mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-11-03 20:53:13 +03:00 
			
		
		
		
	C23 adds various <math.h> function families originally defined in TS 18661-4. Add the rootn functions, which compute the Yth root of X for integer Y (with a domain error if Y is 0, even if X is a NaN). The integer exponent has type long long int in C23; it was intmax_t in TS 18661-4, and as with other interfaces changed after their initial appearance in the TS, I don't think we need to support the original version of the interface. As with pown and compoundn, I strongly encourage searching for worst cases for ulps error for these implementations (necessarily non-exhaustively, given the size of the input space). I also expect a custom implementation for a given format could be much faster as well as more accurate, although the implementation is simpler than those for pown and compoundn. This completes adding to glibc those TS 18661-4 functions (ignoring DFP) that are included in C23. See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=118592 regarding the C23 mathematical functions (not just the TS 18661-4 ones) missing built-in functions in GCC, where such functions might usefully be added. Tested for x86_64 and x86, and with build-many-glibcs.py.
		
			
				
	
	
		
			1396 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1396 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Test compilation of tgmath macros.
 | 
						|
   Copyright (C) 2001-2025 Free Software Foundation, Inc.
 | 
						|
   This file is part of the GNU C Library.
 | 
						|
 | 
						|
   The GNU C Library is free software; you can redistribute it and/or
 | 
						|
   modify it under the terms of the GNU Lesser General Public
 | 
						|
   License as published by the Free Software Foundation; either
 | 
						|
   version 2.1 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
   The GNU C Library is distributed in the hope that it will be useful,
 | 
						|
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
   Lesser General Public License for more details.
 | 
						|
 | 
						|
   You should have received a copy of the GNU Lesser General Public
 | 
						|
   License along with the GNU C Library; if not, see
 | 
						|
   <https://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
#ifndef HAVE_MAIN
 | 
						|
#include <float.h>
 | 
						|
#include <math.h>
 | 
						|
#include <stdint.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <tgmath.h>
 | 
						|
 | 
						|
//#define DEBUG
 | 
						|
 | 
						|
static void compile_test (void);
 | 
						|
static void compile_testf (void);
 | 
						|
#if LDBL_MANT_DIG > DBL_MANT_DIG
 | 
						|
static void compile_testl (void);
 | 
						|
#endif
 | 
						|
 | 
						|
float fx;
 | 
						|
double dx;
 | 
						|
long double lx;
 | 
						|
const float fy = 1.25;
 | 
						|
const double dy = 1.25;
 | 
						|
const long double ly = 1.25;
 | 
						|
complex float fz;
 | 
						|
complex double dz;
 | 
						|
complex long double lz;
 | 
						|
 | 
						|
volatile int count_double;
 | 
						|
volatile int count_float;
 | 
						|
volatile int count_ldouble;
 | 
						|
volatile int count_cdouble;
 | 
						|
volatile int count_cfloat;
 | 
						|
volatile int count_cldouble;
 | 
						|
 | 
						|
#define NCALLS     194
 | 
						|
#define NCALLS_INT 4
 | 
						|
#define NCCALLS    47
 | 
						|
 | 
						|
static int
 | 
						|
do_test (void)
 | 
						|
{
 | 
						|
  int result = 0;
 | 
						|
 | 
						|
  count_float = count_double = count_ldouble = 0;
 | 
						|
  count_cfloat = count_cdouble = count_cldouble = 0;
 | 
						|
  compile_test ();
 | 
						|
  if (count_float != 0 || count_cfloat != 0)
 | 
						|
    {
 | 
						|
      puts ("float function called for double test");
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  if (count_ldouble != 0 || count_cldouble != 0)
 | 
						|
    {
 | 
						|
      puts ("long double function called for double test");
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  if (count_double < NCALLS + NCALLS_INT)
 | 
						|
    {
 | 
						|
      printf ("double functions not called often enough (%d)\n",
 | 
						|
	      count_double);
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  else if (count_double > NCALLS + NCALLS_INT)
 | 
						|
    {
 | 
						|
      printf ("double functions called too often (%d)\n",
 | 
						|
	      count_double);
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  if (count_cdouble < NCCALLS)
 | 
						|
    {
 | 
						|
      printf ("double complex functions not called often enough (%d)\n",
