mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-28 23:34:53 +03:00 
			
		
		
		
	* sysdeps/powerpc/powerpc64/dl-machine.h (RTLD_START): Use .pushsection/.popsection in place of .section/.previous.
		
			
				
	
	
		
			815 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			815 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Machine-dependent ELF dynamic relocation inline functions.
 | |
|    PowerPC64 version.
 | |
|    Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
 | |
|    Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Library General Public License as
 | |
|    published by the Free Software Foundation; either version 2 of the
 | |
|    License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Library General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Library General Public
 | |
|    License along with the GNU C Library; see the file COPYING.LIB.  If not,
 | |
|    write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|    Boston, MA 02111-1307, USA.  */
 | |
| 
 | |
| #ifndef dl_machine_h
 | |
| #define dl_machine_h
 | |
| 
 | |
| #define ELF_MACHINE_NAME "powerpc64"
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <sys/param.h>
 | |
| #include <dl-tls.h>
 | |
| #include <sysdep.h>
 | |
| 
 | |
| /* Translate a processor specific dynamic tag to the index
 | |
|    in l_info array.  */
 | |
| #define DT_PPC64(x) (DT_PPC64_##x - DT_LOPROC + DT_NUM)
 | |
| 
 | |
| /* A PowerPC64 function descriptor.  The .plt (procedure linkage
 | |
|    table) and .opd (official procedure descriptor) sections are
 | |
|    arrays of these.  */
 | |
| typedef struct
 | |
| {
 | |
|   Elf64_Addr fd_func;
 | |
|   Elf64_Addr fd_toc;
 | |
|   Elf64_Addr fd_aux;
 | |
| } Elf64_FuncDesc;
 | |
| 
 | |
| #define ELF_MULT_MACHINES_SUPPORTED
 | |
| 
 | |
| /* Return nonzero iff ELF header is compatible with the running host.  */
 | |
| static inline int
 | |
| elf_machine_matches_host (const Elf64_Ehdr *ehdr)
 | |
| {
 | |
|   return ehdr->e_machine == EM_PPC64;
 | |
| }
 | |
| 
 | |
| /* Return nonzero iff ELF header is compatible with the running host,
 | |
|    but not this loader.  */
 | |
| static inline int
 | |
| elf_host_tolerates_machine (const Elf64_Ehdr *ehdr)
 | |
| {
 | |
|   return ehdr->e_machine == EM_PPC;
 | |
| }
 | |
| 
 | |
| /* Return nonzero iff ELF header is compatible with the running host,
 | |
|    but not this loader.  */
 | |
| static inline int
 | |
| elf_host_tolerates_class (const Elf64_Ehdr *ehdr)
 | |
| {
 | |
|   return ehdr->e_ident[EI_CLASS] == ELFCLASS32;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Return the run-time load address of the shared object, assuming it
 | |
|    was originally linked at zero.  */
 | |
| static inline Elf64_Addr
 | |
| elf_machine_load_address (void) __attribute__ ((const));
 | |
| 
 | |
| static inline Elf64_Addr
 | |
| elf_machine_load_address (void)
 | |
| {
 | |
|   Elf64_Addr ret;
 | |
| 
 | |
|   /* The first entry in .got (and thus the first entry in .toc) is the
 | |
|      link-time TOC_base, ie. r2.  So the difference between that and
 | |
|      the current r2 set by the kernel is how far the shared lib has
 | |
|      moved.  */
 | |
|   asm (	"	ld	%0,-32768(2)\n"
 | |
| 	"	subf	%0,%0,2\n"
 | |
| 	: "=r"	(ret));
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| /* Return the link-time address of _DYNAMIC.  */
 | |
| static inline Elf64_Addr
 | |
| elf_machine_dynamic (void)
 | |
| {
 | |
|   Elf64_Addr runtime_dynamic;
 | |
|   /* It's easier to get the run-time address.  */
 | |
|   asm (	"	addis	%0,2,_DYNAMIC@toc@ha\n"
 | |
| 	"	addi	%0,%0,_DYNAMIC@toc@l\n"
 | |
| 	: "=b"	(runtime_dynamic));
 | |
|   /* Then subtract off the load address offset.  */
 | |
|   return runtime_dynamic - elf_machine_load_address() ;
 | |
| }
 | |
| 
 | |
| #define ELF_MACHINE_BEFORE_RTLD_RELOC(dynamic_info) /* nothing */
 | |
| 
 | |
| /* The PLT uses Elf64_Rela relocs.  */
 | |
| #define elf_machine_relplt elf_machine_rela
 | |
| 
 | |
| 
 | |
| #ifdef HAVE_INLINED_SYSCALLS
 | |
| /* We do not need _dl_starting_up.  */
 | |
| # define DL_STARTING_UP_DEF
 | |
| #else
 | |
| # define DL_STARTING_UP_DEF \
 | |
| ".LC__dl_starting_up:\n"  \
 | |
| "	.tc _dl_starting_up_internal[TC],_dl_starting_up_internal\n"
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Initial entry point code for the dynamic linker.  The C function
 | |
|    `_dl_start' is the real entry point; its return value is the user
 | |
|    program's entry point.  */
