mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-31 22:10:34 +03:00 
			
		
		
		
	2015-09-18 Wilco Dijkstra <wdijkstr@arm.com> * math/w_tgamma.c (__ieee754_gamma_r): Use explicit sign check. * math/w_tgammaf.c (__ieee754_gammaf_r): Likewise. * math/w_tgammal.c (__ieee754_gammal_r): Likewise. * stdio-common/printf_fp.c (___printf_fp): Use signbit to get the sign. Use isinf macro to allow inlining. * stdio-common/printf_fphex.c (__printf_fphex): Likewise. * stdio-common/printf_size.c (__printf_size): Likewise.
		
			
				
	
	
		
			1334 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1334 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Floating point output for `printf'.
 | ||
|    Copyright (C) 1995-2015 Free Software Foundation, Inc.
 | ||
| 
 | ||
|    This file is part of the GNU C Library.
 | ||
|    Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
 | ||
| 
 | ||
|    The GNU C Library is free software; you can redistribute it and/or
 | ||
|    modify it under the terms of the GNU Lesser General Public
 | ||
|    License as published by the Free Software Foundation; either
 | ||
|    version 2.1 of the License, or (at your option) any later version.
 | ||
| 
 | ||
|    The GNU C Library is distributed in the hope that it will be useful,
 | ||
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | ||
|    Lesser General Public License for more details.
 | ||
| 
 | ||
|    You should have received a copy of the GNU Lesser General Public
 | ||
|    License along with the GNU C Library; if not, see
 | ||
|    <http://www.gnu.org/licenses/>.  */
 | ||
| 
 | ||
| /* The gmp headers need some configuration frobs.  */
 | ||
| #define HAVE_ALLOCA 1
 | ||
| 
 | ||
| #include <libioP.h>
 | ||
| #include <alloca.h>
 | ||
| #include <ctype.h>
 | ||
| #include <float.h>
 | ||
| #include <gmp-mparam.h>
 | ||
| #include <gmp.h>
 | ||
| #include <ieee754.h>
 | ||
| #include <stdlib/gmp-impl.h>
 | ||
| #include <stdlib/longlong.h>
 | ||
| #include <stdlib/fpioconst.h>
 | ||
| #include <locale/localeinfo.h>
 | ||
| #include <limits.h>
 | ||
| #include <math.h>
 | ||
| #include <printf.h>
 | ||
| #include <string.h>
 | ||
| #include <unistd.h>
 | ||
| #include <stdlib.h>
 | ||
| #include <wchar.h>
 | ||
| #include <stdbool.h>
 | ||
| #include <rounding-mode.h>
 | ||
| 
 | ||
| #ifdef COMPILE_WPRINTF
 | ||
| # define CHAR_T        wchar_t
 | ||
| #else
 | ||
| # define CHAR_T        char
 | ||
| #endif
 | ||
| 
 | ||
| #include "_i18n_number.h"
 | ||
| 
 | ||
| #ifndef NDEBUG
 | ||
| # define NDEBUG			/* Undefine this for debugging assertions.  */
 | ||
| #endif
 | ||
| #include <assert.h>
 | ||
| 
 | ||
| /* This defines make it possible to use the same code for GNU C library and
 | ||
|    the GNU I/O library.	 */
 | ||
| #define PUT(f, s, n) _IO_sputn (f, s, n)
 | ||
| #define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : _IO_padn (f, c, n))
 | ||
| /* We use this file GNU C library and GNU I/O library.	So make
 | ||
|    names equal.	 */
 | ||
| #undef putc
 | ||
| #define putc(c, f) (wide \
 | ||
| 		    ? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f))
 | ||
| #define size_t     _IO_size_t
 | ||
| #define FILE	     _IO_FILE
 | ||
| 
 | ||
| /* Macros for doing the actual output.  */
 | ||
| 
 | ||
| #define outchar(ch)							      \
 | ||
|   do									      \
 | ||
|     {									      \
 | ||
|       const int outc = (ch);						      \
 | ||
|       if (putc (outc, fp) == EOF)					      \
 | ||
| 	{								      \
 | ||
| 	  if (buffer_malloced)						      \
 | ||
| 	    free (wbuffer);						      \
 | ||
| 	  return -1;							      \
 | ||
| 	}								      \
 | ||
|       ++done;								      \
 | ||
|     } while (0)
 | ||
| 
 | ||
| #define PRINT(ptr, wptr, len)						      \
 | ||
|   do									      \
 | ||
|     {									      \
 | ||
|       size_t outlen = (len);						      \
 | ||
|       if (len > 20)							      \
 | ||
| 	{								      \
 | ||
| 	  if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen)   \
 | ||
| 	    {								      \
 | ||
| 	      if (buffer_malloced)					      \
 | ||
| 		free (wbuffer);						      \
 | ||
| 	      return -1;						      \
 | ||
| 	    }								      \
 | ||
| 	  ptr += outlen;						      \
 | ||
| 	  done += outlen;						      \
 | ||
| 	}								      \
 | ||
|       else								      \
 | ||
| 	{								      \
 | ||
| 	  if (wide)							      \
 | ||
| 	    while (outlen-- > 0)					      \
 | ||
| 	      outchar (*wptr++);					      \
 | ||
| 	  else								      \
 | ||
| 	    while (outlen-- > 0)					      \
 | ||
| 	      outchar (*ptr++);						      \
 | ||
| 	}								      \
 | ||
|     } while (0)
 | ||
| 
 | ||
| #define PADN(ch, len)							      \
 | ||
|   do									      \
 | ||
|     {									      \
 | ||
|       if (PAD (fp, ch, len) != len)					      \
 | ||
| 	{								      \
 | ||
| 	  if (buffer_malloced)						      \
 | ||
| 	    free (wbuffer);						      \
 | ||
| 	  return -1;							      \
 | ||
| 	}								      \
 | ||
|       done += len;							      \
 | ||
|     }									      \
 | ||
|   while (0)
 | ||
| 
 | ||
| /* We use the GNU MP library to handle large numbers.
