mathematically as @w{@code{(exp (@var{x}) - exp (-@var{x})) / 2}}.  They
 | ||
| may signal overflow if @var{x} is too large.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double cosh (double @var{x})
 | ||
| @deftypefunx float coshf (float @var{x})
 | ||
| @deftypefunx {long double} coshl (long double @var{x})
 | ||
| @deftypefunx _FloatN coshfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx coshfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{coshfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{coshfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the hyperbolic cosine of @var{x},
 | ||
| defined mathematically as @w{@code{(exp (@var{x}) + exp (-@var{x})) / 2}}.
 | ||
| They may signal overflow if @var{x} is too large.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double tanh (double @var{x})
 | ||
| @deftypefunx float tanhf (float @var{x})
 | ||
| @deftypefunx {long double} tanhl (long double @var{x})
 | ||
| @deftypefunx _FloatN tanhfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx tanhfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{tanhfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{tanhfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the hyperbolic tangent of @var{x},
 | ||
| defined mathematically as @w{@code{sinh (@var{x}) / cosh (@var{x})}}.
 | ||
| They may signal overflow if @var{x} is too large.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @cindex hyperbolic functions
 | ||
| 
 | ||
| There are counterparts for the hyperbolic functions which take
 | ||
| complex arguments.
 | ||
| 
 | ||
| @deftypefun {complex double} csinh (complex double @var{z})
 | ||
| @deftypefunx {complex float} csinhf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} csinhl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} csinhfN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} csinhfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{csinhfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{csinhfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the complex hyperbolic sine of @var{z}, defined
 | ||
| mathematically as @w{@code{(exp (@var{z}) - exp (-@var{z})) / 2}}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {complex double} ccosh (complex double @var{z})
 | ||
| @deftypefunx {complex float} ccoshf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} ccoshl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} ccoshfN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} ccoshfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{ccoshfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{ccoshfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the complex hyperbolic cosine of @var{z}, defined
 | ||
| mathematically as @w{@code{(exp (@var{z}) + exp (-@var{z})) / 2}}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {complex double} ctanh (complex double @var{z})
 | ||
| @deftypefunx {complex float} ctanhf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} ctanhl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} ctanhfN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} ctanhfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{ctanhfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{ctanhfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the complex hyperbolic tangent of @var{z},
 | ||
| defined mathematically as @w{@code{csinh (@var{z}) / ccosh (@var{z})}}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| 
 | ||
| @cindex inverse hyperbolic functions
 | ||
| 
 | ||
| @deftypefun double asinh (double @var{x})
 | ||
| @deftypefunx float asinhf (float @var{x})
 | ||
| @deftypefunx {long double} asinhl (long double @var{x})
 | ||
| @deftypefunx _FloatN asinhfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx asinhfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{asinhfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{asinhfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the inverse hyperbolic sine of @var{x}---the
 | ||
| value whose hyperbolic sine is @var{x}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double acosh (double @var{x})
 | ||
| @deftypefunx float acoshf (float @var{x})
 | ||
| @deftypefunx {long double} acoshl (long double @var{x})
 | ||
| @deftypefunx _FloatN acoshfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx acoshfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{acoshfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{acoshfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the inverse hyperbolic cosine of @var{x}---the
 | ||
| value whose hyperbolic cosine is @var{x}.  If @var{x} is less than
 | ||
| @code{1}, @code{acosh} signals a domain error.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double atanh (double @var{x})
 | ||
| @deftypefunx float atanhf (float @var{x})
 | ||
| @deftypefunx {long double} atanhl (long double @var{x})
 | ||
| @deftypefunx _FloatN atanhfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx atanhfNx (_Float@var{N}x @var{x})
 | ||
| @standards{ISO, math.h}
 | ||
| @standardsx{atanhfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{atanhfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the inverse hyperbolic tangent of @var{x}---the
 | ||
| value whose hyperbolic tangent is @var{x}.  If the absolute value of
 | ||
| @var{x} is greater than @code{1}, @code{atanh} signals a domain error;
 | ||
| if it is equal to 1, @code{atanh} returns infinity.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @cindex inverse complex hyperbolic functions
 | ||
| 
 | ||
| @deftypefun {complex double} casinh (complex double @var{z})
 | ||
| @deftypefunx {complex float} casinhf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} casinhl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} casinhfN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} casinhfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{casinhfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{casinhfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the inverse complex hyperbolic sine of
 | ||
| @var{z}---the value whose complex hyperbolic sine is @var{z}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {complex double} cacosh (complex double @var{z})
 | ||
| @deftypefunx {complex float} cacoshf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} cacoshl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} cacoshfN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} cacoshfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{cacoshfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{cacoshfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the inverse complex hyperbolic cosine of
 | ||
| @var{z}---the value whose complex hyperbolic cosine is @var{z}.  Unlike
 | ||
| the real-valued functions, there are no restrictions on the value of @var{z}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {complex double} catanh (complex double @var{z})
 | ||
| @deftypefunx {complex float} catanhf (complex float @var{z})
 | ||
| @deftypefunx {complex long double} catanhl (complex long double @var{z})
 | ||
| @deftypefunx {complex _FloatN} catanhfN (complex _Float@var{N} @var{z})
 | ||
| @deftypefunx {complex _FloatNx} catanhfNx (complex _Float@var{N}x @var{z})
 | ||
| @standards{ISO, complex.h}
 | ||
| @standardsx{catanhfN, TS 18661-3:2015, complex.h}
 | ||
| @standardsx{catanhfNx, TS 18661-3:2015, complex.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| These functions return the inverse complex hyperbolic tangent of
 | ||
| @var{z}---the value whose complex hyperbolic tangent is @var{z}.  Unlike
 | ||
| the real-valued functions, there are no restrictions on the value of
 | ||
| @var{z}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @node Special Functions
 | ||
| @section Special Functions
 | ||
| @cindex special functions
 | ||
| @cindex Bessel functions
 | ||
| @cindex gamma function
 | ||
| 
 | ||
| These are some more exotic mathematical functions which are sometimes
 | ||
| useful.  Currently they only have real-valued versions.