 | |
| #define RTLD_START \
 | |
|   asm (".pushsection \".text\"\n"					\
 | |
| "	.align	2\n"							\
 | |
| "	.type	" BODY_PREFIX "_start,@function\n"			\
 | |
| "	.pushsection \".opd\",\"aw\"\n"					\
 | |
| "	.align	3\n"							\
 | |
| "	.globl	_start\n"						\
 | |
| "	" ENTRY_2(_start) "\n"						\
 | |
| "_start:\n"								\
 | |
| "	" OPD_ENT(_start) "\n"						\
 | |
| "	.popsection\n"							\
 | |
| BODY_PREFIX "_start:\n"							\
 | |
| /* We start with the following on the stack, from top:			\
 | |
|    argc (4 bytes);							\
 | |
|    arguments for program (terminated by NULL);				\
 | |
|    environment variables (terminated by NULL);				\
 | |
|    arguments for the program loader.  */				\
 | |
| "	mr	3,1\n"							\
 | |
| "	li	4,0\n"							\
 | |
| "	stdu	4,-128(1)\n"						\
 | |
| /* Call _dl_start with one parameter pointing at argc.  */		\
 | |
| "	bl	" DOT_PREFIX "_dl_start\n"				\
 | |
| "	nop\n"								\
 | |
| /* Transfer control to _dl_start_user!  */				\
 | |
| "	b	" DOT_PREFIX "_dl_start_user\n"				\
 | |
| ".LT__start:\n"								\
 | |
| "	.long 0\n"							\
 | |
| "	.byte 0x00,0x0c,0x24,0x40,0x00,0x00,0x00,0x00\n"		\
 | |
| "	.long .LT__start-" BODY_PREFIX "_start\n"			\
 | |
| "	.short .LT__start_name_end-.LT__start_name_start\n"		\
 | |
| ".LT__start_name_start:\n"						\
 | |
| "	.ascii \"_start\"\n"						\
 | |
| ".LT__start_name_end:\n"						\
 | |
| "	.align 2\n"							\
 | |
| "	" END_2(_start) "\n"						\
 | |
| "	.globl	_dl_start_user\n"					\
 | |
| "	.pushsection \".opd\",\"aw\"\n"					\
 | |
| "_dl_start_user:\n"							\
 | |
| "	" OPD_ENT(_dl_start_user) "\n"					\
 | |
| "	.popsection\n"							\
 | |
| "	.pushsection	\".toc\",\"aw\"\n"				\
 | |
| DL_STARTING_UP_DEF							\
 | |
| ".LC__rtld_global:\n"							\
 | |
| "	.tc _rtld_global[TC],_rtld_global\n"				\
 | |
| ".LC__dl_argc:\n"							\
 | |
| "	.tc _dl_argc[TC],_dl_argc\n"					\
 | |
| ".LC__dl_argv:\n"							\
 | |
| "	.tc _dl_argv_internal[TC],_dl_argv_internal\n"			\
 | |
| ".LC__dl_fini:\n"							\
 | |
| "	.tc _dl_fini[TC],_dl_fini\n"					\
 | |
| "	.popsection\n"							\
 | |
| "	.type	" BODY_PREFIX "_dl_start_user,@function\n"		\
 | |
| "	" ENTRY_2(_dl_start_user) "\n"					\
 | |
| /* Now, we do our main work of calling initialisation procedures.	\
 | |
|    The ELF ABI doesn't say anything about parameters for these,		\
 | |
|    so we just pass argc, argv, and the environment.			\
 | |
|    Changing these is strongly discouraged (not least because argc is	\
 | |
|    passed by value!).  */						\
 | |
| BODY_PREFIX "_dl_start_user:\n"						\
 | |
| /* the address of _start in r30.  */					\
 | |
| "	mr	30,3\n"							\
 | |
| /* &_dl_argc in 29, &_dl_argv in 27, and _dl_loaded in 28.  */		\
 | |
| "	ld	28,.LC__rtld_global@toc(2)\n"				\
 | |
| "	ld	29,.LC__dl_argc@toc(2)\n"				\
 | |
| "	ld	27,.LC__dl_argv@toc(2)\n"				\
 | |
| /* _dl_init (_dl_loaded, _dl_argc, _dl_argv, _dl_argv+_dl_argc+1).  */	\
 | |
| "	ld	3,0(28)\n"						\
 | |
| "	lwa	4,0(29)\n"						\
 | |
| "	ld	5,0(27)\n"						\
 | |
| "	sldi	6,4,3\n"						\
 | |
| "	add	6,5,6\n"						\
 | |
| "	addi	6,6,8\n"						\
 | |
| "	bl	" DOT_PREFIX "_dl_init\n"				\
 | |
| "	nop\n"								\
 | |
| /* Now, to conform to the ELF ABI, we have to:				\
 | |
|    Pass argc (actually _dl_argc) in r3;  */				\
 | |
| "	lwa	3,0(29)\n"						\
 | |
| /* Pass argv (actually _dl_argv) in r4;  */				\
 | |
| "	ld	4,0(27)\n"						\
 | |
| /* Pass argv+argc+1 in r5;  */						\
 | |
| "	sldi	5,3,3\n"						\
 | |
| "	add	6,4,5\n"						\
 | |
| "	addi	5,6,8\n"						\
 | |
| /* Pass the auxilary vector in r6. This is passed to us just after	\
 | |
|    _envp.  */								\
 | |
| "2:	ldu	0,8(6)\n"						\
 | |
| "	cmpdi	0,0\n"							\
 | |
| "	bne	2b\n"							\
 | |
| "	addi	6,6,8\n"						\
 | |
| /* Pass a termination function pointer (in this case _dl_fini) in	\
 | |
|    r7.  */								\
 | |
| "	ld	7,.LC__dl_fini@toc(2)\n"				\
 | |
| /* Pass the stack pointer in r1 (so far so good), pointing to a NULL	\
 | |
|    value.  This lets our startup code distinguish between a program	\
 | |
|    linked statically, which linux will call with argc on top of the	\
 | |
|    stack which will hopefully never be zero, and a dynamically linked	\
 | |
|    program which will always have a NULL on the top of the stack.	\
 | |
|    Take the opportunity to clear LR, so anyone who accidentally		\
 | |
|    returns from _start gets SEGV.  Also clear the next few words of	\
 | |