 | ||
| 
 | ||
|    An MP variable occupies a varying number of entries in its array.  We keep
 | ||
|    track of this number for efficiency reasons.  Otherwise we would always
 | ||
|    have to process the whole array.  */
 | ||
| #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
 | ||
| 
 | ||
| #define MPN_ASSIGN(dst,src)						      \
 | ||
|   memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
 | ||
| #define MPN_GE(u,v) \
 | ||
|   (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
 | ||
| 
 | ||
| extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
 | ||
| 				       int *expt, int *is_neg,
 | ||
| 				       double value);
 | ||
| extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
 | ||
| 					    int *expt, int *is_neg,
 | ||
| 					    long double value);
 | ||
| extern unsigned int __guess_grouping (unsigned int intdig_max,
 | ||
| 				      const char *grouping);
 | ||
| 
 | ||
| 
 | ||
| static wchar_t *group_number (wchar_t *buf, wchar_t *bufend,
 | ||
| 			      unsigned int intdig_no, const char *grouping,
 | ||
| 			      wchar_t thousands_sep, int ngroups)
 | ||
|      internal_function;
 | ||
| 
 | ||
| struct hack_digit_param
 | ||
| {
 | ||
|   /* Sign of the exponent.  */
 | ||
|   int expsign;
 | ||
|   /* The type of output format that will be used: 'e'/'E' or 'f'.  */
 | ||
|   int type;
 | ||
|   /* and the exponent.	*/
 | ||
|   int exponent;
 | ||
|   /* The fraction of the floting-point value in question  */
 | ||
|   MPN_VAR(frac);
 | ||
|   /* Scaling factor.  */
 | ||
|   MPN_VAR(scale);
 | ||
|   /* Temporary bignum value.  */
 | ||
|   MPN_VAR(tmp);
 | ||
| };
 | ||
| 
 | ||
| static wchar_t
 | ||
| hack_digit (struct hack_digit_param *p)
 | ||
| {
 | ||
|   mp_limb_t hi;
 | ||
| 
 | ||
|   if (p->expsign != 0 && p->type == 'f' && p->exponent-- > 0)
 | ||
|     hi = 0;
 | ||
|   else if (p->scalesize == 0)
 | ||
|     {
 | ||
|       hi = p->frac[p->fracsize - 1];
 | ||
|       p->frac[p->fracsize - 1] = __mpn_mul_1 (p->frac, p->frac,
 | ||
| 	p->fracsize - 1, 10);
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       if (p->fracsize < p->scalesize)
 | ||
| 	hi = 0;
 | ||
|       else
 | ||
| 	{
 | ||
| 	  hi = mpn_divmod (p->tmp, p->frac, p->fracsize,
 | ||
| 	    p->scale, p->scalesize);
 | ||
| 	  p->tmp[p->fracsize - p->scalesize] = hi;
 | ||
| 	  hi = p->tmp[0];
 | ||
| 
 | ||
| 	  p->fracsize = p->scalesize;
 | ||
| 	  while (p->fracsize != 0 && p->frac[p->fracsize - 1] == 0)
 | ||
| 	    --p->fracsize;
 | ||
| 	  if (p->fracsize == 0)
 | ||
| 	    {
 | ||
| 	      /* We're not prepared for an mpn variable with zero
 | ||
| 		 limbs.  */
 | ||
| 	      p->fracsize = 1;
 | ||
| 	      return L'0' + hi;
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       mp_limb_t _cy = __mpn_mul_1 (p->frac, p->frac, p->fracsize, 10);
 | ||
|       if (_cy != 0)
 | ||
| 	p->frac[p->fracsize++] = _cy;
 | ||
|     }
 | ||
| 
 | ||
|   return L'0' + hi;
 | ||
| }
 | ||
| 
 | ||
| int
 | ||
| ___printf_fp (FILE *fp,
 | ||
| 	      const struct printf_info *info,
 | ||
| 	      const void *const *args)
 | ||
| {
 | ||
|   /* The floating-point value to output.  */
 | ||
|   union
 | ||
|     {
 | ||
|       double dbl;
 | ||
|       __long_double_t ldbl;
 | ||
|     }
 | ||
|   fpnum;
 | ||
| 
 | ||
|   /* Locale-dependent representation of decimal point.	*/
 | ||
|   const char *decimal;
 | ||
|   wchar_t decimalwc;
 | ||
| 
 | ||
|   /* Locale-dependent thousands separator and grouping specification.  */
 | ||
|   const char *thousands_sep = NULL;
 | ||
|   wchar_t thousands_sepwc = 0;
 | ||
|   const char *grouping;
 | ||
| 
 | ||
|   /* "NaN" or "Inf" for the special cases.  */
 | ||
|   const char *special = NULL;
 | ||
|   const wchar_t *wspecial = NULL;
 | ||
| 
 | ||
|   /* We need just a few limbs for the input before shifting to the right
 | ||
|      position.	*/
 | ||
|   mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
 | ||
|   /* We need to shift the contents of fp_input by this amount of bits.	*/
 | ||
|   int to_shift = 0;
 | ||
| 
 | ||
|   struct hack_digit_param p;
 | ||
|   /* Sign of float number.  */
 | ||
|   int is_neg = 0;
 | ||
| 
 | ||
|   /* Counter for number of written characters.	*/
 | ||
|   int done = 0;
 | ||
| 
 | ||
|   /* General helper (carry limb).  */
 | ||
|   mp_limb_t cy;
 | ||
| 
 | ||
|   /* Nonzero if this is output on a wide character stream.  */
 | ||
|   int wide = info->wide;
 | ||
| 
 | ||
|   /* Buffer in which we produce the output.  */
 | ||
|   wchar_t *wbuffer = NULL;
 | ||
|   /* Flag whether wbuffer is malloc'ed or not.  */
 | ||
|   int buffer_malloced = 0;
 | ||
| 
 | ||
|   p.expsign = 0;
 | ||
| 
 | ||
|   /* Figure out the decimal point character.  */
 | ||
|   if (info->extra == 0)
 | ||
|     {
 | ||
|       decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
 | ||
|       decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       decimal = _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT);
 | ||
|       if (*decimal == '\0')
 | ||
| 	decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
 | ||
|       decimalwc = _NL_CURRENT_WORD (LC_MONETARY,
 | ||
| 				    _NL_MONETARY_DECIMAL_POINT_WC);
 | ||
|       if (decimalwc == L'\0')
 | ||
| 	decimalwc = _NL_CURRENT_WORD (LC_NUMERIC,
 | ||
| 				      _NL_NUMERIC_DECIMAL_POINT_WC);
 | ||
|     }
 | ||
|   /* The decimal point character must not be zero.  */
 | ||
|   assert (*decimal != '\0');
 | ||
|   assert (decimalwc != L'\0');
 | ||
| 
 | ||
|   if (info->group)
 | ||
|     {
 | ||
|       if (info->extra == 0)
 | ||
| 	grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
 | ||
|       else
 | ||
| 	grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING);
 | ||
| 
 | ||
|       if (*grouping <= 0 || *grouping == CHAR_MAX)
 | ||
| 	grouping = NULL;
 | ||
|       else
 | ||
| 	{
 | ||
| 	  /* Figure out the thousands separator character.  */
 | ||
| 	  if (wide)
 | ||
| 	    {
 | ||
| 	      if (info->extra == 0)
 | ||
| 		thousands_sepwc =
 | ||
| 		  _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_THOUSANDS_SEP_WC);
 | ||
| 	      else
 | ||
| 		thousands_sepwc =
 | ||
| 		  _NL_CURRENT_WORD (LC_MONETARY,
 | ||
| 				    _NL_MONETARY_THOUSANDS_SEP_WC);
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      if (info->extra == 0)
 | ||
| 		thousands_sep = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
 | ||
| 	      else
 | ||
| 		thousands_sep = _NL_CURRENT (LC_MONETARY, MON_THOUSANDS_SEP);
 | ||
| 	    }
 | ||
| 
 | ||
| 	  if ((wide && thousands_sepwc == L'\0')
 | ||
| 	      || (! wide && *thousands_sep == '\0'))
 | ||
| 	    grouping = NULL;
 | ||
| 	  else if (thousands_sepwc == L'\0')
 | ||
| 	    /* If we are printing multibyte characters and there is a
 | ||