 | ||
| 
 | ||
| @deftypefun double erf (double @var{x})
 | ||
| @deftypefunx float erff (float @var{x})
 | ||
| @deftypefunx {long double} erfl (long double @var{x})
 | ||
| @deftypefunx _FloatN erffN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx erffNx (_Float@var{N}x @var{x})
 | ||
| @standards{SVID, math.h}
 | ||
| @standardsx{erffN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{erffNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| @code{erf} returns the error function of @var{x}.  The error
 | ||
| function is defined as
 | ||
| @tex
 | ||
| $$\hbox{erf}(x) = {2\over\sqrt{\pi}}\cdot\int_0^x e^{-t^2} \hbox{d}t$$
 | ||
| @end tex
 | ||
| @ifnottex
 | ||
| @smallexample
 | ||
| erf (x) = 2/sqrt(pi) * integral from 0 to x of exp(-t^2) dt
 | ||
| @end smallexample
 | ||
| @end ifnottex
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double erfc (double @var{x})
 | ||
| @deftypefunx float erfcf (float @var{x})
 | ||
| @deftypefunx {long double} erfcl (long double @var{x})
 | ||
| @deftypefunx _FloatN erfcfN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx erfcfNx (_Float@var{N}x @var{x})
 | ||
| @standards{SVID, math.h}
 | ||
| @standardsx{erfcfN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{erfcfNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| @code{erfc} returns @code{1.0 - erf(@var{x})}, but computed in a
 | ||
| fashion that avoids round-off error when @var{x} is large.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double lgamma (double @var{x})
 | ||
| @deftypefunx float lgammaf (float @var{x})
 | ||
| @deftypefunx {long double} lgammal (long double @var{x})
 | ||
| @deftypefunx _FloatN lgammafN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx lgammafNx (_Float@var{N}x @var{x})
 | ||
| @standards{SVID, math.h}
 | ||
| @standardsx{lgammafN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{lgammafNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
 | ||
| @code{lgamma} returns the natural logarithm of the absolute value of
 | ||
| the gamma function of @var{x}.  The gamma function is defined as
 | ||
| @tex
 | ||
| $$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \hbox{d}t$$
 | ||
| @end tex
 | ||
| @ifnottex
 | ||
| @smallexample
 | ||
| gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
 | ||
| @end smallexample
 | ||
| @end ifnottex
 | ||
| 
 | ||
| @vindex signgam
 | ||
| The sign of the gamma function is stored in the global variable
 | ||
| @var{signgam}, which is declared in @file{math.h}.  It is @code{1} if
 | ||
| the intermediate result was positive or zero, or @code{-1} if it was
 | ||
| negative.
 | ||
| 
 | ||
| To compute the real gamma function you can use the @code{tgamma}
 | ||
| function or you can compute the values as follows:
 | ||
| @smallexample
 | ||
| lgam = lgamma(x);
 | ||
| gam  = signgam*exp(lgam);
 | ||
| @end smallexample
 | ||
| 
 | ||
| The gamma function has singularities at the non-positive integers.
 | ||
| @code{lgamma} will raise the zero divide exception if evaluated at a
 | ||
| singularity.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double lgamma_r (double @var{x}, int *@var{signp})
 | ||
| @deftypefunx float lgammaf_r (float @var{x}, int *@var{signp})
 | ||
| @deftypefunx {long double} lgammal_r (long double @var{x}, int *@var{signp})
 | ||
| @deftypefunx _FloatN lgammafN_r (_Float@var{N} @var{x}, int *@var{signp})
 | ||
| @deftypefunx _FloatNx lgammafNx_r (_Float@var{N}x @var{x}, int *@var{signp})
 | ||
| @standards{XPG, math.h}
 | ||
| @standardsx{lgammafN_r, GNU, math.h}
 | ||
| @standardsx{lgammafNx_r, GNU, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| @code{lgamma_r} is just like @code{lgamma}, but it stores the sign of
 | ||
| the intermediate result in the variable pointed to by @var{signp}
 | ||
| instead of in the @var{signgam} global.  This means it is reentrant.
 | ||
| 
 | ||
| The @code{lgammaf@var{N}_r} and @code{lgammaf@var{N}x_r} functions are
 | ||
| GNU extensions.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double gamma (double @var{x})
 | ||
| @deftypefunx float gammaf (float @var{x})
 | ||
| @deftypefunx {long double} gammal (long double @var{x})
 | ||
| @standards{SVID, math.h}
 | ||
| @safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
 | ||
| These functions exist for compatibility reasons.  They are equivalent to
 | ||
| @code{lgamma} etc.  It is better to use @code{lgamma} since for one the
 | ||
| name reflects better the actual computation, and moreover @code{lgamma} is
 | ||
| standardized in @w{ISO C99} while @code{gamma} is not.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double tgamma (double @var{x})
 | ||
| @deftypefunx float tgammaf (float @var{x})
 | ||
| @deftypefunx {long double} tgammal (long double @var{x})
 | ||
| @deftypefunx _FloatN tgammafN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx tgammafNx (_Float@var{N}x @var{x})
 | ||
| @standardsx{tgamma, XPG, math.h}
 | ||
| @standardsx{tgamma, ISO, math.h}
 | ||
| @standardsx{tgammaf, XPG, math.h}
 | ||
| @standardsx{tgammaf, ISO, math.h}
 | ||
| @standardsx{tgammal, XPG, math.h}
 | ||
| @standardsx{tgammal, ISO, math.h}
 | ||
| @standardsx{tgammafN, TS 18661-3:2015, math.h}
 | ||
| @standardsx{tgammafNx, TS 18661-3:2015, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| @code{tgamma} applies the gamma function to @var{x}.  The gamma
 | ||
| function is defined as
 | ||
| @tex
 | ||
| $$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \hbox{d}t$$
 | ||
| @end tex
 | ||
| @ifnottex
 | ||
| @smallexample
 | ||
| gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
 | ||
| @end smallexample
 | ||
| @end ifnottex
 | ||
| 
 | ||
| This function was introduced in @w{ISO C99}.  The @code{_Float@var{N}}
 | ||
| and @code{_Float@var{N}x} variants were introduced in @w{ISO/IEC TS
 | ||
| 18661-3}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double j0 (double @var{x})
 | ||
| @deftypefunx float j0f (float @var{x})
 | ||
| @deftypefunx {long double} j0l (long double @var{x})
 | ||
| @deftypefunx _FloatN j0fN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx j0fNx (_Float@var{N}x @var{x})
 | ||
| @standards{SVID, math.h}
 | ||
| @standardsx{j0fN, GNU, math.h}
 | ||
| @standardsx{j0fNx, GNU, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| @code{j0} returns the Bessel function of the first kind of order 0 of
 | ||
| @var{x}.  It may signal underflow if @var{x} is too large.
 | ||
| 
 | ||
| The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
 | ||
| extensions.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double j1 (double @var{x})
 | ||
| @deftypefunx float j1f (float @var{x})
 | ||
| @deftypefunx {long double} j1l (long double @var{x})
 | ||
| @deftypefunx _FloatN j1fN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx j1fNx (_Float@var{N}x @var{x})
 | ||
| @standards{SVID, math.h}
 | ||
| @standardsx{j1fN, GNU, math.h}
 | ||
| @standardsx{j1fNx, GNU, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| @code{j1} returns the Bessel function of the first kind of order 1 of
 | ||
| @var{x}.  It may signal underflow if @var{x} is too large.