 | 
						|
	      count_cdouble);
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  else if (count_cdouble > NCCALLS)
 | 
						|
    {
 | 
						|
      printf ("double complex functions called too often (%d)\n",
 | 
						|
	      count_cdouble);
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
 | 
						|
  count_float = count_double = count_ldouble = 0;
 | 
						|
  count_cfloat = count_cdouble = count_cldouble = 0;
 | 
						|
  compile_testf ();
 | 
						|
  if (count_double != 0 || count_cdouble != 0)
 | 
						|
    {
 | 
						|
      puts ("double function called for float test");
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  if (count_ldouble != 0 || count_cldouble != 0)
 | 
						|
    {
 | 
						|
      puts ("long double function called for float test");
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  if (count_float < NCALLS)
 | 
						|
    {
 | 
						|
      printf ("float functions not called often enough (%d)\n", count_float);
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  else if (count_float > NCALLS)
 | 
						|
    {
 | 
						|
      printf ("float functions called too often (%d)\n",
 | 
						|
	      count_double);
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  if (count_cfloat < NCCALLS)
 | 
						|
    {
 | 
						|
      printf ("float complex functions not called often enough (%d)\n",
 | 
						|
	      count_cfloat);
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  else if (count_cfloat > NCCALLS)
 | 
						|
    {
 | 
						|
      printf ("float complex functions called too often (%d)\n",
 | 
						|
	      count_cfloat);
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
 | 
						|
#if LDBL_MANT_DIG > DBL_MANT_DIG
 | 
						|
  count_float = count_double = count_ldouble = 0;
 | 
						|
  count_cfloat = count_cdouble = count_cldouble = 0;
 | 
						|
  compile_testl ();
 | 
						|
  if (count_float != 0 || count_cfloat != 0)
 | 
						|
    {
 | 
						|
      puts ("float function called for long double test");
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  if (count_double != 0 || count_cdouble != 0)
 | 
						|
    {
 | 
						|
      puts ("double function called for long double test");
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  if (count_ldouble < NCALLS)
 | 
						|
    {
 | 
						|
      printf ("long double functions not called often enough (%d)\n",
 | 
						|
	      count_ldouble);
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  else if (count_ldouble > NCALLS)
 | 
						|
    {
 | 
						|
      printf ("long double functions called too often (%d)\n",
 | 
						|
	      count_double);
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  if (count_cldouble < NCCALLS)
 | 
						|
    {
 | 
						|
      printf ("long double complex functions not called often enough (%d)\n",
 | 
						|
	      count_cldouble);
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
  else if (count_cldouble > NCCALLS)
 | 
						|
    {
 | 
						|
      printf ("long double complex functions called too often (%d)\n",
 | 
						|
	      count_cldouble);
 | 
						|
      result = 1;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Now generate the three functions.  */
 | 
						|
#define HAVE_MAIN
 | 
						|
 | 
						|
#define F(name) name
 | 
						|
#define TYPE double
 | 
						|
#define TEST_INT 1
 | 
						|
#define x dx
 | 
						|
#define y dy
 | 
						|
#define z dz
 | 
						|
#define count count_double
 | 
						|
#define ccount count_cdouble
 | 
						|
#include "test-tgmath.c"
 | 
						|
 | 
						|
#define F(name) name##f
 | 
						|
#define TYPE float
 | 
						|
#define x fx
 | 
						|
#define y fy
 | 
						|
#define z fz
 | 
						|
#define count count_float
 | 
						|
#define ccount count_cfloat
 | 
						|
#include "test-tgmath.c"
 | 
						|
 | 
						|
#if LDBL_MANT_DIG > DBL_MANT_DIG
 | 
						|
#define F(name) name##l
 | 
						|
#define TYPE long double
 | 
						|
#define x lx
 | 
						|
#define y ly
 | 
						|
#define z lz
 | 
						|
#define count count_ldouble
 | 
						|
#define ccount count_cldouble
 | 
						|
#include "test-tgmath.c"
 | 
						|
#endif
 | 
						|
 | 
						|
#define TEST_FUNCTION do_test ()
 | 
						|
#include "../test-skeleton.c"
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
#define P() puts (__FUNCTION__)
 | 
						|
#else
 | 
						|
#define P()
 | 
						|
#endif
 | 
						|
 | 
						|
static void
 | 
						|
F(compile_test) (void)
 | 
						|
{
 | 
						|
  TYPE a, b, c = 1.0;
 | 
						|