| 	       multibyte representation for the thousands separator,
 | ||
| 	       we must ensure the wide character thousands separator
 | ||
| 	       is available, even if it is fake.  */
 | ||
| 	    thousands_sepwc = 0xfffffffe;
 | ||
| 	}
 | ||
|     }
 | ||
|   else
 | ||
|     grouping = NULL;
 | ||
| 
 | ||
|   /* Fetch the argument value.	*/
 | ||
| #ifndef __NO_LONG_DOUBLE_MATH
 | ||
|   if (info->is_long_double && sizeof (long double) > sizeof (double))
 | ||
|     {
 | ||
|       fpnum.ldbl = *(const long double *) args[0];
 | ||
| 
 | ||
|       /* Check for special values: not a number or infinity.  */
 | ||
|       if (isnan (fpnum.ldbl))
 | ||
| 	{
 | ||
| 	  is_neg = signbit (fpnum.ldbl);
 | ||
| 	  if (isupper (info->spec))
 | ||
| 	    {
 | ||
| 	      special = "NAN";
 | ||
| 	      wspecial = L"NAN";
 | ||
| 	    }
 | ||
| 	    else
 | ||
| 	      {
 | ||
| 		special = "nan";
 | ||
| 		wspecial = L"nan";
 | ||
| 	      }
 | ||
| 	}
 | ||
|       else if (isinf (fpnum.ldbl))
 | ||
| 	{
 | ||
| 	  is_neg = signbit (fpnum.ldbl);
 | ||
| 	  if (isupper (info->spec))
 | ||
| 	    {
 | ||
| 	      special = "INF";
 | ||
| 	      wspecial = L"INF";
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      special = "inf";
 | ||
| 	      wspecial = L"inf";
 | ||
| 	    }
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  p.fracsize = __mpn_extract_long_double (fp_input,
 | ||
| 						(sizeof (fp_input) /
 | ||
| 						 sizeof (fp_input[0])),
 | ||
| 						&p.exponent, &is_neg,
 | ||
| 						fpnum.ldbl);
 | ||
| 	  to_shift = 1 + p.fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
 | ||
| 	}
 | ||
|     }
 | ||
|   else
 | ||
| #endif	/* no long double */
 | ||
|     {
 | ||
|       fpnum.dbl = *(const double *) args[0];
 | ||
| 
 | ||
|       /* Check for special values: not a number or infinity.  */
 | ||
|       if (isnan (fpnum.dbl))
 | ||
| 	{
 | ||
| 	  is_neg = signbit (fpnum.dbl);
 | ||
| 	  if (isupper (info->spec))
 | ||
| 	    {
 | ||
| 	      special = "NAN";
 | ||
| 	      wspecial = L"NAN";
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      special = "nan";
 | ||
| 	      wspecial = L"nan";
 | ||
| 	    }
 | ||
| 	}
 | ||
|       else if (isinf (fpnum.dbl))
 | ||
| 	{
 | ||
| 	  is_neg = signbit (fpnum.dbl);
 | ||
| 	  if (isupper (info->spec))
 | ||
| 	    {
 | ||
| 	      special = "INF";
 | ||
| 	      wspecial = L"INF";
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      special = "inf";
 | ||
| 	      wspecial = L"inf";
 | ||
| 	    }
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  p.fracsize = __mpn_extract_double (fp_input,
 | ||
| 					   (sizeof (fp_input)
 | ||
| 					    / sizeof (fp_input[0])),
 | ||
| 					   &p.exponent, &is_neg, fpnum.dbl);
 | ||
| 	  to_shift = 1 + p.fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   if (special)
 | ||
|     {
 | ||
|       int width = info->width;
 | ||
| 
 | ||
|       if (is_neg || info->showsign || info->space)
 | ||
| 	--width;
 | ||
|       width -= 3;
 | ||
| 
 | ||
|       if (!info->left && width > 0)
 | ||
| 	PADN (' ', width);
 | ||
| 
 | ||
|       if (is_neg)
 | ||
| 	outchar ('-');
 | ||
|       else if (info->showsign)
 | ||
| 	outchar ('+');
 | ||
|       else if (info->space)
 | ||
| 	outchar (' ');
 | ||
| 
 | ||
|       PRINT (special, wspecial, 3);
 | ||
| 
 | ||
|       if (info->left && width > 0)
 | ||
| 	PADN (' ', width);
 | ||
| 
 | ||
|       return done;
 | ||
|     }
 | ||
| 
 | ||
| 
 | ||
|   /* We need three multiprecision variables.  Now that we have the p.exponent
 | ||
|      of the number we can allocate the needed memory.  It would be more
 | ||
|      efficient to use variables of the fixed maximum size but because this
 | ||
|      would be really big it could lead to memory problems.  */
 | ||
|   {
 | ||
|     mp_size_t bignum_size = ((abs (p.exponent) + BITS_PER_MP_LIMB - 1)
 | ||
| 			     / BITS_PER_MP_LIMB
 | ||
| 			     + (LDBL_MANT_DIG / BITS_PER_MP_LIMB > 2 ? 8 : 4))
 | ||
| 			    * sizeof (mp_limb_t);
 | ||
|     p.frac = (mp_limb_t *) alloca (bignum_size);
 | ||
|     p.tmp = (mp_limb_t *) alloca (bignum_size);
 | ||
|     p.scale = (mp_limb_t *) alloca (bignum_size);
 | ||
|   }
 | ||
| 
 | ||
|   /* We now have to distinguish between numbers with positive and negative
 | ||
|      exponents because the method used for the one is not applicable/efficient
 | ||
|      for the other.  */
 | ||
|   p.scalesize = 0;
 | ||
|   if (p.exponent > 2)
 | ||
|     {
 | ||
|       /* |FP| >= 8.0.  */
 | ||
|       int scaleexpo = 0;
 | ||
|       int explog = LDBL_MAX_10_EXP_LOG;
 | ||
|       int exp10 = 0;
 | ||
|       const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
 | ||
|       int cnt_h, cnt_l, i;
 | ||
| 
 | ||
|       if ((p.exponent + to_shift) % BITS_PER_MP_LIMB == 0)
 | ||
| 	{
 | ||
| 	  MPN_COPY_DECR (p.frac + (p.exponent + to_shift) / BITS_PER_MP_LIMB,
 | ||
| 			 fp_input, p.fracsize);
 | ||
| 	  p.fracsize += (p.exponent + to_shift) / BITS_PER_MP_LIMB;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  cy = __mpn_lshift (p.frac +
 | ||
| 			     (p.exponent + to_shift) / BITS_PER_MP_LIMB,
 | ||
| 			     fp_input, p.fracsize,
 | ||
| 			     (p.exponent + to_shift) % BITS_PER_MP_LIMB);
 | ||
| 	  p.fracsize += (p.exponent + to_shift) / BITS_PER_MP_LIMB;
 | ||
| 	  if (cy)
 | ||
| 	    p.frac[p.fracsize++] = cy;
 | ||
| 	}
 | ||
|       MPN_ZERO (p.frac, (p.exponent + to_shift) / BITS_PER_MP_LIMB);
 | ||
| 
 | ||
|       assert (powers > &_fpioconst_pow10[0]);
 | ||
|       do
 | ||
| 	{
 | ||
| 	  --powers;
 | ||
| 
 | ||
| 	  /* The number of the product of two binary numbers with n and m
 | ||
| 	     bits respectively has m+n or m+n-1 bits.	*/
 | ||
| 	  if (p.exponent >= scaleexpo + powers->p_expo - 1)
 | ||
| 	    {
 | ||
| 	      if (p.scalesize == 0)
 | ||
| 		{
 | ||
| #ifndef __NO_LONG_DOUBLE_MATH
 | ||
| 		  if (LDBL_MANT_DIG > _FPIO_CONST_OFFSET * BITS_PER_MP_LIMB
 | ||
| 		      && info->is_long_double)
 | ||
| 		    {
 | ||
| #define _FPIO_CONST_SHIFT \
 | ||
|   (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \
 | ||
|    - _FPIO_CONST_OFFSET)
 | ||
| 		      /* 64bit const offset is not enough for
 | ||
| 			 IEEE quad long double.  */
 | ||
| 		      p.tmpsize = powers->arraysize + _FPIO_CONST_SHIFT;
 | ||
| 		      memcpy (p.tmp + _FPIO_CONST_SHIFT,
 | ||
| 			      &__tens[powers->arrayoff],
 | ||
| 			      p.tmpsize * sizeof (mp_limb_t));
 | ||
| 		      MPN_ZERO (p.tmp, _FPIO_CONST_SHIFT);
 | ||
| 		      /* Adjust p.exponent, as scaleexpo will be this much
 | ||
| 			 bigger too.  */
 | ||
| 		      p.exponent += _FPIO_CONST_SHIFT * BITS_PER_MP_LIMB;
 | ||
| 		    }
 | ||
| 		  else
 | ||
| #endif
 | ||
| 		    {
 | ||
| 		      p.tmpsize = powers->arraysize;
 | ||
| 		      memcpy (p.tmp, &__tens[powers->arrayoff],