|    the stack.  */							\
 | |
| "	li	31,0\n"							\
 | |
| "	std	31,0(1)\n"						\
 | |
| "	mtlr	31\n"							\
 | |
| "	std	31,8(1)\n"						\
 | |
| "	std	31,16(1)\n"						\
 | |
| "	std	31,24(1)\n"						\
 | |
| /* Now, call the start function descriptor at r30...  */		\
 | |
| "	.globl	._dl_main_dispatch\n"					\
 | |
| "._dl_main_dispatch:\n"							\
 | |
| "	ld	0,0(30)\n"						\
 | |
| "	ld	2,8(30)\n"						\
 | |
| "	mtctr	0\n"							\
 | |
| "	ld	11,16(30)\n"						\
 | |
| "	bctr\n"								\
 | |
| ".LT__dl_start_user:\n"							\
 | |
| "	.long 0\n"							\
 | |
| "	.byte 0x00,0x0c,0x24,0x40,0x00,0x00,0x00,0x00\n"		\
 | |
| "	.long .LT__dl_start_user-" BODY_PREFIX "_dl_start_user\n"	\
 | |
| "	.short .LT__dl_start_user_name_end-.LT__dl_start_user_name_start\n" \
 | |
| ".LT__dl_start_user_name_start:\n"					\
 | |
| "	.ascii \"_dl_start_user\"\n"					\
 | |
| ".LT__dl_start_user_name_end:\n"					\
 | |
| "	.align 2\n"							\
 | |
| "	" END_2(_dl_start_user) "\n"					\
 | |
| "	.popsection");
 | |
| 
 | |
| /* Nonzero iff TYPE should not be allowed to resolve to one of
 | |
|    the main executable's symbols, as for a COPY reloc.  */
 | |
| #define elf_machine_lookup_noexec_p(type) ((type) == R_PPC64_COPY)
 | |
| 
 | |
| /* Nonzero iff TYPE describes relocation of a PLT entry, so
 | |
|    PLT entries should not be allowed to define the value.  */
 | |
| #define elf_machine_lookup_noplt_p(type) ((type) == R_PPC64_JMP_SLOT)
 | |
| 
 | |
| /* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry, so
 | |
|    PLT entries should not be allowed to define the value.
 | |
|    ELF_RTYPE_CLASS_NOCOPY iff TYPE should not be allowed to resolve to one
 | |
|    of the main executable's symbols, as for a COPY reloc.  */
 | |
| 
 | |
| #if defined USE_TLS && (!defined RTLD_BOOTSTRAP || USE___THREAD)
 | |
| #define elf_machine_type_class(type)					      \
 | |
|   /* This covers all the TLS relocs, though most won't appear.  */	      \
 | |
|   (((((type) >= R_PPC64_DTPMOD64 && (type) <= R_PPC64_TPREL16_HIGHESTA)	      \
 | |
|     || (type) == R_PPC64_ADDR24) * ELF_RTYPE_CLASS_PLT)			      \
 | |
|    | (((type) == R_PPC64_COPY) * ELF_RTYPE_CLASS_COPY))
 | |
| #else
 | |
| #define elf_machine_type_class(type) \
 | |
|   ((((type) == R_PPC64_ADDR24) * ELF_RTYPE_CLASS_PLT)	\
 | |
|    | (((type) == R_PPC64_COPY) * ELF_RTYPE_CLASS_COPY))
 | |
| #endif
 | |
| 
 | |
| /* A reloc type used for ld.so cmdline arg lookups to reject PLT entries.  */
 | |
| #define ELF_MACHINE_JMP_SLOT	R_PPC64_JMP_SLOT
 | |
| 
 | |
| /* The PowerPC never uses REL relocations.  */
 | |
| #define ELF_MACHINE_NO_REL 1
 | |
| 
 | |
| /* Stuff for the PLT.  */
 | |
| #define PLT_INITIAL_ENTRY_WORDS 3
 | |
| #define GLINK_INITIAL_ENTRY_WORDS 8
 | |
| 
 | |
| #define PPC_DCBST(where) asm volatile ("dcbst 0,%0" : : "r"(where) : "memory")
 | |
| #define PPC_SYNC asm volatile ("sync" : : : "memory")
 | |
| #define PPC_ISYNC asm volatile ("sync; isync" : : : "memory")
 | |
| #define PPC_ICBI(where) asm volatile ("icbi 0,%0" : : "r"(where) : "memory")
 | |
| #define PPC_DIE asm volatile ("tweq 0,0")
 | |
| /* Use this when you've modified some code, but it won't be in the
 | |
|    instruction fetch queue (or when it doesn't matter if it is). */
 | |
| #define MODIFIED_CODE_NOQUEUE(where) \
 | |
|      do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); } while (0)
 | |
| /* Use this when it might be in the instruction queue. */
 | |
| #define MODIFIED_CODE(where) \
 | |
|      do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); PPC_ISYNC; } while (0)
 | |
| 
 | |
| /* Set up the loaded object described by MAP so its unrelocated PLT
 | |
|    entries will jump to the on-demand fixup code in dl-runtime.c.  */
 | |
| static inline int __attribute__ ((always_inline))
 | |
| elf_machine_runtime_setup (struct link_map *map, int lazy, int profile)
 | |
| {
 | |
|   if (map->l_info[DT_JMPREL])
 | |
|     {
 | |
|       Elf64_Word i;
 | |
|       Elf64_Word *glink = NULL;
 | |
|       Elf64_Xword *plt = (Elf64_Xword *) D_PTR (map, l_info[DT_PLTGOT]);
 | |
|       Elf64_Word num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
 | |
| 				    / sizeof (Elf64_Rela));
 | |
|       Elf64_Addr l_addr = map->l_addr;
 | |
|       Elf64_Dyn **info = map->l_info;
 | |
|       char *p;
 | |
| 
 | |
|       extern void _dl_runtime_resolve (void);
 | |
|       extern void _dl_profile_resolve (void);
 | |
| 
 | |
|       /* Relocate the DT_PPC64_GLINK entry in the _DYNAMIC section.