 | ||
| 
 | ||
| The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
 | ||
| extensions.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double jn (int @var{n}, double @var{x})
 | ||
| @deftypefunx float jnf (int @var{n}, float @var{x})
 | ||
| @deftypefunx {long double} jnl (int @var{n}, long double @var{x})
 | ||
| @deftypefunx _FloatN jnfN (int @var{n}, _Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx jnfNx (int @var{n}, _Float@var{N}x @var{x})
 | ||
| @standards{SVID, math.h}
 | ||
| @standardsx{jnfN, GNU, math.h}
 | ||
| @standardsx{jnfNx, GNU, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| @code{jn} returns the Bessel function of the first kind of order
 | ||
| @var{n} of @var{x}.  It may signal underflow if @var{x} is too large.
 | ||
| 
 | ||
| The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
 | ||
| extensions.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double y0 (double @var{x})
 | ||
| @deftypefunx float y0f (float @var{x})
 | ||
| @deftypefunx {long double} y0l (long double @var{x})
 | ||
| @deftypefunx _FloatN y0fN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx y0fNx (_Float@var{N}x @var{x})
 | ||
| @standards{SVID, math.h}
 | ||
| @standardsx{y0fN, GNU, math.h}
 | ||
| @standardsx{y0fNx, GNU, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| @code{y0} returns the Bessel function of the second kind of order 0 of
 | ||
| @var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
 | ||
| is negative, @code{y0} signals a domain error; if it is zero,
 | ||
| @code{y0} signals overflow and returns @math{-@infinity}.
 | ||
| 
 | ||
| The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
 | ||
| extensions.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double y1 (double @var{x})
 | ||
| @deftypefunx float y1f (float @var{x})
 | ||
| @deftypefunx {long double} y1l (long double @var{x})
 | ||
| @deftypefunx _FloatN y1fN (_Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx y1fNx (_Float@var{N}x @var{x})
 | ||
| @standards{SVID, math.h}
 | ||
| @standardsx{y1fN, GNU, math.h}
 | ||
| @standardsx{y1fNx, GNU, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| @code{y1} returns the Bessel function of the second kind of order 1 of
 | ||
| @var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
 | ||
| is negative, @code{y1} signals a domain error; if it is zero,
 | ||
| @code{y1} signals overflow and returns @math{-@infinity}.
 | ||
| 
 | ||
| The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
 | ||
| extensions.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double yn (int @var{n}, double @var{x})
 | ||
| @deftypefunx float ynf (int @var{n}, float @var{x})
 | ||
| @deftypefunx {long double} ynl (int @var{n}, long double @var{x})
 | ||
| @deftypefunx _FloatN ynfN (int @var{n}, _Float@var{N} @var{x})
 | ||
| @deftypefunx _FloatNx ynfNx (int @var{n}, _Float@var{N}x @var{x})
 | ||
| @standards{SVID, math.h}
 | ||
| @standardsx{ynfN, GNU, math.h}
 | ||
| @standardsx{ynfNx, GNU, math.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| @code{yn} returns the Bessel function of the second kind of order @var{n} of
 | ||
| @var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
 | ||
| is negative, @code{yn} signals a domain error; if it is zero,
 | ||
| @code{yn} signals overflow and returns @math{-@infinity}.
 | ||
| 
 | ||
| The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
 | ||
| extensions.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @node Errors in Math Functions
 | ||
| @section Errors in Math Functions
 | ||
| @cindex math errors
 | ||
| @cindex ulps
 | ||
| 
 | ||
| Errors are measured in ``units of the last place''.  This is a
 | ||
| measure for the relative error.  For a number @math{z} with the
 | ||
| representation @math{d.d@dots{}d@mul{}2^e} (we assume IEEE
 | ||
| floating-point numbers with base 2) the ULP is represented by
 | ||
| 
 | ||
| @tex
 | ||
| $${|d.d\dots d - (z/2^e)|}\over {2^{p-1}}$$
 | ||
| @end tex
 | ||
| @ifnottex
 | ||
| @smallexample
 | ||
| |d.d...d - (z / 2^e)| / 2^(p - 1)
 | ||
| @end smallexample
 | ||
| @end ifnottex
 | ||
| 
 | ||
| @noindent
 | ||
| where @math{p} is the number of bits in the mantissa of the
 | ||
| floating-point number representation.  Ideally the error for all
 | ||
| functions is always less than 0.5ulps in round-to-nearest mode.  Using
 | ||
| rounding bits this is also
 | ||
| possible and normally implemented for the basic operations.  Except
 | ||
| for certain functions such as @code{sqrt}, @code{fma} and @code{rint}
 | ||
| whose results are fully specified by reference to corresponding IEEE
 | ||
| 754 floating-point operations, and conversions between strings and
 | ||
| floating point, @theglibc{} does not aim for correctly rounded results
 | ||
| for functions in the math library, and does not aim for correctness in
 | ||
| whether ``inexact'' exceptions are raised.  Instead, the goals for
 | ||
| accuracy of functions without fully specified results are as follows;
 | ||
| some functions have bugs meaning they do not meet these goals in all
 | ||
| cases.  In the future, @theglibc{} may provide some other correctly
 | ||
| rounding functions under the names such as @code{crsin} proposed for
 | ||
| an extension to ISO C.
 | ||
| 
 | ||
| @itemize @bullet
 | ||
| 
 | ||
| @item
 | ||
| Each function with a floating-point result behaves as if it computes
 | ||
| an infinite-precision result that is within a few ulp (in both real
 | ||
| and complex parts, for functions with complex results) of the
 | ||
| mathematically correct value of the function (interpreted together
 | ||
| with ISO C or POSIX semantics for the function in question) at the
 | ||
| exact value passed as the input.  Exceptions are raised appropriately
 | ||
| for this value and in accordance with IEEE 754 / ISO C / POSIX
 | ||
| semantics, and it is then rounded according to the current rounding
 | ||
| direction to the result that is returned to the user.  @code{errno}
 | ||
| may also be set (@pxref{Math Error Reporting}).  (The ``inexact''
 | ||
| exception may be raised, or not raised, even if this is inconsistent
 | ||
| with the infinite-precision value.)
 | ||
| 
 | ||
| @item
 | ||
| For the IBM @code{long double} format, as used on PowerPC GNU/Linux,
 | ||
| the accuracy goal is weaker for input values not exactly representable
 | ||
| in 106 bits of precision; it is as if the input value is some value
 | ||
| within 0.5ulp of the value actually passed, where ``ulp'' is
 | ||
| interpreted in terms of a fixed-precision 106-bit mantissa, but not
 | ||
| necessarily the exact value actually passed with discontiguous
 | ||
| mantissa bits.
 | ||
| 
 | ||
| @item
 | ||
| For the IBM @code{long double} format, functions whose results are
 | ||
| fully specified by reference to corresponding IEEE 754 floating-point
 | ||
| operations have the same accuracy goals as other functions, but with
 | ||
| the error bound being the same as that for division (3ulp).