 | ||
| 			      p.tmpsize * sizeof (mp_limb_t));
 | ||
| 		    }
 | ||
| 		}
 | ||
| 	      else
 | ||
| 		{
 | ||
| 		  cy = __mpn_mul (p.tmp, p.scale, p.scalesize,
 | ||
| 				  &__tens[powers->arrayoff
 | ||
| 					 + _FPIO_CONST_OFFSET],
 | ||
| 				  powers->arraysize - _FPIO_CONST_OFFSET);
 | ||
| 		  p.tmpsize = p.scalesize +
 | ||
| 		    powers->arraysize - _FPIO_CONST_OFFSET;
 | ||
| 		  if (cy == 0)
 | ||
| 		    --p.tmpsize;
 | ||
| 		}
 | ||
| 
 | ||
| 	      if (MPN_GE (p.frac, p.tmp))
 | ||
| 		{
 | ||
| 		  int cnt;
 | ||
| 		  MPN_ASSIGN (p.scale, p.tmp);
 | ||
| 		  count_leading_zeros (cnt, p.scale[p.scalesize - 1]);
 | ||
| 		  scaleexpo = (p.scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
 | ||
| 		  exp10 |= 1 << explog;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  --explog;
 | ||
| 	}
 | ||
|       while (powers > &_fpioconst_pow10[0]);
 | ||
|       p.exponent = exp10;
 | ||
| 
 | ||
|       /* Optimize number representations.  We want to represent the numbers
 | ||
| 	 with the lowest number of bytes possible without losing any
 | ||
| 	 bytes. Also the highest bit in the scaling factor has to be set
 | ||
| 	 (this is a requirement of the MPN division routines).  */
 | ||
|       if (p.scalesize > 0)
 | ||
| 	{
 | ||
| 	  /* Determine minimum number of zero bits at the end of
 | ||
| 	     both numbers.  */
 | ||
| 	  for (i = 0; p.scale[i] == 0 && p.frac[i] == 0; i++)
 | ||
| 	    ;
 | ||
| 
 | ||
| 	  /* Determine number of bits the scaling factor is misplaced.	*/
 | ||
| 	  count_leading_zeros (cnt_h, p.scale[p.scalesize - 1]);
 | ||
| 
 | ||
| 	  if (cnt_h == 0)
 | ||
| 	    {
 | ||
| 	      /* The highest bit of the scaling factor is already set.	So
 | ||
| 		 we only have to remove the trailing empty limbs.  */
 | ||
| 	      if (i > 0)
 | ||
| 		{
 | ||
| 		  MPN_COPY_INCR (p.scale, p.scale + i, p.scalesize - i);
 | ||
| 		  p.scalesize -= i;
 | ||
| 		  MPN_COPY_INCR (p.frac, p.frac + i, p.fracsize - i);
 | ||
| 		  p.fracsize -= i;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      if (p.scale[i] != 0)
 | ||
| 		{
 | ||
| 		  count_trailing_zeros (cnt_l, p.scale[i]);
 | ||
| 		  if (p.frac[i] != 0)
 | ||
| 		    {
 | ||
| 		      int cnt_l2;
 | ||
| 		      count_trailing_zeros (cnt_l2, p.frac[i]);
 | ||
| 		      if (cnt_l2 < cnt_l)
 | ||
| 			cnt_l = cnt_l2;
 | ||
| 		    }
 | ||
| 		}
 | ||
| 	      else
 | ||
| 		count_trailing_zeros (cnt_l, p.frac[i]);
 | ||
| 
 | ||
| 	      /* Now shift the numbers to their optimal position.  */
 | ||
| 	      if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
 | ||
| 		{
 | ||
| 		  /* We cannot save any memory.	 So just roll both numbers
 | ||
| 		     so that the scaling factor has its highest bit set.  */
 | ||
| 
 | ||
| 		  (void) __mpn_lshift (p.scale, p.scale, p.scalesize, cnt_h);
 | ||
| 		  cy = __mpn_lshift (p.frac, p.frac, p.fracsize, cnt_h);
 | ||
| 		  if (cy != 0)
 | ||
| 		    p.frac[p.fracsize++] = cy;
 | ||
| 		}
 | ||
| 	      else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
 | ||
| 		{
 | ||
| 		  /* We can save memory by removing the trailing zero limbs
 | ||
| 		     and by packing the non-zero limbs which gain another
 | ||
| 		     free one. */
 | ||
| 
 | ||
| 		  (void) __mpn_rshift (p.scale, p.scale + i, p.scalesize - i,
 | ||
| 				       BITS_PER_MP_LIMB - cnt_h);
 | ||
| 		  p.scalesize -= i + 1;
 | ||
| 		  (void) __mpn_rshift (p.frac, p.frac + i, p.fracsize - i,
 | ||
| 				       BITS_PER_MP_LIMB - cnt_h);
 | ||
| 		  p.fracsize -= p.frac[p.fracsize - i - 1] == 0 ? i + 1 : i;
 | ||
| 		}
 | ||
| 	      else
 | ||
| 		{
 | ||
| 		  /* We can only save the memory of the limbs which are zero.
 | ||
| 		     The non-zero parts occupy the same number of limbs.  */
 | ||
| 
 | ||
| 		  (void) __mpn_rshift (p.scale, p.scale + (i - 1),
 | ||
| 				       p.scalesize - (i - 1),
 | ||
| 				       BITS_PER_MP_LIMB - cnt_h);
 | ||
| 		  p.scalesize -= i;
 | ||
| 		  (void) __mpn_rshift (p.frac, p.frac + (i - 1),
 | ||
| 				       p.fracsize - (i - 1),
 | ||
| 				       BITS_PER_MP_LIMB - cnt_h);
 | ||
| 		  p.fracsize -=
 | ||
| 		    p.frac[p.fracsize - (i - 1) - 1] == 0 ? i : i - 1;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
|   else if (p.exponent < 0)
 | ||
|     {
 | ||
|       /* |FP| < 1.0.  */
 | ||
|       int exp10 = 0;
 | ||
|       int explog = LDBL_MAX_10_EXP_LOG;
 | ||
|       const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
 | ||
| 
 | ||
|       /* Now shift the input value to its right place.	*/
 | ||
|       cy = __mpn_lshift (p.frac, fp_input, p.fracsize, to_shift);
 | ||
|       p.frac[p.fracsize++] = cy;
 | ||
|       assert (cy == 1 || (p.frac[p.fracsize - 2] == 0 && p.frac[0] == 0));
 | ||
| 
 | ||
|       p.expsign = 1;
 | ||
|       p.exponent = -p.exponent;
 | ||
| 
 | ||
|       assert (powers != &_fpioconst_pow10[0]);
 | ||
|       do
 | ||
| 	{
 | ||
| 	  --powers;
 | ||
| 
 | ||
| 	  if (p.exponent >= powers->m_expo)
 | ||
| 	    {
 | ||
| 	      int i, incr, cnt_h, cnt_l;
 | ||
| 	      mp_limb_t topval[2];
 | ||
| 
 | ||
| 	      /* The __mpn_mul function expects the first argument to be
 | ||
| 		 bigger than the second.  */
 | ||
| 	      if (p.fracsize < powers->arraysize - _FPIO_CONST_OFFSET)
 | ||
| 		cy = __mpn_mul (p.tmp, &__tens[powers->arrayoff
 | ||
| 					    + _FPIO_CONST_OFFSET],
 | ||
| 				powers->arraysize - _FPIO_CONST_OFFSET,
 | ||
| 				p.frac, p.fracsize);
 | ||
| 	      else
 | ||
| 		cy = __mpn_mul (p.tmp, p.frac, p.fracsize,
 | ||
| 				&__tens[powers->arrayoff + _FPIO_CONST_OFFSET],
 | ||
| 				powers->arraysize - _FPIO_CONST_OFFSET);
 | ||
| 	      p.tmpsize = p.fracsize + powers->arraysize - _FPIO_CONST_OFFSET;
 | ||
| 	      if (cy == 0)
 | ||
| 		--p.tmpsize;
 | ||
| 
 | ||
| 	      count_leading_zeros (cnt_h, p.tmp[p.tmpsize - 1]);
 | ||
| 	      incr = (p.tmpsize - p.fracsize) * BITS_PER_MP_LIMB
 | ||
| 		     + BITS_PER_MP_LIMB - 1 - cnt_h;
 | ||
| 
 | ||
| 	      assert (incr <= powers->p_expo);
 | ||
| 
 | ||
| 	      /* If we increased the p.exponent by exactly 3 we have to test
 | ||
| 		 for overflow.	This is done by comparing with 10 shifted
 | ||
| 		 to the right position.	 */
 | ||
| 	      if (incr == p.exponent + 3)
 | ||
| 		{
 | ||
| 		  if (cnt_h <= BITS_PER_MP_LIMB - 4)
 | ||
| 		    {
 | ||
| 		      topval[0] = 0;
 | ||
| 		      topval[1]
 | ||
| 			= ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
 | ||
| 		    }
 | ||
| 		  else
 | ||
| 		    {
 | ||
| 		      topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4);
 | ||
| 		      topval[1] = 0;
 | ||
| 		      (void) __mpn_lshift (topval, topval, 2,
 | ||
| 					   BITS_PER_MP_LIMB - cnt_h);
 | ||
| 		    }
 | ||
| 		}
 | ||
| 
 | ||
| 	      /* We have to be careful when multiplying the last factor.