 | |
| 	 elf_get_dynamic_info takes care of the standard entries but
 | |
| 	 doesn't know exactly what to do with processor specific
 | |
| 	 entires.  */
 | |
|       if (info[DT_PPC64(GLINK)] != NULL)
 | |
| 	info[DT_PPC64(GLINK)]->d_un.d_ptr += l_addr;
 | |
| 
 | |
|       if (lazy)
 | |
| 	{
 | |
| 	  /* The function descriptor of the appropriate trampline
 | |
| 	     routine is used to set the 1st and 2nd doubleword of the
 | |
| 	     plt_reserve.  */
 | |
| 	  Elf64_FuncDesc *resolve_fd;
 | |
| 	  Elf64_Word glink_offset;
 | |
| 	  /* the plt_reserve area is the 1st 3 doublewords of the PLT */
 | |
| 	  Elf64_FuncDesc *plt_reserve = (Elf64_FuncDesc *) plt;
 | |
| 	  Elf64_Word offset;
 | |
| 
 | |
| 	  resolve_fd = (Elf64_FuncDesc *) (profile ? _dl_profile_resolve
 | |
| 					   : _dl_runtime_resolve);
 | |
| 	  if (profile && GLRO(dl_profile) != NULL
 | |
| 	      && _dl_name_match_p (GLRO(dl_profile), map))
 | |
| 	    /* This is the object we are looking for.  Say that we really
 | |
| 	       want profiling and the timers are started.  */
 | |
| 	    GL(dl_profile_map) = map;
 | |
| 
 | |
| 
 | |
| 	  /* We need to stuff the address/TOC of _dl_runtime_resolve
 | |
| 	     into doublewords 0 and 1 of plt_reserve.  Then we need to
 | |
| 	     stuff the map address into doubleword 2 of plt_reserve.
 | |
| 	     This allows the GLINK0 code to transfer control to the
 | |
| 	     correct trampoline which will transfer control to fixup
 | |
| 	     in dl-machine.c.  */
 | |
| 	  plt_reserve->fd_func = resolve_fd->fd_func;
 | |
| 	  plt_reserve->fd_toc  = resolve_fd->fd_toc;
 | |
| 	  plt_reserve->fd_aux  = (Elf64_Addr) map;
 | |
| #ifdef RTLD_BOOTSTRAP
 | |
| 	  /* When we're bootstrapping, the opd entry will not have
 | |
| 	     been relocated yet.  */
 | |
| 	  plt_reserve->fd_func += l_addr;
 | |
| 	  plt_reserve->fd_toc  += l_addr;
 | |
| #endif
 | |
| 
 | |
| 	  /* Set up the lazy PLT entries.  */
 | |
| 	  glink = (Elf64_Word *) D_PTR (map, l_info[DT_PPC64(GLINK)]);
 | |
| 	  offset = PLT_INITIAL_ENTRY_WORDS;
 | |
| 	  glink_offset = GLINK_INITIAL_ENTRY_WORDS;
 | |
| 	  for (i = 0; i < num_plt_entries; i++)
 | |
| 	    {
 | |
| 
 | |
| 	      plt[offset] = (Elf64_Xword) &glink[glink_offset];
 | |
| 	      offset += 3;
 | |
| 	      /* The first 32k entries of glink can set an index and
 | |
| 		 branch using two instructions;  Past that point,
 | |
| 		 glink uses three instructions.  */
 | |
| 	      if (i < 0x8000)
 | |
|           	glink_offset += 2;
 | |
| 	      else
 | |
|           	glink_offset += 3;
 | |
| 	    }
 | |
| 
 | |
| 	  /* Now, we've modified data.  We need to write the changes from
 | |
| 	     the data cache to a second-level unified cache, then make
 | |
| 	     sure that stale data in the instruction cache is removed.
 | |
| 	     (In a multiprocessor system, the effect is more complex.)
 | |
| 	     Most of the PLT shouldn't be in the instruction cache, but
 | |
| 	     there may be a little overlap at the start and the end.