 | ||
| Furthermore, ``inexact'' and ``underflow'' exceptions may be raised
 | ||
| for all functions for any inputs, even where such exceptions are
 | ||
| inconsistent with the returned value, since the underlying
 | ||
| floating-point arithmetic has that property.
 | ||
| 
 | ||
| @item
 | ||
| Functions behave as if the infinite-precision result computed is zero,
 | ||
| infinity or NaN if and only if that is the mathematically correct
 | ||
| infinite-precision result.  They behave as if the infinite-precision
 | ||
| result computed always has the same sign as the mathematically correct
 | ||
| result.
 | ||
| 
 | ||
| @item
 | ||
| If the mathematical result is more than a few ulp above the overflow
 | ||
| threshold for the current rounding direction, the value returned is
 | ||
| the appropriate overflow value for the current rounding direction,
 | ||
| with the overflow exception raised.
 | ||
| 
 | ||
| @item
 | ||
| If the mathematical result has magnitude well below half the least
 | ||
| subnormal magnitude, the returned value is either zero or the least
 | ||
| subnormal (in each case, with the correct sign), according to the
 | ||
| current rounding direction and with the underflow exception raised.
 | ||
| 
 | ||
| @item
 | ||
| Where the mathematical result underflows (before rounding) and is not
 | ||
| exactly representable as a floating-point value, the function does not
 | ||
| behave as if the computed infinite-precision result is an exact value
 | ||
| in the subnormal range.  This means that the underflow exception is
 | ||
| raised other than possibly for cases where the mathematical result is
 | ||
| very close to the underflow threshold and the function behaves as if
 | ||
| it computes an infinite-precision result that does not underflow.  (So
 | ||
| there may be spurious underflow exceptions in cases where the
 | ||
| underflowing result is exact, but not missing underflow exceptions in
 | ||
| cases where it is inexact.)
 | ||
| 
 | ||
| @item
 | ||
| @Theglibc{} does not aim for functions to satisfy other properties of
 | ||
| the underlying mathematical function, such as monotonicity, where not
 | ||
| implied by the above goals.
 | ||
| 
 | ||
| @item
 | ||
| All the above applies to both real and complex parts, for complex
 | ||
| functions.
 | ||
| 
 | ||
| @end itemize
 | ||
| 
 | ||
| Therefore many of the functions in the math library have errors.  The
 | ||
| math testsuite only flags results larger than 9ulp (or 16 for IBM
 | ||
| @code{long double} format) as errors; although most of the implementations
 | ||
| show errors smaller than the limit.
 | ||
| 
 | ||
| A more comprehensive analysis of @theglibc{} math functions precision could
 | ||
| be found in 'Accuracy of Mathematical Functions in Single, Double, Double
 | ||
| Extended, and Quadruple Precision'; Brian Gladman, Vincenzo Innocente,
 | ||
| John Mather, and Paul Zimmermann at
 | ||
| @url{<https://inria.hal.science/hal-03141101>}.  It does not cover complex
 | ||
| functions, nor @code{jn}/@code{yn}, and it is only for x86_64, and for
 | ||
| rounding to nearest, and does not cover any architecture variations (in
 | ||
| particular IBM @code{long double} is out of scope).
 | ||
| 
 | ||
| For complex functions, some analysis of @theglibc{} math functions can be
 | ||
| found in 'Accuracy of Complex Mathematical Operations and Functions in Single
 | ||
| and Double Precision'; Paul Caprioli, Vincenzo Innocente, Paul Zimmermann
 | ||
| at @url{https://inria.hal.science/hal-04714173}.  It only covers @code{float}
 | ||
| and @code{double}, only for x86_64, and for rounding to nearest, and does not
 | ||
| cover any architecture variations.
 | ||
| 
 | ||
| @node Pseudo-Random Numbers
 | ||
| @section Pseudo-Random Numbers
 | ||
| @cindex random numbers
 | ||
| @cindex pseudo-random numbers
 | ||
| @cindex seed (for random numbers)
 | ||
| 
 | ||
| This section describes the GNU facilities for generating a series of
 | ||
| pseudo-random numbers.  The numbers generated are not truly random;
 | ||
| typically, they form a sequence that repeats periodically, with a period
 | ||
| so large that you can ignore it for ordinary purposes.  The random
 | ||
| number generator works by remembering a @dfn{seed} value which it uses
 | ||
| to compute the next random number and also to compute a new seed.
 | ||
| 
 | ||
| Although the generated numbers look unpredictable within one run of a
 | ||
| program, the sequence of numbers is @emph{exactly the same} from one run
 | ||
| to the next.  This is because the initial seed is always the same.  This
 | ||
| is convenient when you are debugging a program, but it is unhelpful if
 | ||
| you want the program to behave unpredictably.  If you want a different
 | ||
| pseudo-random series each time your program runs, you must specify a
 | ||
| different seed each time.  For ordinary purposes, basing the seed on the
 | ||
| current time works well.  For random numbers in cryptography,
 | ||
| @pxref{Unpredictable Bytes}.
 | ||
| 
 | ||
| You can obtain repeatable sequences of numbers on a particular machine type
 | ||
| by specifying the same initial seed value for the random number
 | ||
| generator.  There is no standard meaning for a particular seed value;
 | ||
| the same seed, used in different C libraries or on different CPU types,
 | ||
| will give you different random numbers.
 | ||
| 
 | ||
| @Theglibc{} supports the standard @w{ISO C} random number functions
 | ||
| plus two other sets derived from BSD and SVID.  The BSD and @w{ISO C}
 | ||
| functions provide identical, somewhat limited functionality.  If only a
 | ||
| small number of random bits are required, we recommend you use the
 | ||
| @w{ISO C} interface, @code{rand} and @code{srand}.  The SVID functions
 | ||
| provide a more flexible interface, which allows better random number
 | ||
| generator algorithms, provides more random bits (up to 48) per call, and
 | ||
| can provide random floating-point numbers.  These functions are required
 | ||
| by the XPG standard and therefore will be present in all modern Unix
 | ||
| systems.
 | ||
| 
 | ||
| @menu
 | ||
| * ISO Random::                  @code{rand} and friends.
 | ||
| * BSD Random::                  @code{random} and friends.
 | ||
| * SVID Random::                 @code{drand48} and friends.
 | ||
| * High Quality Random::         @code{arc4random} and friends.
 | ||
| @end menu
 | ||
| 
 | ||
| @node ISO Random
 | ||
| @subsection ISO C Random Number Functions
 | ||
| 
 | ||
| This section describes the random number functions that are part of
 | ||
| the @w{ISO C} standard.
 | ||
| 
 | ||
| To use these facilities, you should include the header file
 | ||
| @file{stdlib.h} in your program.