 | ||
| 		 If the result is greater than 1.0 be have to test it
 | ||
| 		 against 10.0.  If it is greater or equal to 10.0 the
 | ||
| 		 multiplication was not valid.  This is because we cannot
 | ||
| 		 determine the number of bits in the result in advance.  */
 | ||
| 	      if (incr < p.exponent + 3
 | ||
| 		  || (incr == p.exponent + 3 &&
 | ||
| 		      (p.tmp[p.tmpsize - 1] < topval[1]
 | ||
| 		       || (p.tmp[p.tmpsize - 1] == topval[1]
 | ||
| 			   && p.tmp[p.tmpsize - 2] < topval[0]))))
 | ||
| 		{
 | ||
| 		  /* The factor is right.  Adapt binary and decimal
 | ||
| 		     exponents.	 */
 | ||
| 		  p.exponent -= incr;
 | ||
| 		  exp10 |= 1 << explog;
 | ||
| 
 | ||
| 		  /* If this factor yields a number greater or equal to
 | ||
| 		     1.0, we must not shift the non-fractional digits down. */
 | ||
| 		  if (p.exponent < 0)
 | ||
| 		    cnt_h += -p.exponent;
 | ||
| 
 | ||
| 		  /* Now we optimize the number representation.	 */
 | ||
| 		  for (i = 0; p.tmp[i] == 0; ++i);
 | ||
| 		  if (cnt_h == BITS_PER_MP_LIMB - 1)
 | ||
| 		    {
 | ||
| 		      MPN_COPY (p.frac, p.tmp + i, p.tmpsize - i);
 | ||
| 		      p.fracsize = p.tmpsize - i;
 | ||
| 		    }
 | ||
| 		  else
 | ||
| 		    {
 | ||
| 		      count_trailing_zeros (cnt_l, p.tmp[i]);
 | ||
| 
 | ||
| 		      /* Now shift the numbers to their optimal position.  */
 | ||
| 		      if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
 | ||
| 			{
 | ||
| 			  /* We cannot save any memory.	 Just roll the
 | ||
| 			     number so that the leading digit is in a
 | ||
| 			     separate limb.  */
 | ||
| 
 | ||
| 			  cy = __mpn_lshift (p.frac, p.tmp, p.tmpsize,
 | ||
| 			    cnt_h + 1);
 | ||
| 			  p.fracsize = p.tmpsize + 1;
 | ||
| 			  p.frac[p.fracsize - 1] = cy;
 | ||
| 			}
 | ||
| 		      else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
 | ||
| 			{
 | ||
| 			  (void) __mpn_rshift (p.frac, p.tmp + i, p.tmpsize - i,
 | ||
| 					       BITS_PER_MP_LIMB - 1 - cnt_h);
 | ||
| 			  p.fracsize = p.tmpsize - i;
 | ||
| 			}
 | ||
| 		      else
 | ||
| 			{
 | ||
| 			  /* We can only save the memory of the limbs which
 | ||
| 			     are zero.	The non-zero parts occupy the same
 | ||
| 			     number of limbs.  */
 | ||
| 
 | ||
| 			  (void) __mpn_rshift (p.frac, p.tmp + (i - 1),
 | ||
| 					       p.tmpsize - (i - 1),
 | ||
| 					       BITS_PER_MP_LIMB - 1 - cnt_h);
 | ||
| 			  p.fracsize = p.tmpsize - (i - 1);
 | ||
| 			}
 | ||
| 		    }
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  --explog;
 | ||
| 	}
 | ||
|       while (powers != &_fpioconst_pow10[1] && p.exponent > 0);
 | ||
|       /* All factors but 10^-1 are tested now.	*/
 | ||
|       if (p.exponent > 0)
 | ||
| 	{
 | ||
| 	  int cnt_l;
 | ||
| 
 | ||
| 	  cy = __mpn_mul_1 (p.tmp, p.frac, p.fracsize, 10);
 | ||
| 	  p.tmpsize = p.fracsize;
 | ||
| 	  assert (cy == 0 || p.tmp[p.tmpsize - 1] < 20);
 | ||
| 
 | ||
| 	  count_trailing_zeros (cnt_l, p.tmp[0]);
 | ||
| 	  if (cnt_l < MIN (4, p.exponent))
 | ||
| 	    {
 | ||
| 	      cy = __mpn_lshift (p.frac, p.tmp, p.tmpsize,
 | ||
| 				 BITS_PER_MP_LIMB - MIN (4, p.exponent));
 | ||
| 	      if (cy != 0)
 | ||
| 		p.frac[p.tmpsize++] = cy;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    (void) __mpn_rshift (p.frac, p.tmp, p.tmpsize, MIN (4, p.exponent));
 | ||
| 	  p.fracsize = p.tmpsize;
 | ||
| 	  exp10 |= 1;
 | ||
| 	  assert (p.frac[p.fracsize - 1] < 10);
 | ||
| 	}
 | ||
|       p.exponent = exp10;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       /* This is a special case.  We don't need a factor because the
 | ||
| 	 numbers are in the range of 1.0 <= |fp| < 8.0.  We simply
 | ||
| 	 shift it to the right place and divide it by 1.0 to get the
 | ||
| 	 leading digit.	 (Of course this division is not really made.)	*/
 | ||
|       assert (0 <= p.exponent && p.exponent < 3 &&
 | ||
| 	      p.exponent + to_shift < BITS_PER_MP_LIMB);
 | ||
| 
 | ||
|       /* Now shift the input value to its right place.	*/
 | ||
|       cy = __mpn_lshift (p.frac, fp_input, p.fracsize, (p.exponent + to_shift));
 | ||
|       p.frac[p.fracsize++] = cy;
 | ||
|       p.exponent = 0;
 | ||
|     }
 | ||
| 
 | ||
|   {
 | ||
|     int width = info->width;
 | ||
|     wchar_t *wstartp, *wcp;
 | ||
|     size_t chars_needed;
 | ||
|     int expscale;
 | ||
|     int intdig_max, intdig_no = 0;
 | ||
|     int fracdig_min;
 | ||
|     int fracdig_max;
 | ||
|     int dig_max;
 | ||
|     int significant;
 | ||
|     int ngroups = 0;
 | ||
|     char spec = _tolower (info->spec);
 | ||
| 
 | ||
|     if (spec == 'e')
 | ||
|       {
 | ||
| 	p.type = info->spec;
 | ||
| 	intdig_max = 1;
 | ||
| 	fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
 | ||
| 	chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4;
 | ||
| 	/*	       d   .	 ddd	     e	 +-  ddd  */
 | ||
| 	dig_max = INT_MAX;		/* Unlimited.  */
 | ||
| 	significant = 1;		/* Does not matter here.  */
 | ||
|       }
 | ||
|     else if (spec == 'f')
 | ||
|       {
 | ||
| 	p.type = 'f';
 | ||