 | |
| 
 | |
| 	     Assumes that dcbst and icbi apply to lines of 16 bytes or
 | |
| 	     more.  Current known line sizes are 16, 32, and 128 bytes.  */
 | |
| 
 | |
| 	  for (p = (char *) plt; p < (char *) &plt[offset]; p += 16)
 | |
| 	    PPC_DCBST (p);
 | |
| 	  PPC_SYNC;
 | |
| 	}
 | |
|     }
 | |
|   return lazy;
 | |
| }
 | |
| 
 | |
| /* Change the PLT entry whose reloc is 'reloc' to call the actual
 | |
|    routine.  */
 | |
| static inline Elf64_Addr __attribute__ ((always_inline))
 | |
| elf_machine_fixup_plt (struct link_map *map, lookup_t sym_map,
 | |
| 		       const Elf64_Rela *reloc,
 | |
| 		       Elf64_Addr *reloc_addr, Elf64_Addr finaladdr)
 | |
| {
 | |
|   Elf64_FuncDesc *plt = (Elf64_FuncDesc *) reloc_addr;
 | |
|   Elf64_FuncDesc *rel = (Elf64_FuncDesc *) finaladdr;
 | |
|   Elf64_Addr offset = 0;
 | |
| 
 | |
|   /* If sym_map is NULL, it's a weak undefined sym;  Leave the plt zero.  */
 | |
|   if (sym_map == NULL)
 | |
|     return 0;
 | |
| 
 | |
|   /* If the opd entry is not yet relocated (because it's from a shared
 | |
|      object that hasn't been processed yet), then manually reloc it.  */
 | |
|   if (map != sym_map && !sym_map->l_relocated
 | |
| #if !defined RTLD_BOOTSTRAP && defined SHARED
 | |
|       /* Bootstrap map doesn't have l_relocated set for it.  */
 | |
|       && sym_map != &GL(dl_rtld_map)
 | |
| #endif
 | |
|       )
 | |
|     offset = sym_map->l_addr;
 | |
| 
 | |
|   /* For PPC64, fixup_plt copies the function descriptor from opd
 | |
|      over the corresponding PLT entry.
 | |
|      Initially, PLT Entry[i] is set up for lazy linking, or is zero.
 | |
|      For lazy linking, the fd_toc and fd_aux entries are irrelevant,
 | |
|      so for thread safety we write them before changing fd_func.  */
 | |
| 
 | |
|   plt->fd_aux = rel->fd_aux + offset;
 | |
|   plt->fd_toc = rel->fd_toc + offset;
 | |
|   PPC_DCBST (&plt->fd_aux);
 | |
|   PPC_DCBST (&plt->fd_toc);
 | |
|   PPC_SYNC;
 | |
| 
 | |
|   plt->fd_func = rel->fd_func + offset;
 | |
|   PPC_DCBST (&plt->fd_func);
 | |
|   PPC_SYNC;
 | |
| 
 | |
|   return finaladdr;
 | |
| }
 | |
| 
 | |
| static inline void __attribute__ ((always_inline))
 | |
| elf_machine_plt_conflict (Elf64_Addr *reloc_addr, Elf64_Addr finaladdr)
 | |
| {
 | |
|   Elf64_FuncDesc *plt = (Elf64_FuncDesc *) reloc_addr;
 | |
|   Elf64_FuncDesc *rel = (Elf64_FuncDesc *) finaladdr;
 | |
| 
 | |
|   plt->fd_func = rel->fd_func;
 | |
|   plt->fd_aux = rel->fd_aux;
 | |
|   plt->fd_toc = rel->fd_toc;
 | |
|   PPC_DCBST (&plt->fd_func);
 | |
|   PPC_DCBST (&plt->fd_aux);
 | |
|   PPC_DCBST (&plt->fd_toc);
 | |
|   PPC_SYNC;
 | |
| }
 | |
| 
 | |
| /* Return the final value of a plt relocation.  */
 | |
| static inline Elf64_Addr
 | |
| elf_machine_plt_value (struct link_map *map, const Elf64_Rela *reloc,
 | |
| 		       Elf64_Addr value)
 | |
| {
 | |
|   return value + reloc->r_addend;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Names of the architecture-specific auditing callback functions.  */
 | |
| #define ARCH_LA_PLTENTER ppc64_gnu_pltenter
 | |
| #define ARCH_LA_PLTEXIT ppc64_gnu_pltexit
 | |
| 
 | |
| #endif /* dl_machine_h */
 | |
| 
 | |
| #ifdef RESOLVE_MAP
 | |
| 
 | |
| #define PPC_LO(v) ((v) & 0xffff)
 | |
| #define PPC_HI(v) (((v) >> 16) & 0xffff)
 | |
| #define PPC_HA(v) PPC_HI ((v) + 0x8000)
 | |
| #define PPC_HIGHER(v) (((v) >> 32) & 0xffff)
 | |
| #define PPC_HIGHERA(v) PPC_HIGHER ((v) + 0x8000)
 | |
| #define PPC_HIGHEST(v) (((v) >> 48) & 0xffff)
 | |
| #define PPC_HIGHESTA(v) PPC_HIGHEST ((v) + 0x8000)
 | |
| #define BIT_INSERT(var, val, mask) \
 | |
|   ((var) = ((var) & ~(Elf64_Addr) (mask)) | ((val) & (mask)))