 | ||
| @pindex stdlib.h
 | ||
| 
 | ||
| @deftypevr Macro int RAND_MAX
 | ||
| @standards{ISO, stdlib.h}
 | ||
| The value of this macro is an integer constant representing the largest
 | ||
| value the @code{rand} function can return.  In @theglibc{}, it is
 | ||
| @code{2147483647}, which is the largest signed integer representable in
 | ||
| 32 bits.  In other libraries, it may be as low as @code{32767}.
 | ||
| @end deftypevr
 | ||
| 
 | ||
| @deftypefun int rand (void)
 | ||
| @standards{ISO, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
 | ||
| @c Just calls random.
 | ||
| The @code{rand} function returns the next pseudo-random number in the
 | ||
| series.  The value ranges from @code{0} to @code{RAND_MAX}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun void srand (unsigned int @var{seed})
 | ||
| @standards{ISO, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
 | ||
| @c Alias to srandom.
 | ||
| This function establishes @var{seed} as the seed for a new series of
 | ||
| pseudo-random numbers.  If you call @code{rand} before a seed has been
 | ||
| established with @code{srand}, it uses the value @code{1} as a default
 | ||
| seed.
 | ||
| 
 | ||
| To produce a different pseudo-random series each time your program is
 | ||
| run, do @code{srand (time (0))}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| POSIX.1 extended the C standard functions to support reproducible random
 | ||
| numbers in multi-threaded programs.  However, the extension is badly
 | ||
| designed and unsuitable for serious work.
 | ||
| 
 | ||
| @deftypefun int rand_r (unsigned int *@var{seed})
 | ||
| @standards{POSIX.1, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
 | ||
| This function returns a random number in the range 0 to @code{RAND_MAX}
 | ||
| just as @code{rand} does.  However, all its state is stored in the
 | ||
| @var{seed} argument.  This means the RNG's state can only have as many
 | ||
| bits as the type @code{unsigned int} has.  This is far too few to
 | ||
| provide a good RNG.
 | ||
| 
 | ||
| If your program requires a reentrant RNG, we recommend you use the
 | ||
| reentrant GNU extensions to the SVID random number generator.  The
 | ||
| POSIX.1 interface should only be used when the GNU extensions are not
 | ||
| available.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| 
 | ||
| @node BSD Random
 | ||
| @subsection BSD Random Number Functions
 | ||
| 
 | ||
| This section describes a set of random number generation functions that
 | ||
| are derived from BSD.  There is no advantage to using these functions
 | ||
| with @theglibc{}; we support them for BSD compatibility only.
 | ||
| 
 | ||
| The prototypes for these functions are in @file{stdlib.h}.
 | ||
| @pindex stdlib.h
 | ||
| 
 | ||
| @deftypefun {long int} random (void)
 | ||
| @standards{BSD, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
 | ||
| @c Takes a lock and calls random_r with an automatic variable and the
 | ||
| @c global state, while holding a lock.
 | ||
| This function returns the next pseudo-random number in the sequence.
 | ||
| The value returned ranges from @code{0} to @code{2147483647}.
 | ||
| 
 | ||
| @strong{NB:} Temporarily this function was defined to return a
 | ||
| @code{int32_t} value to indicate that the return value always contains
 | ||
| 32 bits even if @code{long int} is wider.  The standard demands it
 | ||
| differently.  Users must always be aware of the 32-bit limitation,
 | ||
| though.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun void srandom (unsigned int @var{seed})
 | ||
| @standards{BSD, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
 | ||
| @c Takes a lock and calls srandom_r with an automatic variable and a
 | ||
| @c static buffer.  There's no MT-safety issue because the static buffer
 | ||
| @c is internally protected by a lock, although other threads may modify
 | ||
| @c the set state before it is used.
 | ||
| The @code{srandom} function sets the state of the random number
 | ||
| generator based on the integer @var{seed}.  If you supply a @var{seed} value
 | ||
| of @code{1}, this will cause @code{random} to reproduce the default set
 | ||
| of random numbers.
 | ||
| 
 | ||
| To produce a different set of pseudo-random numbers each time your
 | ||
| program runs, do @code{srandom (time (0))}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {char *} initstate (unsigned int @var{seed}, char *@var{state}, size_t @var{size})
 | ||
| @standards{BSD, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
 | ||
| The @code{initstate} function is used to initialize the random number
 | ||
| generator state.  The argument @var{state} is an array of @var{size}
 | ||
| bytes, used to hold the state information.  It is initialized based on
 | ||
| @var{seed}.  The size must be between 8 and 256 bytes, and should be a
 | ||
| power of two.  The bigger the @var{state} array, the better.
 | ||
| 
 | ||
| The return value is the previous value of the state information array.
 | ||
| You can use this value later as an argument to @code{setstate} to
 | ||
| restore that state.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {char *} setstate (char *@var{state})
 | ||
| @standards{BSD, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
 | ||
| The @code{setstate} function restores the random number state
 | ||
| information @var{state}.  The argument must have been the result of
 | ||
| a previous call to @var{initstate} or @var{setstate}.
 | ||
| 
 | ||
| The return value is the previous value of the state information array.
 | ||
| You can use this value later as an argument to @code{setstate} to
 | ||
| restore that state.
 | ||
| 
 | ||
| If the function fails the return value is @code{NULL}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| The four functions described so far in this section all work on a state
 | ||
| which is shared by all threads.  The state is not directly accessible to
 | ||
| the user and can only be modified by these functions.  This makes it
 | ||
| hard to deal with situations where each thread should have its own
 | ||
| pseudo-random number generator.
 | ||
| 
 | ||
| @Theglibc{} contains four additional functions which contain the
 | ||
| state as an explicit parameter and therefore make it possible to handle
 | ||
| thread-local PRNGs.  Besides this there is no difference.  In fact, the
 | ||
| four functions already discussed are implemented internally using the
 | ||
| following interfaces.
 | ||
| 
 | ||
| The @file{stdlib.h} header contains a definition of the following type:
 | ||
| 
 | ||
| @deftp {Data Type} {struct random_data}
 | ||
| @standards{GNU, stdlib.h}
 | ||
| 
 | ||
| Objects of type @code{struct random_data} contain the information
 | ||
| necessary to represent the state of the PRNG.  Although a complete
 | ||
| definition of the type is present the type should be treated as opaque.
 | ||
| @end deftp
 | ||
| 
 | ||
| The functions modifying the state follow exactly the already described
 | ||
| functions.