  complex TYPE d;
 | 
						|
  int i = 2;
 | 
						|
  int saved_count;
 | 
						|
  long int j;
 | 
						|
  long long int k = 2;
 | 
						|
  intmax_t m;
 | 
						|
  uintmax_t um;
 | 
						|
 | 
						|
  a = cos (cos (x));
 | 
						|
  a = cospi (cospi (x));
 | 
						|
  b = acospi (acospi (a));
 | 
						|
  b = acos (acos (a));
 | 
						|
  a = sin (sin (x));
 | 
						|
  b = sinpi (sinpi (x));
 | 
						|
  b = asinpi (asinpi (a));
 | 
						|
  b = asin (asin (a));
 | 
						|
  a = tan (tan (x));
 | 
						|
  b = tanpi (tanpi (x));
 | 
						|
  b = atanpi (atanpi (a));
 | 
						|
  b = atan (atan (a));
 | 
						|
  c = atan2 (atan2 (a, c), atan2 (b, x));
 | 
						|
  b = atan2pi (atan2pi (a, c), atan2pi (b, x));
 | 
						|
  a = cosh (cosh (x));
 | 
						|
  b = acosh (acosh (a));
 | 
						|
  a = sinh (sinh (x));
 | 
						|
  b = asinh (asinh (a));
 | 
						|
  a = tanh (tanh (x));
 | 
						|
  b = atanh (atanh (a));
 | 
						|
  a = exp (exp (x));
 | 
						|
  b = log (log (a));
 | 
						|
  a = log10 (log10 (x));
 | 
						|
  b = ldexp (ldexp (a, 1), 5);
 | 
						|
  a = frexp (frexp (x, &i), &i);
 | 
						|
  b = expm1 (expm1 (a));
 | 
						|
  a = exp2m1 (exp2m1 (b));
 | 
						|
  b = exp10m1 (exp10m1 (a));
 | 
						|
  a = log1p (log1p (x));
 | 
						|
  b = logb (logb (a));
 | 
						|
  a = exp2 (exp2 (x));
 | 
						|
  a = exp10 (exp10 (x));
 | 
						|
  b = log2 (log2 (a));
 | 
						|
  a = log2p1 (log2p1 (x));
 | 
						|
  a = log10p1 (log10p1 (x));
 | 
						|
  a = logp1 (logp1 (x));
 | 
						|
  a = pow (pow (x, a), pow (c, b));
 | 
						|
  b = pown (pown (x, k), k);
 | 
						|
  b = compoundn (compoundn (x, k), k);
 | 
						|
  b = rootn (rootn (x, k), k);
 | 
						|
  a = powr (powr (x, a), powr (c, b));
 | 
						|
  b = sqrt (sqrt (a));
 | 
						|
  a = rsqrt (rsqrt (b));
 | 
						|
  a = hypot (hypot (x, b), hypot (c, a));
 | 
						|
  b = cbrt (cbrt (a));
 | 
						|
  a = ceil (ceil (x));
 | 
						|
  b = fabs (fabs (a));
 | 
						|
  a = floor (floor (x));
 | 
						|
  b = fmod (fmod (a, b), fmod (c, x));
 | 
						|
  a = nearbyint (nearbyint (x));
 | 
						|
  b = round (round (a));
 | 
						|
  c = roundeven (roundeven (a));
 | 
						|
  a = trunc (trunc (x));
 | 
						|
  b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i);
 | 
						|
  j = lrint (x) + lround (a);
 | 
						|
  k = llrint (b) + llround (c);
 | 
						|
  m = fromfp (a, FP_INT_UPWARD, 2) + fromfpx (b, FP_INT_DOWNWARD, 3);
 | 
						|
  um = ufromfp (c, FP_INT_TONEAREST, 4) + ufromfpx (a, FP_INT_TOWARDZERO, 5);
 | 
						|
  a = erf (erf (x));
 | 
						|
  b = erfc (erfc (a));
 | 
						|
  a = tgamma (tgamma (x));
 | 
						|
  b = lgamma (lgamma (a));
 | 
						|
  a = rint (rint (x));
 | 
						|
  b = nextafter (nextafter (a, b), nextafter (c, x));
 | 
						|
  a = nextdown (nextdown (a));
 | 
						|
  b = nexttoward (nexttoward (x, a), c);
 | 
						|
  a = nextup (nextup (a));
 | 
						|
  b = remainder (remainder (a, b), remainder (c, x));
 | 
						|
  a = scalb (scalb (x, a), (TYPE) (6));
 | 
						|
  k = scalbn (a, 7) + scalbln (c, 10l);
 | 
						|
  i = ilogb (x);
 | 
						|
  j = llogb (x);
 | 
						|
  a = fdim (fdim (x, a), fdim (c, b));
 | 
						|
  b = fmax (fmax (a, x), fmax (c, b));
 | 
						|
  a = fmin (fmin (x, a), fmin (c, b));
 | 
						|
  b = fmaxmag (fmaxmag (a, x), fmaxmag (c, b));
 | 
						|
  a = fminmag (fminmag (x, a), fminmag (c, b));
 | 
						|
  b = fmaximum (fmaximum (a, x), fmaximum (c, b));
 | 
						|
  a = fminimum (fminimum (x, a), fminimum (c, b));
 | 
						|
  b = fmaximum_num (fmaximum_num (a, x), fmaximum_num (c, b));
 | 
						|
  a = fminimum_num (fminimum_num (x, a), fminimum_num (c, b));
 | 
						|
  b = fmaximum_mag (fmaximum_mag (a, x), fmaximum_mag (c, b));
 | 
						|
  a = fminimum_mag (fminimum_mag (x, a), fminimum_mag (c, b));
 | 
						|
  b = fmaximum_mag_num (fmaximum_mag_num (a, x), fmaximum_mag_num (c, b));
 | 
						|
  a = fminimum_mag_num (fminimum_mag_num (x, a), fminimum_mag_num (c, b));
 | 
						|
  b = fma (sin (a), sin (x), sin (c));
 | 
						|
 | 
						|
#ifdef TEST_INT
 | 
						|
  a = atan2 (i, b);
 | 
						|
  b = remquo (i, a, &i);
 | 
						|
  c = fma (i, b, i);
 | 
						|
  a = pow (i, c);
 | 
						|
#endif
 | 
						|
  x = a + b + c + i + j + k + m + um;
 | 
						|
 | 
						|
  saved_count = count;
 | 
						|
  if (ccount != 0)
 | 
						|
    ccount = -10000;
 | 
						|
 | 
						|
  d = cos (cos (z));
 | 
						|
  z = acos (acos (d));
 | 
						|
  d = sin (sin (z));