 | |
| 
 | |
| #define dont_expect(X) __builtin_expect ((X), 0)
 | |
| 
 | |
| extern void _dl_reloc_overflow (struct link_map *map,
 | |
|                                 const char *name,
 | |
|                                 Elf64_Addr *const reloc_addr,
 | |
|                                 const Elf64_Sym *refsym)
 | |
|                                 attribute_hidden;
 | |
| 
 | |
| auto inline void __attribute__ ((always_inline))
 | |
| elf_machine_rela_relative (Elf64_Addr l_addr, const Elf64_Rela *reloc,
 | |
| 			   void *const reloc_addr_arg)
 | |
| {
 | |
|   Elf64_Addr *const reloc_addr = reloc_addr_arg;
 | |
|   *reloc_addr = l_addr + reloc->r_addend;
 | |
| }
 | |
| 
 | |
| #if defined USE_TLS && (!defined RTLD_BOOTSTRAP || USE___THREAD)
 | |
| /* This computes the value used by TPREL* relocs.  */
 | |
| auto inline Elf64_Addr __attribute__ ((always_inline, const))
 | |
| elf_machine_tprel (struct link_map *map,
 | |
| 		   struct link_map *sym_map,
 | |
| 		   const Elf64_Sym *sym,
 | |
| 		   const Elf64_Rela *reloc)
 | |
| {
 | |
| # ifndef RTLD_BOOTSTRAP
 | |
|   if (sym_map)
 | |
|     {
 | |
|       CHECK_STATIC_TLS (map, sym_map);
 | |
| # endif
 | |
|       return TLS_TPREL_VALUE (sym_map, sym, reloc);
 | |
| # ifndef RTLD_BOOTSTRAP
 | |
|     }
 | |
| # endif
 | |
|   return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Perform the relocation specified by RELOC and SYM (which is fully
 | |
|    resolved).  MAP is the object containing the reloc.  */
 | |
| auto inline void __attribute__ ((always_inline))
 | |
| elf_machine_rela (struct link_map *map,
 | |
| 		  const Elf64_Rela *reloc,
 | |
| 		  const Elf64_Sym *sym,
 | |
| 		  const struct r_found_version *version,
 | |
| 		  void *const reloc_addr_arg)
 | |
| {
 | |
|   Elf64_Addr *const reloc_addr = reloc_addr_arg;
 | |
|   const int r_type = ELF64_R_TYPE (reloc->r_info);
 | |
| #ifndef RTLD_BOOTSTRAP
 | |
|   const Elf64_Sym *const refsym = sym;
 | |
| #endif
 | |
| 
 | |
|   if (r_type == R_PPC64_RELATIVE)
 | |
|     {
 | |
|       *reloc_addr = map->l_addr + reloc->r_addend;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if (__builtin_expect (r_type == R_PPC64_NONE, 0))
 | |
|     return;
 | |
| 
 | |
|   /* We need SYM_MAP even in the absence of TLS, for elf_machine_fixup_plt.  */
 | |
|   struct link_map *sym_map = RESOLVE_MAP (&sym, version, r_type);
 | |
|   Elf64_Addr value = ((sym_map == NULL ? 0 : sym_map->l_addr + sym->st_value)
 | |
| 		      + reloc->r_addend);
 | |
| 
 | |
|   /* For relocs that don't edit code, return.
 | |
|      For relocs that might edit instructions, break from the switch.  */
 | |
|   switch (r_type)
 | |
|     {
 | |
|     case R_PPC64_ADDR64:
 | |
|     case R_PPC64_GLOB_DAT:
 | |
|       *reloc_addr = value;
 | |
|       return;
 | |
| 
 | |
|     case R_PPC64_JMP_SLOT:
 | |
| #ifdef RESOLVE_CONFLICT_FIND_MAP
 | |
|       elf_machine_plt_conflict (reloc_addr, value);
 | |
| #else
 | |
|       elf_machine_fixup_plt (map, sym_map, reloc, reloc_addr, value);
 | |
| #endif
 | |
|       return;
 | |
| 
 | |
| #if defined USE_TLS && (!defined RTLD_BOOTSTRAP || USE___THREAD)
 | |
|     case R_PPC64_DTPMOD64:
 | |
| # ifdef RTLD_BOOTSTRAP
 | |
|       /* During startup the dynamic linker is always index 1.  */
 | |
|       *reloc_addr = 1;
 | |
| # else
 | |
|       /* Get the information from the link map returned by the
 | |
| 	 resolve function.  */
 | |
|       if (sym_map != NULL)
 | |
|         *reloc_addr = sym_map->l_tls_modid;
 | |
| # endif
 | |
|       return;
 | |
| 
 | |
|     case R_PPC64_DTPREL64:
 | |
|       /* During relocation all TLS symbols are defined and used.