| 	fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
 | ||
| 	dig_max = INT_MAX;		/* Unlimited.  */
 | ||
| 	significant = 1;		/* Does not matter here.  */
 | ||
| 	if (p.expsign == 0)
 | ||
| 	  {
 | ||
| 	    intdig_max = p.exponent + 1;
 | ||
| 	    /* This can be really big!	*/  /* XXX Maybe malloc if too big? */
 | ||
| 	    chars_needed = (size_t) p.exponent + 1 + 1 + (size_t) fracdig_max;
 | ||
| 	  }
 | ||
| 	else
 | ||
| 	  {
 | ||
| 	    intdig_max = 1;
 | ||
| 	    chars_needed = 1 + 1 + (size_t) fracdig_max;
 | ||
| 	  }
 | ||
|       }
 | ||
|     else
 | ||
|       {
 | ||
| 	dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
 | ||
| 	if ((p.expsign == 0 && p.exponent >= dig_max)
 | ||
| 	    || (p.expsign != 0 && p.exponent > 4))
 | ||
| 	  {
 | ||
| 	    if ('g' - 'G' == 'e' - 'E')
 | ||
| 	      p.type = 'E' + (info->spec - 'G');
 | ||
| 	    else
 | ||
| 	      p.type = isupper (info->spec) ? 'E' : 'e';
 | ||
| 	    fracdig_max = dig_max - 1;
 | ||
| 	    intdig_max = 1;
 | ||
| 	    chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4;
 | ||
| 	  }
 | ||
| 	else
 | ||
| 	  {
 | ||
| 	    p.type = 'f';
 | ||
| 	    intdig_max = p.expsign == 0 ? p.exponent + 1 : 0;
 | ||
| 	    fracdig_max = dig_max - intdig_max;
 | ||
| 	    /* We need space for the significant digits and perhaps
 | ||
| 	       for leading zeros when < 1.0.  The number of leading
 | ||
| 	       zeros can be as many as would be required for
 | ||
| 	       exponential notation with a negative two-digit
 | ||
| 	       p.exponent, which is 4.  */
 | ||
| 	    chars_needed = (size_t) dig_max + 1 + 4;
 | ||
| 	  }
 | ||
| 	fracdig_min = info->alt ? fracdig_max : 0;
 | ||
| 	significant = 0;		/* We count significant digits.	 */
 | ||
|       }
 | ||
| 
 | ||
|     if (grouping)
 | ||
|       {
 | ||
| 	/* Guess the number of groups we will make, and thus how
 | ||
| 	   many spaces we need for separator characters.  */
 | ||
| 	ngroups = __guess_grouping (intdig_max, grouping);
 | ||
| 	/* Allocate one more character in case rounding increases the
 | ||
| 	   number of groups.  */
 | ||
| 	chars_needed += ngroups + 1;
 | ||
|       }
 | ||
| 
 | ||
|     /* Allocate buffer for output.  We need two more because while rounding
 | ||
|        it is possible that we need two more characters in front of all the
 | ||
|        other output.  If the amount of memory we have to allocate is too
 | ||
|        large use `malloc' instead of `alloca'.  */
 | ||
|     if (__builtin_expect (chars_needed >= (size_t) -1 / sizeof (wchar_t) - 2
 | ||
| 			  || chars_needed < fracdig_max, 0))
 | ||
|       {
 | ||
| 	/* Some overflow occurred.  */
 | ||
| 	__set_errno (ERANGE);
 | ||
| 	return -1;
 | ||
|       }
 | ||
|     size_t wbuffer_to_alloc = (2 + chars_needed) * sizeof (wchar_t);
 | ||
|     buffer_malloced = ! __libc_use_alloca (wbuffer_to_alloc);
 | ||
|     if (__builtin_expect (buffer_malloced, 0))
 | ||
|       {
 | ||
| 	wbuffer = (wchar_t *) malloc (wbuffer_to_alloc);
 | ||
| 	if (wbuffer == NULL)
 | ||
| 	  /* Signal an error to the caller.  */
 | ||
| 	  return -1;
 | ||
|       }
 | ||
|     else
 | ||
|       wbuffer = (wchar_t *) alloca (wbuffer_to_alloc);
 | ||
|     wcp = wstartp = wbuffer + 2;	/* Let room for rounding.  */
 | ||
| 
 | ||
|     /* Do the real work: put digits in allocated buffer.  */
 | ||
|     if (p.expsign == 0 || p.type != 'f')
 | ||
|       {
 | ||
| 	assert (p.expsign == 0 || intdig_max == 1);
 | ||
| 	while (intdig_no < intdig_max)
 | ||
| 	  {
 | ||
| 	    ++intdig_no;
 | ||
| 	    *wcp++ = hack_digit (&p);
 | ||
| 	  }
 | ||
| 	significant = 1;
 | ||
| 	if (info->alt
 | ||
| 	    || fracdig_min > 0
 | ||
| 	    || (fracdig_max > 0 && (p.fracsize > 1 || p.frac[0] != 0)))
 | ||
| 	  *wcp++ = decimalwc;
 | ||
|       }
 | ||
|     else
 | ||
|       {
 | ||
| 	/* |fp| < 1.0 and the selected p.type is 'f', so put "0."
 | ||
| 	   in the buffer.  */
 | ||
| 	*wcp++ = L'0';
 | ||
| 	--p.exponent;
 | ||
| 	*wcp++ = decimalwc;
 | ||
|       }
 | ||
| 
 | ||
|     /* Generate the needed number of fractional digits.	 */
 | ||
|     int fracdig_no = 0;
 | ||
|     int added_zeros = 0;
 | ||
|     while (fracdig_no < fracdig_min + added_zeros
 | ||
| 	   || (fracdig_no < fracdig_max && (p.fracsize > 1 || p.frac[0] != 0)))
 | ||
|       {
 | ||
| 	++fracdig_no;
 | ||
| 	*wcp = hack_digit (&p);
 | ||
| 	if (*wcp++ != L'0')
 | ||
| 	  significant = 1;
 | ||
| 	else if (significant == 0)
 | ||
| 	  {
 | ||
| 	    ++fracdig_max;
 | ||
| 	    if (fracdig_min > 0)
 | ||
| 	      ++added_zeros;
 | ||
| 	  }
 | ||
|       }
 | ||
| 
 | ||
|     /* Do rounding.  */
 | ||
|     wchar_t last_digit = wcp[-1] != decimalwc ? wcp[-1] : wcp[-2];
 | ||
|     wchar_t next_digit = hack_digit (&p);
 | ||
|     bool more_bits;
 | ||
|     if (next_digit != L'0' && next_digit != L'5')
 | ||
|       more_bits = true;
 | ||
|     else if (p.fracsize == 1 && p.frac[0] == 0)
 | ||
|       /* Rest of the number is zero.  */
 | ||
|       more_bits = false;
 | ||
|     else if (p.scalesize == 0)
 | ||
|       {