 | 
						|
  z = asin (asin (d));
 | 
						|
  d = tan (tan (z));
 | 
						|
  z = atan (atan (d));
 | 
						|
  d = cosh (cosh (z));
 | 
						|
  z = acosh (acosh (d));
 | 
						|
  d = sinh (sinh (z));
 | 
						|
  z = asinh (asinh (d));
 | 
						|
  d = tanh (tanh (z));
 | 
						|
  z = atanh (atanh (d));
 | 
						|
  d = exp (exp (z));
 | 
						|
  z = log (log (d));
 | 
						|
  d = sqrt (sqrt (z));
 | 
						|
  z = conj (conj (d));
 | 
						|
  d = fabs (conj (a));
 | 
						|
  z = pow (pow (a, d), pow (b, z));
 | 
						|
  d = cproj (cproj (z));
 | 
						|
  z += fabs (cproj (a));
 | 
						|
  a = carg (carg (z));
 | 
						|
  b = creal (creal (d));
 | 
						|
  c = cimag (cimag (z));
 | 
						|
  x += a + b + c + i + j + k;
 | 
						|
  z += d;
 | 
						|
 | 
						|
  if (saved_count != count)
 | 
						|
    count = -10000;
 | 
						|
 | 
						|
  if (0)
 | 
						|
    {
 | 
						|
      a = cos (y);
 | 
						|
      a = cospi (y);
 | 
						|
      a = acos (y);
 | 
						|
      a = acospi (y);
 | 
						|
      a = sin (y);
 | 
						|
      a = sinpi (y);
 | 
						|
      a = asin (y);
 | 
						|
      a = asinpi (y);
 | 
						|
      a = tan (y);
 | 
						|
      a = tanpi (y);
 | 
						|
      a = atan (y);
 | 
						|
      a = atanpi (y);
 | 
						|
      a = atan2 (y, y);
 | 
						|
      a = atan2pi (y, y);
 | 
						|
      a = cosh (y);
 | 
						|
      a = acosh (y);
 | 
						|
      a = sinh (y);
 | 
						|
      a = asinh (y);
 | 
						|
      a = tanh (y);
 | 
						|
      a = atanh (y);
 | 
						|
      a = exp (y);
 | 
						|
      a = log (y);
 | 
						|
      a = log10 (y);
 | 
						|
      a = ldexp (y, 5);
 | 
						|
      a = frexp (y, &i);
 | 
						|
      a = expm1 (y);
 | 
						|
      a = exp2m1 (y);
 | 
						|
      a = exp10m1 (y);
 | 
						|
      a = log1p (y);
 | 
						|
      a = logb (y);
 | 
						|
      a = exp2 (y);
 | 
						|
      a = exp10 (y);
 | 
						|
      a = log2 (y);
 | 
						|
      a = log2p1 (y);
 | 
						|
      a = log10p1 (y);
 | 
						|
      a = logp1 (y);
 | 
						|
      a = pow (y, y);
 | 
						|
      a = pown (y, 12345);
 | 
						|
      a = compoundn (y, 12345);
 | 
						|
      a = rootn (y, 12345);
 | 
						|
      a = powr (y, y);
 | 
						|
      a = sqrt (y);
 | 
						|
      a = rsqrt (y);
 | 
						|
      a = hypot (y, y);
 | 
						|
      a = cbrt (y);
 | 
						|
      a = ceil (y);
 | 
						|
      a = fabs (y);
 | 
						|
      a = floor (y);
 | 
						|
      a = fmod (y, y);
 | 
						|
      a = nearbyint (y);
 | 
						|
      a = round (y);
 | 
						|
      a = roundeven (y);
 | 
						|
      a = trunc (y);
 | 
						|
      a = remquo (y, y, &i);
 | 
						|
      j = lrint (y) + lround (y);
 | 
						|
      k = llrint (y) + llround (y);
 | 
						|
      m = fromfp (y, FP_INT_UPWARD, 6) + fromfpx (y, FP_INT_DOWNWARD, 7);
 | 
						|
      um = (ufromfp (y, FP_INT_TONEAREST, 8)
 | 
						|
	    + ufromfpx (y, FP_INT_TOWARDZERO, 9));
 | 
						|
      a = erf (y);
 | 
						|
      a = erfc (y);
 | 
						|
      a = tgamma (y);
 | 
						|
      a = lgamma (y);
 | 
						|
      a = rint (y);
 | 
						|
      a = nextafter (y, y);
 | 
						|
      a = nexttoward (y, y);
 | 
						|
      a = remainder (y, y);
 | 
						|
      a = scalb (y, (const TYPE) (6));
 | 
						|
      k = scalbn (y, 7) + scalbln (y, 10l);
 | 
						|
      i = ilogb (y);
 | 
						|
      j = llogb (y);
 | 
						|
      a = fdim (y, y);
 | 
						|
      a = fmax (y, y);
 | 
						|
      a = fmin (y, y);
 | 
						|
      a = fmaxmag (y, y);
 | 
						|
      a = fminmag (y, y);
 | 
						|
      a = fmaximum (y, y);
 | 
						|
      a = fminimum (y, y);
 | 
						|
      a = fmaximum_num (y, y);
 | 
						|
      a = fminimum_num (y, y);
 | 
						|
      a = fmaximum_mag (y, y);
 | 
						|
      a = fminimum_mag (y, y);
 | 
						|
      a = fmaximum_mag_num (y, y);
 | 
						|
      a = fminimum_mag_num (y, y);
 | 
						|
      a = fma (y, y, y);
 | 
						|
 | 
						|
#ifdef TEST_INT
 | 
						|
      a = atan2 (i, y);
 | 
						|
      a = remquo (i, y, &i);
 | 
						|
      a = fma (i, y, i);
 | 
						|
      a = pow (i, y);
 | 
						|
#endif
 | 
						|
 | 
						|
      d = cos ((const complex TYPE) z);
 | 
						|
      d = acos ((const complex TYPE) z);
 | 
						|
      d = sin ((const complex TYPE) z);
 | 
						|
      d = asin ((const complex TYPE) z);
 | 
						|
      d = tan ((const complex TYPE) z);
 | 
						|
      d = atan ((const complex TYPE) z);