 | |
|          Therefore the offset is already correct.  */
 | |
| # ifndef RTLD_BOOTSTRAP
 | |
|       if (sym_map != NULL)
 | |
| 	*reloc_addr = TLS_DTPREL_VALUE (sym, reloc);
 | |
| # endif
 | |
|       return;
 | |
| 
 | |
|     case R_PPC64_TPREL64:
 | |
|       *reloc_addr = elf_machine_tprel (map, sym_map, sym, reloc);
 | |
|       return;
 | |
| 
 | |
|     case R_PPC64_TPREL16_LO_DS:
 | |
|       value = elf_machine_tprel (map, sym_map, sym, reloc);
 | |
|       if (dont_expect ((value & 3) != 0))
 | |
|         _dl_reloc_overflow (map, "R_PPC64_TPREL16_LO_DS", reloc_addr, refsym);
 | |
|       *(Elf64_Half *) reloc_addr = BIT_INSERT (*(Elf64_Half *) reloc_addr,
 | |
| 					       value, 0xfffc);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_TPREL16_DS:
 | |
|       value = elf_machine_tprel (map, sym_map, sym, reloc);
 | |
|       if (dont_expect ((value + 0x8000) >= 0x10000 || (value & 3) != 0))
 | |
|         _dl_reloc_overflow (map, "R_PPC64_TPREL16_DS", reloc_addr, refsym);
 | |
|       *(Elf64_Half *) reloc_addr = BIT_INSERT (*(Elf64_Half *) reloc_addr,
 | |
| 					       value, 0xfffc);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_TPREL16:
 | |
|       value = elf_machine_tprel (map, sym_map, sym, reloc);
 | |
|       if (dont_expect ((value + 0x8000) >= 0x10000))
 | |
|         _dl_reloc_overflow (map, "R_PPC64_TPREL16", reloc_addr, refsym);
 | |
|       *(Elf64_Half *) reloc_addr = PPC_LO (value);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_TPREL16_LO:
 | |
|       value = elf_machine_tprel (map, sym_map, sym, reloc);
 | |
|       *(Elf64_Half *) reloc_addr = PPC_LO (value);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_TPREL16_HI:
 | |
|       value = elf_machine_tprel (map, sym_map, sym, reloc);
 | |
|       *(Elf64_Half *) reloc_addr = PPC_HI (value);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_TPREL16_HA:
 | |
|       value = elf_machine_tprel (map, sym_map, sym, reloc);
 | |
|       *(Elf64_Half *) reloc_addr = PPC_HA (value);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_TPREL16_HIGHER:
 | |
|       value = elf_machine_tprel (map, sym_map, sym, reloc);
 | |
|       *(Elf64_Half *) reloc_addr = PPC_HIGHER (value);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_TPREL16_HIGHEST:
 | |
|       value = elf_machine_tprel (map, sym_map, sym, reloc);
 | |
|       *(Elf64_Half *) reloc_addr = PPC_HIGHEST (value);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_TPREL16_HIGHERA:
 | |
|       value = elf_machine_tprel (map, sym_map, sym, reloc);
 | |
|       *(Elf64_Half *) reloc_addr = PPC_HIGHERA (value);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_TPREL16_HIGHESTA:
 | |
|       value = elf_machine_tprel (map, sym_map, sym, reloc);
 | |
|       *(Elf64_Half *) reloc_addr = PPC_HIGHESTA (value);
 | |
|       break;
 | |
| #endif /* USE_TLS etc. */
 | |
| 
 | |
| #ifndef RTLD_BOOTSTRAP /* None of the following appear in ld.so */
 | |
|     case R_PPC64_ADDR16_LO_DS:
 | |
|       if (dont_expect ((value & 3) != 0))
 | |
|         _dl_reloc_overflow (map, "R_PPC64_ADDR16_LO_DS", reloc_addr, refsym);
 | |
|       BIT_INSERT (*(Elf64_Half *) reloc_addr, value, 0xfffc);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_ADDR16_LO:
 | |
|       *(Elf64_Half *) reloc_addr = PPC_LO (value);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_ADDR16_HI:
 | |
|       *(Elf64_Half *) reloc_addr = PPC_HI (value);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_ADDR16_HA:
 | |
|       *(Elf64_Half *) reloc_addr = PPC_HA (value);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_ADDR30:
 | |
|       {
 | |
|         Elf64_Addr delta = value - (Elf64_Xword) reloc_addr;
 | |
|         if (dont_expect ((delta + 0x80000000) >= 0x10000000
 | |
| 			 || (delta & 3) != 0))
 | |
|           _dl_reloc_overflow (map, "R_PPC64_ADDR30", reloc_addr, refsym);
 | |
|         BIT_INSERT (*(Elf64_Word *) reloc_addr, delta, 0xfffffffc);
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_COPY:
 | |
|       if (dont_expect (sym == NULL))
 | |
| 	/* This can happen in trace mode when an object could not be found. */
 | |
|         return;
 | |
|       if (dont_expect (sym->st_size > refsym->st_size
 | |
| 		       || (GLRO(dl_verbose)
 | |
| 			   && sym->st_size < refsym->st_size)))
 | |
| 	{
 | |
|           const char *strtab;
 | |
| 
 | |
|           strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
 | |
|           _dl_error_printf ("%s: Symbol `%s' has different size" \
 | |
|                             " in shared object," \
 | |
|                             " consider re-linking\n",
 | |
|                             _dl_argv[0] ?: "<program name unknown>",
 | |
| 			    strtab + refsym->st_name);