 | ||
| 
 | ||
| @deftypefun int random_r (struct random_data *restrict @var{buf}, int32_t *restrict @var{result})
 | ||
| @standards{GNU, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
 | ||
| The @code{random_r} function behaves exactly like the @code{random}
 | ||
| function except that it uses and modifies the state in the object
 | ||
| pointed to by the first parameter instead of the global state.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun int srandom_r (unsigned int @var{seed}, struct random_data *@var{buf})
 | ||
| @standards{GNU, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
 | ||
| The @code{srandom_r} function behaves exactly like the @code{srandom}
 | ||
| function except that it uses and modifies the state in the object
 | ||
| pointed to by the second parameter instead of the global state.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun int initstate_r (unsigned int @var{seed}, char *restrict @var{statebuf}, size_t @var{statelen}, struct random_data *restrict @var{buf})
 | ||
| @standards{GNU, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
 | ||
| The @code{initstate_r} function behaves exactly like the @code{initstate}
 | ||
| function except that it uses and modifies the state in the object
 | ||
| pointed to by the fourth parameter instead of the global state.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun int setstate_r (char *restrict @var{statebuf}, struct random_data *restrict @var{buf})
 | ||
| @standards{GNU, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
 | ||
| The @code{setstate_r} function behaves exactly like the @code{setstate}
 | ||
| function except that it uses and modifies the state in the object
 | ||
| pointed to by the first parameter instead of the global state.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @node SVID Random
 | ||
| @subsection SVID Random Number Function
 | ||
| 
 | ||
| The C library on SVID systems contains yet another kind of random number
 | ||
| generator functions.  They use a state of 48 bits of data.  The user can
 | ||
| choose among a collection of functions which return the random bits
 | ||
| in different forms.
 | ||
| 
 | ||
| Generally there are two kinds of function.  The first uses a state of
 | ||
| the random number generator which is shared among several functions and
 | ||
| by all threads of the process.  The second requires the user to handle
 | ||
| the state.
 | ||
| 
 | ||
| All functions have in common that they use the same congruential
 | ||
| formula with the same constants.  The formula is
 | ||
| 
 | ||
| @smallexample
 | ||
| Y = (a * X + c) mod m
 | ||
| @end smallexample
 | ||
| 
 | ||
| @noindent
 | ||
| where @var{X} is the state of the generator at the beginning and
 | ||
| @var{Y} the state at the end.  @code{a} and @code{c} are constants
 | ||
| determining the way the generator works.  By default they are
 | ||
| 
 | ||
| @smallexample
 | ||
| a = 0x5DEECE66D = 25214903917
 | ||
| c = 0xb = 11
 | ||
| @end smallexample
 | ||
| 
 | ||
| @noindent
 | ||
| but they can also be changed by the user.  @code{m} is of course 2^48
 | ||
| since the state consists of a 48-bit array.
 | ||
| 
 | ||
| The prototypes for these functions are in @file{stdlib.h}.
 | ||
| @pindex stdlib.h
 | ||
| 
 | ||
| 
 | ||
| @deftypefun double drand48 (void)
 | ||
| @standards{SVID, stdlib.h}
 | ||
| @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
 | ||
| @c Uses of the static state buffer are not guarded by a lock (thus
 | ||
| @c @mtasurace:drand48), so they may be found or left at a
 | ||
| @c partially-updated state in case of calls from within signal handlers
 | ||
| @c or cancellation.  None of this will break safety rules or invoke
 | ||
| @c undefined behavior, but it may affect randomness.
 | ||
| This function returns a @code{double} value in the range of @code{0.0}
 | ||
| to @code{1.0} (exclusive).  The random bits are determined by the global
 | ||
| state of the random number generator in the C library.
 | ||
| 
 | ||
| Since the @code{double} type according to @w{IEEE 754} has a 52-bit
 | ||
| mantissa this means 4 bits are not initialized by the random number
 | ||
| generator.  These are (of course) chosen to be the least significant
 | ||
| bits and they are initialized to @code{0}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun double erand48 (unsigned short int @var{xsubi}[3])
 | ||
| @standards{SVID, stdlib.h}
 | ||
| @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
 | ||
| @c The static buffer is just initialized with default parameters, which
 | ||
| @c are later read to advance the state held in xsubi.
 | ||
| This function returns a @code{double} value in the range of @code{0.0}
 | ||
| to @code{1.0} (exclusive), similarly to @code{drand48}.  The argument is
 | ||
| an array describing the state of the random number generator.
 | ||
| 
 | ||
| This function can be called subsequently since it updates the array to
 | ||
| guarantee random numbers.  The array should have been initialized before
 | ||
| initial use to obtain reproducible results.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {long int} lrand48 (void)
 | ||
| @standards{SVID, stdlib.h}
 | ||
| @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
 | ||
| The @code{lrand48} function returns an integer value in the range of
 | ||
| @code{0} to @code{2^31} (exclusive).  Even if the size of the @code{long
 | ||
| int} type can take more than 32 bits, no higher numbers are returned.
 | ||
| The random bits are determined by the global state of the random number
 | ||
| generator in the C library.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {long int} nrand48 (unsigned short int @var{xsubi}[3])
 | ||
| @standards{SVID, stdlib.h}
 | ||
| @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
 | ||
| This function is similar to the @code{lrand48} function in that it
 | ||
| returns a number in the range of @code{0} to @code{2^31} (exclusive) but
 | ||
| the state of the random number generator used to produce the random bits
 | ||
| is determined by the array provided as the parameter to the function.
 | ||
| 
 | ||
| The numbers in the array are updated afterwards so that subsequent calls
 | ||
| to this function yield different results (as is expected of a random
 | ||
| number generator).  The array should have been initialized before the
 | ||
| first call to obtain reproducible results.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {long int} mrand48 (void)
 | ||
| @standards{SVID, stdlib.h}
 | ||
| @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
 | ||
| The @code{mrand48} function is similar to @code{lrand48}.  The only
 | ||
| difference is that the numbers returned are in the range @code{-2^31} to
 | ||
| @code{2^31} (exclusive).
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {long int} jrand48 (unsigned short int @var{xsubi}[3])
 | ||
| @standards{SVID, stdlib.h}
 | ||
| @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
 | ||
| The @code{jrand48} function is similar to @code{nrand48}.  The only
 | ||
| difference is that the numbers returned are in the range @code{-2^31} to
 | ||
| @code{2^31} (exclusive).  For the @code{xsubi} parameter the same
 | ||
| requirements are necessary.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| The internal state of the random number generator can be initialized in
 | ||
| several ways.  The methods differ in the completeness of the
 | ||
| information provided.
 | ||
| 
 | ||
| @deftypefun void srand48 (long int @var{seedval})
 | ||
| @standards{SVID, stdlib.h}
 | ||
| @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
 | ||
| The @code{srand48} function sets the most significant 32 bits of the
 | ||
| internal state of the random number generator to the least
 | ||
| significant 32 bits of the @var{seedval} parameter.  The lower 16 bits
 | ||
| are initialized to the value @code{0x330E}.  Even if the @code{long
 | ||
| int} type contains more than 32 bits only the lower 32 bits are used.
 | ||
| 
 | ||
| Owing to this limitation, initialization of the state of this
 | ||
| function is not very useful.  But it makes it easy to use a construct
 | ||
| like @code{srand48 (time (0))}.
 | ||
| 
 | ||
| A side-effect of this function is that the values @code{a} and @code{c}
 | ||
| from the internal state, which are used in the congruential formula,
 | ||
| are reset to the default values given above.  This is of importance once
 | ||
| the user has called the @code{lcong48} function (see below).