 | 
						|
      d = cosh ((const complex TYPE) z);
 | 
						|
      d = acosh ((const complex TYPE) z);
 | 
						|
      d = sinh ((const complex TYPE) z);
 | 
						|
      d = asinh ((const complex TYPE) z);
 | 
						|
      d = tanh ((const complex TYPE) z);
 | 
						|
      d = atanh ((const complex TYPE) z);
 | 
						|
      d = exp ((const complex TYPE) z);
 | 
						|
      d = log ((const complex TYPE) z);
 | 
						|
      d = sqrt ((const complex TYPE) z);
 | 
						|
      d = pow ((const complex TYPE) z, (const complex TYPE) z);
 | 
						|
      d = fabs ((const complex TYPE) z);
 | 
						|
      d = carg ((const complex TYPE) z);
 | 
						|
      d = creal ((const complex TYPE) z);
 | 
						|
      d = cimag ((const complex TYPE) z);
 | 
						|
      d = conj ((const complex TYPE) z);
 | 
						|
      d = cproj ((const complex TYPE) z);
 | 
						|
    }
 | 
						|
}
 | 
						|
#undef x
 | 
						|
#undef y
 | 
						|
#undef z
 | 
						|
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(cos)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(cospi)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(acos)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(acospi)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(sin)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(sinpi)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(asin)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(asinpi)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(tan)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(tanpi)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(atan)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(atan2)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(atanpi)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(atan2pi)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(cosh)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(acosh)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(sinh)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(asinh)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(tanh)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(atanh)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(exp)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(log)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(log10)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(ldexp)) (TYPE x, int y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(frexp)) (TYPE x, int *y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + *y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(expm1)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(exp2m1)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(exp10m1)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(log1p)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(logb)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(exp10)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(exp2)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(log2)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(log2p1)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(log10p1)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(logp1)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(pow)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(pown)) (TYPE x, long long int y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(powr)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(compoundn)) (TYPE x, long long int y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(rootn)) (TYPE x, long long int y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(sqrt)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(rsqrt)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(hypot)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(cbrt)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(ceil)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fabs)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(floor)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fmod)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(nearbyint)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(round)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(roundeven)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(trunc)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(remquo)) (TYPE x, TYPE y, int *i)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y + *i;
 | 
						|
}
 | 
						|
 | 
						|
long int
 | 
						|
(F(lrint)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