 | |
| 	}
 | |
|       memcpy (reloc_addr_arg, (char *) value,
 | |
| 	      MIN (sym->st_size, refsym->st_size));
 | |
|       return;
 | |
| 
 | |
|     case R_PPC64_UADDR64:
 | |
|       /* We are big-endian.  */
 | |
|       ((char *) reloc_addr_arg)[0] = (value >> 56) & 0xff;
 | |
|       ((char *) reloc_addr_arg)[1] = (value >> 48) & 0xff;
 | |
|       ((char *) reloc_addr_arg)[2] = (value >> 40) & 0xff;
 | |
|       ((char *) reloc_addr_arg)[3] = (value >> 32) & 0xff;
 | |
|       ((char *) reloc_addr_arg)[4] = (value >> 24) & 0xff;
 | |
|       ((char *) reloc_addr_arg)[5] = (value >> 16) & 0xff;
 | |
|       ((char *) reloc_addr_arg)[6] = (value >> 8) & 0xff;
 | |
|       ((char *) reloc_addr_arg)[7] = (value >> 0) & 0xff;
 | |
|       return;
 | |
| 
 | |
|     case R_PPC64_UADDR32:
 | |
|       /* We are big-endian.  */
 | |
|       ((char *) reloc_addr_arg)[0] = (value >> 24) & 0xff;
 | |
|       ((char *) reloc_addr_arg)[1] = (value >> 16) & 0xff;
 | |
|       ((char *) reloc_addr_arg)[2] = (value >> 8) & 0xff;
 | |
|       ((char *) reloc_addr_arg)[3] = (value >> 0) & 0xff;
 | |
|       return;
 | |
| 
 | |
|     case R_PPC64_ADDR32:
 | |
|       if (dont_expect ((value + 0x80000000) >= 0x10000000))
 | |
|         _dl_reloc_overflow (map, "R_PPC64_ADDR32", reloc_addr, refsym);
 | |
|       *(Elf64_Word *) reloc_addr = value;
 | |
|       return;
 | |
| 
 | |
|     case R_PPC64_ADDR24:
 | |
|       if (dont_expect ((value + 0x2000000) >= 0x4000000 || (value & 3) != 0))
 | |
|         _dl_reloc_overflow (map, "R_PPC64_ADDR24", reloc_addr, refsym);
 | |
|       BIT_INSERT (*(Elf64_Word *) reloc_addr, value, 0x3fffffc);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_ADDR16:
 | |
|       if (dont_expect ((value + 0x8000) >= 0x10000))
 | |
|         _dl_reloc_overflow (map, "R_PPC64_ADDR16", reloc_addr, refsym);
 | |
|       *(Elf64_Half *) reloc_addr = value;
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_UADDR16:
 | |
|       if (dont_expect ((value + 0x8000) >= 0x10000))
 | |
|         _dl_reloc_overflow (map, "R_PPC64_UADDR16", reloc_addr, refsym);
 | |
|       /* We are big-endian.  */
 | |
|       ((char *) reloc_addr_arg)[0] = (value >> 8) & 0xff;
 | |
|       ((char *) reloc_addr_arg)[1] = (value >> 0) & 0xff;
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_ADDR16_DS:
 | |
|       if (dont_expect ((value + 0x8000) >= 0x10000 || (value & 3) != 0))
 | |
|         _dl_reloc_overflow (map, "R_PPC64_ADDR16_DS", reloc_addr, refsym);
 | |
|       BIT_INSERT (*(Elf64_Half *) reloc_addr, value, 0xfffc);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_ADDR16_HIGHER:
 | |
|       *(Elf64_Half *) reloc_addr = PPC_HIGHER (value);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_ADDR16_HIGHEST:
 | |
|       *(Elf64_Half *) reloc_addr = PPC_HIGHEST (value);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_ADDR16_HIGHERA:
 | |
|       *(Elf64_Half *) reloc_addr = PPC_HIGHERA (value);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_ADDR16_HIGHESTA:
 | |
|       *(Elf64_Half *) reloc_addr = PPC_HIGHESTA (value);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_ADDR14:
 | |
|     case R_PPC64_ADDR14_BRTAKEN:
 | |
|     case R_PPC64_ADDR14_BRNTAKEN:
 | |
|       {
 | |
|         if (dont_expect ((value + 0x8000) >= 0x10000 || (value & 3) != 0))
 | |
| 	  _dl_reloc_overflow (map, "R_PPC64_ADDR14", reloc_addr, refsym);
 | |
|         Elf64_Word insn = *(Elf64_Word *) reloc_addr;
 | |
|         BIT_INSERT (insn, value, 0xfffc);
 | |
|         if (r_type != R_PPC64_ADDR14)
 | |
| 	  {
 | |
| 	    insn &= ~(1 << 21);
 | |
| 	    if (r_type == R_PPC64_ADDR14_BRTAKEN)
 | |
| 	      insn |= 1 << 21;
 | |
| 	    if ((insn & (0x14 << 21)) == (0x04 << 21))
 | |
| 	      insn |= 0x02 << 21;
 | |
| 	    else if ((insn & (0x14 << 21)) == (0x10 << 21))
 | |
| 	      insn |= 0x08 << 21;
 | |
| 	  }
 | |
|         *(Elf64_Word *) reloc_addr = insn;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case R_PPC64_REL32:
 | |
|       *(Elf64_Word *) reloc_addr = value - (Elf64_Addr) reloc_addr;
 | |
|       return;
 | |
| 
 | |
|     case R_PPC64_REL64:
 | |
|       *reloc_addr = value - (Elf64_Addr) reloc_addr;
 | |
|       return;
 | |
| #endif /* !RTLD_BOOTSTRAP */
 | |
| 
 | |
|     default:
 | |
|       _dl_reloc_bad_type (map, r_type, 0);
 | |
|       return;
 | |
|     }
 | |
|   MODIFIED_CODE_NOQUEUE (reloc_addr);
 | |
| }
 | |
| 
 | |
| auto inline void __attribute__ ((always_inline))
 | |
| elf_machine_lazy_rel (struct link_map *map,
 | |
| 		      Elf64_Addr l_addr, const Elf64_Rela *reloc)
 | |
| {
 | |
|   /* elf_machine_runtime_setup handles this.  */
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif /* RESOLVE */
 |