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun {unsigned short int *} seed48 (unsigned short int @var{seed16v}[3])
 | ||
| @standards{SVID, stdlib.h}
 | ||
| @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
 | ||
| The @code{seed48} function initializes all 48 bits of the state of the
 | ||
| internal random number generator from the contents of the parameter
 | ||
| @var{seed16v}.  Here the lower 16 bits of the first element of
 | ||
| @var{seed16v} initialize the least significant 16 bits of the internal
 | ||
| state, the lower 16 bits of @code{@var{seed16v}[1]} initialize the mid-order
 | ||
| 16 bits of the state and the 16 lower bits of @code{@var{seed16v}[2]}
 | ||
| initialize the most significant 16 bits of the state.
 | ||
| 
 | ||
| Unlike @code{srand48} this function lets the user initialize all 48 bits
 | ||
| of the state.
 | ||
| 
 | ||
| The value returned by @code{seed48} is a pointer to an array containing
 | ||
| the values of the internal state before the change.  This might be
 | ||
| useful to restart the random number generator at a certain state.
 | ||
| Otherwise the value can simply be ignored.
 | ||
| 
 | ||
| As for @code{srand48}, the values @code{a} and @code{c} from the
 | ||
| congruential formula are reset to the default values.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| There is one more function to initialize the random number generator
 | ||
| which enables you to specify even more information by allowing you to
 | ||
| change the parameters in the congruential formula.
 | ||
| 
 | ||
| @deftypefun void lcong48 (unsigned short int @var{param}[7])
 | ||
| @standards{SVID, stdlib.h}
 | ||
| @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
 | ||
| The @code{lcong48} function allows the user to change the complete state
 | ||
| of the random number generator.  Unlike @code{srand48} and
 | ||
| @code{seed48}, this function also changes the constants in the
 | ||
| congruential formula.
 | ||
| 
 | ||
| From the seven elements in the array @var{param} the least significant
 | ||
| 16 bits of the entries @code{@var{param}[0]} to @code{@var{param}[2]}
 | ||
| determine the initial state, the least significant 16 bits of
 | ||
| @code{@var{param}[3]} to @code{@var{param}[5]} determine the 48 bit
 | ||
| constant @code{a} and @code{@var{param}[6]} determines the 16-bit value
 | ||
| @code{c}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| All the above functions have in common that they use the global
 | ||
| parameters for the congruential formula.  In multi-threaded programs it
 | ||
| might sometimes be useful to have different parameters in different
 | ||
| threads.  For this reason all the above functions have a counterpart
 | ||
| which works on a description of the random number generator in the
 | ||
| user-supplied buffer instead of the global state.
 | ||
| 
 | ||
| Please note that it is no problem if several threads use the global
 | ||
| state if all threads use the functions which take a pointer to an array
 | ||
| containing the state.  The random numbers are computed following the
 | ||
| same loop but if the state in the array is different all threads will
 | ||
| obtain an individual random number generator.
 | ||
| 
 | ||
| The user-supplied buffer must be of type @code{struct drand48_data}.
 | ||
| This type should be regarded as opaque and not manipulated directly.
 | ||
| 
 | ||
| @deftypefun int drand48_r (struct drand48_data *@var{buffer}, double *@var{result})
 | ||
| @standards{GNU, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
 | ||
| This function is equivalent to the @code{drand48} function with the
 | ||
| difference that it does not modify the global random number generator
 | ||
| parameters but instead the parameters in the buffer supplied through the
 | ||
| pointer @var{buffer}.  The random number is returned in the variable
 | ||
| pointed to by @var{result}.
 | ||
| 
 | ||
| The return value of the function indicates whether the call succeeded.
 | ||
| If the value is less than @code{0} an error occurred and @code{errno} is
 | ||
| set to indicate the problem.
 | ||
| 
 | ||
| This function is a GNU extension and should not be used in portable
 | ||
| programs.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun int erand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, double *@var{result})
 | ||
| @standards{GNU, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
 | ||
| The @code{erand48_r} function works like @code{erand48}, but in addition
 | ||
| it takes an argument @var{buffer} which describes the random number
 | ||
| generator.  The state of the random number generator is taken from the
 | ||
| @code{xsubi} array, the parameters for the congruential formula from the
 | ||
| global random number generator data.  The random number is returned in
 | ||
| the variable pointed to by @var{result}.
 | ||
| 
 | ||
| The return value is non-negative if the call succeeded.
 | ||
| 
 | ||
| This function is a GNU extension and should not be used in portable
 | ||
| programs.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun int lrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
 | ||
| @standards{GNU, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
 | ||
| This function is similar to @code{lrand48}, but in addition it takes a
 | ||
| pointer to a buffer describing the state of the random number generator
 | ||
| just like @code{drand48}.
 | ||
| 
 | ||
| If the return value of the function is non-negative the variable pointed
 | ||
| to by @var{result} contains the result.  Otherwise an error occurred.
 | ||
| 
 | ||
| This function is a GNU extension and should not be used in portable
 | ||
| programs.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun int nrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
 | ||
| @standards{GNU, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
 | ||
| The @code{nrand48_r} function works like @code{nrand48} in that it
 | ||
| produces a random number in the range @code{0} to @code{2^31}.  But instead
 | ||
| of using the global parameters for the congruential formula it uses the
 | ||
| information from the buffer pointed to by @var{buffer}.  The state is
 | ||
| described by the values in @var{xsubi}.
 | ||
| 
 | ||
| If the return value is non-negative the variable pointed to by
 | ||
| @var{result} contains the result.
 | ||
| 
 | ||
| This function is a GNU extension and should not be used in portable
 | ||
| programs.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun int mrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
 | ||
| @standards{GNU, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
 | ||
| This function is similar to @code{mrand48} but like the other reentrant
 | ||
| functions it uses the random number generator described by the value in
 | ||
| the buffer pointed to by @var{buffer}.
 | ||
| 
 | ||
| If the return value is non-negative the variable pointed to by
 | ||
| @var{result} contains the result.
 | ||
| 
 | ||
| This function is a GNU extension and should not be used in portable
 | ||
| programs.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun int jrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
 | ||
| @standards{GNU, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
 | ||
| The @code{jrand48_r} function is similar to @code{jrand48}.  Like the
 | ||
| other reentrant functions of this function family it uses the
 | ||
| congruential formula parameters from the buffer pointed to by
 | ||
| @var{buffer}.
 | ||
| 
 | ||
| If the return value is non-negative the variable pointed to by
 | ||
| @var{result} contains the result.