long int
 | 
						|
(F(lround)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
long long int
 | 
						|
(F(llrint)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
long long int
 | 
						|
(F(llround)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
intmax_t
 | 
						|
(F(fromfp)) (TYPE x, int round, unsigned int width)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
intmax_t
 | 
						|
(F(fromfpx)) (TYPE x, int round, unsigned int width)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
uintmax_t
 | 
						|
(F(ufromfp)) (TYPE x, int round, unsigned int width)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
uintmax_t
 | 
						|
(F(ufromfpx)) (TYPE x, int round, unsigned int width)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(erf)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(erfc)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(tgamma)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(lgamma)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(rint)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(nextafter)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(nextdown)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(nexttoward)) (TYPE x, long double y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(nextup)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(remainder)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(scalb)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(scalbn)) (TYPE x, int y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(scalbln)) (TYPE x, long int y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
(F(ilogb)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
long int
 | 
						|
(F(llogb)) (TYPE x)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fdim)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fmin)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fmax)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fminmag)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fmaxmag)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fminimum)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fmaximum)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fminimum_num)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fmaximum_num)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fminimum_mag)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fmaximum_mag)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fminimum_mag_num)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fmaximum_mag_num)) (TYPE x, TYPE y)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(fma)) (TYPE x, TYPE y, TYPE z)
 | 
						|
{
 | 
						|
  ++count;
 | 
						|
  P ();
 | 
						|
  return x + y + z;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(cacos)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(casin)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(catan)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(ccos)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(csin)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(ctan)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(cacosh)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(casinh)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(catanh)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(ccosh)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(csinh)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(ctanh)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(cexp)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(clog)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(csqrt)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(cpow)) (complex TYPE x, complex TYPE y)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x + y;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(cabs)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(carg)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(creal)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return __real__ x;
 | 
						|
}
 | 
						|
 | 
						|
TYPE
 | 
						|
(F(cimag)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return __imag__ x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(conj)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
complex TYPE
 | 
						|
(F(cproj)) (complex TYPE x)
 | 
						|
{
 | 
						|
  ++ccount;
 | 
						|
  P ();
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
#undef F
 | 
						|
#undef TYPE
 | 
						|
#undef count
 | 
						|
#undef ccount
 | 
						|
#undef TEST_INT
 | 
						|
#endif
 |