 | ||
| 	/* Here we have to see whether all limbs are zero since no
 | ||
| 	   normalization happened.  */
 | ||
| 	size_t lcnt = p.fracsize;
 | ||
| 	while (lcnt >= 1 && p.frac[lcnt - 1] == 0)
 | ||
| 	  --lcnt;
 | ||
| 	more_bits = lcnt > 0;
 | ||
|       }
 | ||
|     else
 | ||
|       more_bits = true;
 | ||
|     int rounding_mode = get_rounding_mode ();
 | ||
|     if (round_away (is_neg, (last_digit - L'0') & 1, next_digit >= L'5',
 | ||
| 		    more_bits, rounding_mode))
 | ||
|       {
 | ||
| 	wchar_t *wtp = wcp;
 | ||
| 
 | ||
| 	if (fracdig_no > 0)
 | ||
| 	  {
 | ||
| 	    /* Process fractional digits.  Terminate if not rounded or
 | ||
| 	       radix character is reached.  */
 | ||
| 	    int removed = 0;
 | ||
| 	    while (*--wtp != decimalwc && *wtp == L'9')
 | ||
| 	      {
 | ||
| 		*wtp = L'0';
 | ||
| 		++removed;
 | ||
| 	      }
 | ||
| 	    if (removed == fracdig_min && added_zeros > 0)
 | ||
| 	      --added_zeros;
 | ||
| 	    if (*wtp != decimalwc)
 | ||
| 	      /* Round up.  */
 | ||
| 	      (*wtp)++;
 | ||
| 	    else if (__builtin_expect (spec == 'g' && p.type == 'f' && info->alt
 | ||
| 				       && wtp == wstartp + 1
 | ||
| 				       && wstartp[0] == L'0',
 | ||
| 				       0))
 | ||
| 	      /* This is a special case: the rounded number is 1.0,
 | ||
| 		 the format is 'g' or 'G', and the alternative format
 | ||
| 		 is selected.  This means the result must be "1.".  */
 | ||
| 	      --added_zeros;
 | ||
| 	  }
 | ||
| 
 | ||
| 	if (fracdig_no == 0 || *wtp == decimalwc)
 | ||
| 	  {
 | ||
| 	    /* Round the integer digits.  */
 | ||
| 	    if (*(wtp - 1) == decimalwc)
 | ||
| 	      --wtp;
 | ||
| 
 | ||
| 	    while (--wtp >= wstartp && *wtp == L'9')
 | ||
| 	      *wtp = L'0';
 | ||
| 
 | ||
| 	    if (wtp >= wstartp)
 | ||
| 	      /* Round up.  */
 | ||
| 	      (*wtp)++;
 | ||
| 	    else
 | ||
| 	      /* It is more critical.  All digits were 9's.  */
 | ||
| 	      {
 | ||
| 		if (p.type != 'f')
 | ||
| 		  {
 | ||
| 		    *wstartp = '1';
 | ||
| 		    p.exponent += p.expsign == 0 ? 1 : -1;
 | ||
| 
 | ||
| 		    /* The above p.exponent adjustment could lead to 1.0e-00,
 | ||
| 		       e.g. for 0.999999999.  Make sure p.exponent 0 always
 | ||
| 		       uses + sign.  */
 | ||
| 		    if (p.exponent == 0)
 | ||
| 		      p.expsign = 0;
 | ||
| 		  }
 | ||
| 		else if (intdig_no == dig_max)
 | ||
| 		  {
 | ||
| 		    /* This is the case where for p.type %g the number fits
 | ||
| 		       really in the range for %f output but after rounding
 | ||
| 		       the number of digits is too big.	 */
 | ||
| 		    *--wstartp = decimalwc;
 | ||
| 		    *--wstartp = L'1';
 | ||
| 
 | ||
| 		    if (info->alt || fracdig_no > 0)
 | ||
| 		      {
 | ||
| 			/* Overwrite the old radix character.  */
 | ||
| 			wstartp[intdig_no + 2] = L'0';
 | ||
| 			++fracdig_no;
 | ||
| 		      }
 | ||
| 
 | ||
| 		    fracdig_no += intdig_no;
 | ||
| 		    intdig_no = 1;
 | ||
| 		    fracdig_max = intdig_max - intdig_no;
 | ||
| 		    ++p.exponent;
 | ||
| 		    /* Now we must print the p.exponent.	*/
 | ||
| 		    p.type = isupper (info->spec) ? 'E' : 'e';
 | ||
| 		  }
 | ||
| 		else
 | ||
| 		  {
 | ||
| 		    /* We can simply add another another digit before the
 | ||
| 		       radix.  */
 | ||
| 		    *--wstartp = L'1';
 | ||
| 		    ++intdig_no;
 | ||
| 		  }
 | ||
| 
 | ||
| 		/* While rounding the number of digits can change.
 | ||
| 		   If the number now exceeds the limits remove some
 | ||
| 		   fractional digits.  */
 | ||
| 		if (intdig_no + fracdig_no > dig_max)
 | ||
| 		  {
 | ||
| 		    wcp -= intdig_no + fracdig_no - dig_max;
 | ||
| 		    fracdig_no -= intdig_no + fracdig_no - dig_max;
 | ||
| 		  }
 | ||
| 	      }
 | ||
| 	  }
 | ||
|       }
 | ||
| 
 | ||
|     /* Now remove unnecessary '0' at the end of the string.  */
 | ||
|     while (fracdig_no > fracdig_min + added_zeros && *(wcp - 1) == L'0')
 | ||
|       {
 | ||
| 	--wcp;
 | ||
| 	--fracdig_no;
 | ||
|       }
 | ||
|     /* If we eliminate all fractional digits we perhaps also can remove
 | ||
|        the radix character.  */
 | ||
|     if (fracdig_no == 0 && !info->alt && *(wcp - 1) == decimalwc)
 | ||
|       --wcp;
 | ||
| 
 | ||
|     if (grouping)
 | ||
|       {
 | ||
| 	/* Rounding might have changed the number of groups.  We allocated
 | ||
| 	   enough memory but we need here the correct number of groups.  */
 | ||
| 	if (intdig_no != intdig_max)
 | ||
| 	  ngroups = __guess_grouping (intdig_no, grouping);
 | ||
| 
 | ||
| 	/* Add in separator characters, overwriting the same buffer.  */
 | ||
| 	wcp = group_number (wstartp, wcp, intdig_no, grouping, thousands_sepwc,
 | ||
| 			    ngroups);
 | ||
|       }
 | ||
| 
 | ||
|     /* Write the p.exponent if it is needed.  */
 | ||
|     if (p.type != 'f')
 | ||
|       {
 | ||
| 	if (__glibc_unlikely (p.expsign != 0 && p.exponent == 4 && spec == 'g'))
 | ||
| 	  {
 | ||
| 	    /* This is another special case.  The p.exponent of the number is
 | ||
| 	       really smaller than -4, which requires the 'e'/'E' format.