 | ||
| 
 | ||
| This function is a GNU extension and should not be used in portable
 | ||
| programs.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| Before any of the above functions are used the buffer of type
 | ||
| @code{struct drand48_data} should be initialized.  The easiest way to do
 | ||
| this is to fill the whole buffer with null bytes, e.g. by
 | ||
| 
 | ||
| @smallexample
 | ||
| memset (buffer, '\0', sizeof (struct drand48_data));
 | ||
| @end smallexample
 | ||
| 
 | ||
| @noindent
 | ||
| Using any of the reentrant functions of this family now will
 | ||
| automatically initialize the random number generator to the default
 | ||
| values for the state and the parameters of the congruential formula.
 | ||
| 
 | ||
| The other possibility is to use any of the functions which explicitly
 | ||
| initialize the buffer.  Though it might be obvious how to initialize the
 | ||
| buffer from looking at the parameter to the function, it is highly
 | ||
| recommended to use these functions since the result might not always be
 | ||
| what you expect.
 | ||
| 
 | ||
| @deftypefun int srand48_r (long int @var{seedval}, struct drand48_data *@var{buffer})
 | ||
| @standards{GNU, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
 | ||
| The description of the random number generator represented by the
 | ||
| information in @var{buffer} is initialized similarly to what the function
 | ||
| @code{srand48} does.  The state is initialized from the parameter
 | ||
| @var{seedval} and the parameters for the congruential formula are
 | ||
| initialized to their default values.
 | ||
| 
 | ||
| If the return value is non-negative the function call succeeded.
 | ||
| 
 | ||
| This function is a GNU extension and should not be used in portable
 | ||
| programs.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun int seed48_r (unsigned short int @var{seed16v}[3], struct drand48_data *@var{buffer})
 | ||
| @standards{GNU, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
 | ||
| This function is similar to @code{srand48_r} but like @code{seed48} it
 | ||
| initializes all 48 bits of the state from the parameter @var{seed16v}.
 | ||
| 
 | ||
| If the return value is non-negative the function call succeeded.  It
 | ||
| does not return a pointer to the previous state of the random number
 | ||
| generator like the @code{seed48} function does.  If the user wants to
 | ||
| preserve the state for a later re-run s/he can copy the whole buffer
 | ||
| pointed to by @var{buffer}.
 | ||
| 
 | ||
| This function is a GNU extension and should not be used in portable
 | ||
| programs.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun int lcong48_r (unsigned short int @var{param}[7], struct drand48_data *@var{buffer})
 | ||
| @standards{GNU, stdlib.h}
 | ||
| @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
 | ||
| This function initializes all aspects of the random number generator
 | ||
| described in @var{buffer} with the data in @var{param}.  Here it is
 | ||
| especially true that the function does more than just copying the
 | ||
| contents of @var{param} and @var{buffer}.  More work is required and
 | ||
| therefore it is important to use this function rather than initializing
 | ||
| the random number generator directly.
 | ||
| 
 | ||
| If the return value is non-negative the function call succeeded.
 | ||
| 
 | ||
| This function is a GNU extension and should not be used in portable
 | ||
| programs.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @node High Quality Random
 | ||
| @subsection High Quality Random Number Functions
 | ||
| 
 | ||
| This section describes the random number functions provided as a GNU
 | ||
| extension, based on OpenBSD interfaces.
 | ||
| 
 | ||
| @Theglibc{} uses kernel entropy obtained either through @code{getrandom}
 | ||
| or by reading @file{/dev/urandom} to seed.
 | ||
| 
 | ||
| These functions provide higher random quality than ISO, BSD, and SVID
 | ||
| functions, and may be used in cryptographic contexts.
 | ||
| 
 | ||
| The prototypes for these functions are in @file{stdlib.h}.
 | ||
| @pindex stdlib.h
 | ||
| 
 | ||
| @deftypefun uint32_t arc4random (void)
 | ||
| @standards{BSD, stdlib.h}
 | ||
| @safety{@mtsafe{}@asunsafe{@asucorrupt{}}@acsafe{}}
 | ||
| This function returns a single 32-bit value in the range of @code{0} to
 | ||
| @code{2^32−1} (inclusive), which is twice the range of @code{rand} and
 | ||
| @code{random}.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun void arc4random_buf (void *@var{buffer}, size_t @var{length})
 | ||
| @standards{BSD, stdlib.h}
 | ||
| @safety{@mtsafe{}@asunsafe{@asucorrupt{}}@acsafe{}}
 | ||
| This function fills the region @var{buffer} of length @var{length} bytes
 | ||
| with random data.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @deftypefun uint32_t arc4random_uniform (uint32_t @var{upper_bound})
 | ||
| @standards{BSD, stdlib.h}
 | ||
| @safety{@mtsafe{}@asunsafe{@asucorrupt{}}@acsafe{}}
 | ||
| This function returns a single 32-bit value, uniformly distributed but
 | ||
| less than the @var{upper_bound}.  It avoids the @w{modulo bias} when the
 | ||
| upper bound is not a power of two.
 | ||
| @end deftypefun
 | ||
| 
 | ||
| @node FP Function Optimizations
 | ||
| @section Is Fast Code or Small Code preferred?
 | ||
| @cindex Optimization
 | ||
| 
 | ||
| If an application uses many floating point functions it is often the case
 | ||
| that the cost of the function calls themselves is not negligible.
 | ||
| Modern processors can often execute the operations themselves
 | ||
| very fast, but the function call disrupts the instruction pipeline.
 | ||
| 
 | ||
| For this reason @theglibc{} provides optimizations for many of the
 | ||
| frequently-used math functions.  When GNU CC is used and the user
 | ||
| activates the optimizer, several new inline functions and macros are
 | ||
| defined.  These new functions and macros have the same names as the
 | ||
| library functions and so are used instead of the latter.  In the case of
 | ||
| inline functions the compiler will decide whether it is reasonable to
 | ||
| use them, and this decision is usually correct.
 | ||
| 
 | ||
| This means that no calls to the library functions may be necessary, and
 | ||
| can increase the speed of generated code significantly.  The drawback is
 | ||
| that code size will increase, and the increase is not always negligible.
 | ||
| 
 | ||
| There are two kinds of inline functions: those that give the same result
 | ||
| as the library functions and others that might not set @code{errno} and
 | ||
| might have a reduced precision and/or argument range in comparison with
 | ||
| the library functions.  The latter inline functions are only available
 | ||
| if the flag @code{-ffast-math} is given to GNU CC.
 | ||
| 
 | ||
| Not all hardware implements the entire @w{IEEE 754} standard, and even
 | ||
| if it does there may be a substantial performance penalty for using some
 | ||
| of its features.  For example, enabling traps on some processors forces
 | ||
| the FPU to run un-pipelined, which can more than double calculation time.
 | ||
| @c ***Add explanation of -lieee, -mieee.
 |