 | ||
| 	       But after rounding the number has an p.exponent of -4.  */
 | ||
| 	    assert (wcp >= wstartp + 1);
 | ||
| 	    assert (wstartp[0] == L'1');
 | ||
| 	    __wmemcpy (wstartp, L"0.0001", 6);
 | ||
| 	    wstartp[1] = decimalwc;
 | ||
| 	    if (wcp >= wstartp + 2)
 | ||
| 	      {
 | ||
| 		__wmemset (wstartp + 6, L'0', wcp - (wstartp + 2));
 | ||
| 		wcp += 4;
 | ||
| 	      }
 | ||
| 	    else
 | ||
| 	      wcp += 5;
 | ||
| 	  }
 | ||
| 	else
 | ||
| 	  {
 | ||
| 	    *wcp++ = (wchar_t) p.type;
 | ||
| 	    *wcp++ = p.expsign ? L'-' : L'+';
 | ||
| 
 | ||
| 	    /* Find the magnitude of the p.exponent.	*/
 | ||
| 	    expscale = 10;
 | ||
| 	    while (expscale <= p.exponent)
 | ||
| 	      expscale *= 10;
 | ||
| 
 | ||
| 	    if (p.exponent < 10)
 | ||
| 	      /* Exponent always has at least two digits.  */
 | ||
| 	      *wcp++ = L'0';
 | ||
| 	    else
 | ||
| 	      do
 | ||
| 		{
 | ||
| 		  expscale /= 10;
 | ||
| 		  *wcp++ = L'0' + (p.exponent / expscale);
 | ||
| 		  p.exponent %= expscale;
 | ||
| 		}
 | ||
| 	      while (expscale > 10);
 | ||
| 	    *wcp++ = L'0' + p.exponent;
 | ||
| 	  }
 | ||
|       }
 | ||
| 
 | ||
|     /* Compute number of characters which must be filled with the padding
 | ||
|        character.  */
 | ||
|     if (is_neg || info->showsign || info->space)
 | ||
|       --width;
 | ||
|     width -= wcp - wstartp;
 | ||
| 
 | ||
|     if (!info->left && info->pad != '0' && width > 0)
 | ||
|       PADN (info->pad, width);
 | ||
| 
 | ||
|     if (is_neg)
 | ||
|       outchar ('-');
 | ||
|     else if (info->showsign)
 | ||
|       outchar ('+');
 | ||
|     else if (info->space)
 | ||
|       outchar (' ');
 | ||
| 
 | ||
|     if (!info->left && info->pad == '0' && width > 0)
 | ||
|       PADN ('0', width);
 | ||
| 
 | ||
|     {
 | ||
|       char *buffer = NULL;
 | ||
|       char *buffer_end = NULL;
 | ||
|       char *cp = NULL;
 | ||
|       char *tmpptr;
 | ||
| 
 | ||
|       if (! wide)
 | ||
| 	{
 | ||
| 	  /* Create the single byte string.  */
 | ||
| 	  size_t decimal_len;
 | ||
| 	  size_t thousands_sep_len;
 | ||
| 	  wchar_t *copywc;
 | ||
| 	  size_t factor = (info->i18n
 | ||
| 			   ? _NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MB_CUR_MAX)
 | ||
| 			   : 1);
 | ||
| 
 | ||
| 	  decimal_len = strlen (decimal);
 | ||
| 
 | ||
| 	  if (thousands_sep == NULL)
 | ||
| 	    thousands_sep_len = 0;
 | ||
| 	  else
 | ||
| 	    thousands_sep_len = strlen (thousands_sep);
 | ||
| 
 | ||
| 	  size_t nbuffer = (2 + chars_needed * factor + decimal_len
 | ||
| 			    + ngroups * thousands_sep_len);
 | ||
| 	  if (__glibc_unlikely (buffer_malloced))
 | ||
| 	    {
 | ||
| 	      buffer = (char *) malloc (nbuffer);
 | ||
| 	      if (buffer == NULL)
 | ||
| 		{
 | ||
| 		  /* Signal an error to the caller.  */
 | ||
| 		  free (wbuffer);
 | ||
| 		  return -1;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    buffer = (char *) alloca (nbuffer);
 | ||
| 	  buffer_end = buffer + nbuffer;
 | ||
| 
 | ||
| 	  /* Now copy the wide character string.  Since the character
 | ||
| 	     (except for the decimal point and thousands separator) must
 | ||
| 	     be coming from the ASCII range we can esily convert the
 | ||
| 	     string without mapping tables.  */
 | ||
| 	  for (cp = buffer, copywc = wstartp; copywc < wcp; ++copywc)
 | ||
| 	    if (*copywc == decimalwc)
 | ||
| 	      cp = (char *) __mempcpy (cp, decimal, decimal_len);
 | ||
| 	    else if (*copywc == thousands_sepwc)
 | ||
| 	      cp = (char *) __mempcpy (cp, thousands_sep, thousands_sep_len);
 | ||
| 	    else
 | ||
| 	      *cp++ = (char) *copywc;
 | ||
| 	}
 | ||
| 
 | ||
|       tmpptr = buffer;
 | ||
|       if (__glibc_unlikely (info->i18n))
 | ||
| 	{
 | ||
| #ifdef COMPILE_WPRINTF
 | ||
| 	  wstartp = _i18n_number_rewrite (wstartp, wcp,
 | ||
| 					  wbuffer + wbuffer_to_alloc);
 | ||
| 	  wcp = wbuffer + wbuffer_to_alloc;
 | ||
| 	  assert ((uintptr_t) wbuffer <= (uintptr_t) wstartp);
 | ||
| 	  assert ((uintptr_t) wstartp
 | ||
| 		  < (uintptr_t) wbuffer + wbuffer_to_alloc);
 | ||
| #else
 | ||
| 	  tmpptr = _i18n_number_rewrite (tmpptr, cp, buffer_end);
 | ||
| 	  cp = buffer_end;
 | ||
| 	  assert ((uintptr_t) buffer <= (uintptr_t) tmpptr);
 | ||
| 	  assert ((uintptr_t) tmpptr < (uintptr_t) buffer_end);
 | ||
| #endif
 | ||
| 	}
 | ||
| 
 | ||
|       PRINT (tmpptr, wstartp, wide ? wcp - wstartp : cp - tmpptr);
 | ||
| 
 | ||
|       /* Free the memory if necessary.  */
 | ||
|       if (__glibc_unlikely (buffer_malloced))
 | ||
| 	{
 | ||
| 	  free (buffer);
 | ||
| 	  free (wbuffer);
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|     if (info->left && width > 0)
 | ||
|       PADN (info->pad, width);
 | ||
|   }
 | ||
|   return done;
 | ||
| }
 | ||
| ldbl_hidden_def (___printf_fp, __printf_fp)
 | ||
| ldbl_strong_alias (___printf_fp, __printf_fp)
 | ||
| 
 | ||
| /* Return the number of extra grouping characters that will be inserted
 | ||
|    into a number with INTDIG_MAX integer digits.  */
 | ||
| 
 | ||
| unsigned int
 | ||
| __guess_grouping (unsigned int intdig_max, const char *grouping)
 | ||
| {
 | ||
|   unsigned int groups;
 | ||
| 
 | ||
|   /* We treat all negative values like CHAR_MAX.  */
 | ||
| 
 | ||
|   if (*grouping == CHAR_MAX || *grouping <= 0)
 | ||
|     /* No grouping should be done.  */
 | ||
|     return 0;
 | ||
| 
 | ||
|   groups = 0;
 | ||
|   while (intdig_max > (unsigned int) *grouping)
 | ||
|     {
 | ||
|       ++groups;
 | ||
|       intdig_max -= *grouping++;
 | ||
| 
 | ||
|       if (*grouping == CHAR_MAX
 | ||
| #if CHAR_MIN < 0
 | ||
| 	  || *grouping < 0
 | ||
| #endif
 | ||
| 	  )
 | ||
| 	/* No more grouping should be done.  */
 | ||
| 	break;
 | ||
|       else if (*grouping == 0)
 | ||
| 	{
 | ||
| 	  /* Same grouping repeats.  */
 | ||
| 	  groups += (intdig_max - 1) / grouping[-1];
 | ||
| 	  break;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   return groups;
 | ||
| }
 | ||
| 
 | ||
| /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
 | ||
|    There is guaranteed enough space past BUFEND to extend it.
 | ||
|    Return the new end of buffer.  */
 | ||
| 
 | ||
| static wchar_t *
 | ||
| internal_function
 | ||
| group_number (wchar_t *buf, wchar_t *bufend, unsigned int intdig_no,
 | ||
| 	      const char *grouping, wchar_t thousands_sep, int ngroups)
 | ||
| {
 | ||
|   wchar_t *p;
 | ||
| 
 | ||
|   if (ngroups == 0)
 | ||
|     return bufend;
 | ||
| 
 | ||
|   /* Move the fractional part down.  */
 | ||
|   __wmemmove (buf + intdig_no + ngroups, buf + intdig_no,
 | ||
| 	      bufend - (buf + intdig_no));
 | ||
| 
 | ||
|   p = buf + intdig_no + ngroups - 1;
 | ||
|   do
 | ||
|     {
 | ||
|       unsigned int len = *grouping++;
 | ||
|       do
 | ||
| 	*p-- = buf[--intdig_no];
 | ||
|       while (--len > 0);
 | ||
|       *p-- = thousands_sep;
 | ||
| 
 | ||
|       if (*grouping == CHAR_MAX
 | ||
| #if CHAR_MIN < 0
 | ||
| 	  || *grouping < 0
 | ||
| #endif
 | ||
| 	  )
 | ||
| 	/* No more grouping should be done.  */
 | ||
| 	break;
 | ||
|       else if (*grouping == 0)
 | ||
| 	/* Same grouping repeats.  */
 | ||
| 	--grouping;
 | ||
|     } while (intdig_no > (unsigned int) *grouping);
 | ||
| 
 | ||
|   /* Copy the remaining ungrouped digits.  */
 | ||
|   do
 | ||
|     *p-- = buf[--intdig_no];
 | ||
|   while (p > buf);
 | ||
| 
 | ||
|   return bufend + ngroups;
 | ||
| }
 |