mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-11-03 20:53:13 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			1078 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1078 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Subroutines needed for unwinding stack frames for exception handling.  */
 | 
						||
/* Copyright (C) 1997-2015 Free Software Foundation, Inc.
 | 
						||
   Contributed by Jason Merrill <jason@cygnus.com>.
 | 
						||
 | 
						||
   This file is part of the GNU C Library.
 | 
						||
 | 
						||
   The GNU C Library is free software; you can redistribute it and/or
 | 
						||
   modify it under the terms of the GNU Lesser General Public
 | 
						||
   License as published by the Free Software Foundation; either
 | 
						||
   version 2.1 of the License, or (at your option) any later version.
 | 
						||
 | 
						||
   The GNU C Library is distributed in the hope that it will be useful,
 | 
						||
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						||
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						||
   Lesser General Public License for more details.
 | 
						||
 | 
						||
   You should have received a copy of the GNU Lesser General Public
 | 
						||
   License along with the GNU C Library; if not, see
 | 
						||
   <http://www.gnu.org/licenses/>.  */
 | 
						||
 | 
						||
#ifdef _LIBC
 | 
						||
# include <shlib-compat.h>
 | 
						||
#endif
 | 
						||
 | 
						||
#if !defined _LIBC || SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_2_5)
 | 
						||
 | 
						||
#ifdef _LIBC
 | 
						||
#include <stdlib.h>
 | 
						||
#include <string.h>
 | 
						||
#include <bits/libc-lock.h>
 | 
						||
#include <dwarf2.h>
 | 
						||
#include <unwind.h>
 | 
						||
#define NO_BASE_OF_ENCODED_VALUE
 | 
						||
#include <unwind-pe.h>
 | 
						||
#include <unwind-dw2-fde.h>
 | 
						||
#else
 | 
						||
#ifndef _Unwind_Find_FDE
 | 
						||
#include "tconfig.h"
 | 
						||
#include "tsystem.h"
 | 
						||
#include "dwarf2.h"
 | 
						||
#include "unwind.h"
 | 
						||
#define NO_BASE_OF_ENCODED_VALUE
 | 
						||
#include "unwind-pe.h"
 | 
						||
#include "unwind-dw2-fde.h"
 | 
						||
#include "gthr.h"
 | 
						||
#endif
 | 
						||
#endif
 | 
						||
 | 
						||
/* The unseen_objects list contains objects that have been registered
 | 
						||
   but not yet categorized in any way.  The seen_objects list has had
 | 
						||
   it's pc_begin and count fields initialized at minimum, and is sorted
 | 
						||
   by decreasing value of pc_begin.  */
 | 
						||
static struct object *unseen_objects;
 | 
						||
static struct object *seen_objects;
 | 
						||
 | 
						||
#ifdef _LIBC
 | 
						||
 | 
						||
__libc_lock_define_initialized (static, object_mutex)
 | 
						||
#define init_object_mutex_once()
 | 
						||
#define __gthread_mutex_lock(m) __libc_lock_lock (*(m))
 | 
						||
#define __gthread_mutex_unlock(m) __libc_lock_unlock (*(m))
 | 
						||
 | 
						||
void __register_frame_info_bases (void *begin, struct object *ob,
 | 
						||
				  void *tbase, void *dbase);
 | 
						||
hidden_proto (__register_frame_info_bases)
 | 
						||
void __register_frame_info_table_bases (void *begin,
 | 
						||
					struct object *ob,
 | 
						||
					void *tbase, void *dbase);
 | 
						||
hidden_proto (__register_frame_info_table_bases)
 | 
						||
void *__deregister_frame_info_bases (void *begin);
 | 
						||
hidden_proto (__deregister_frame_info_bases)
 | 
						||
 | 
						||
#else
 | 
						||
 | 
						||
#ifdef __GTHREAD_MUTEX_INIT
 | 
						||
static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
 | 
						||
#else
 | 
						||
static __gthread_mutex_t object_mutex;
 | 
						||
#endif
 | 
						||
 | 
						||
#ifdef __GTHREAD_MUTEX_INIT_FUNCTION
 | 
						||
static void
 | 
						||
init_object_mutex (void)
 | 
						||
{
 | 
						||
  __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
 | 
						||
}
 | 
						||
 | 
						||
static void
 | 
						||
init_object_mutex_once (void)
 | 
						||
{
 | 
						||
  static __gthread_once_t once = __GTHREAD_ONCE_INIT;
 | 
						||
  __gthread_once (&once, init_object_mutex);
 | 
						||
}
 | 
						||
#else
 | 
						||
#define init_object_mutex_once()
 | 
						||
#endif
 | 
						||
 | 
						||
#endif /* _LIBC */
 | 
						||
 | 
						||
/* Called from crtbegin.o to register the unwind info for an object.  */
 | 
						||
 | 
						||
void
 | 
						||
__register_frame_info_bases (void *begin, struct object *ob,
 | 
						||
			     void *tbase, void *dbase)
 | 
						||
{
 | 
						||
  /* If .eh_frame is empty, don't register at all.  */
 | 
						||
  if (*(uword *) begin == 0)
 | 
						||
    return;
 | 
						||
 | 
						||
  ob->pc_begin = (void *)-1;
 | 
						||
  ob->tbase = tbase;
 | 
						||
  ob->dbase = dbase;
 | 
						||
  ob->u.single = begin;
 | 
						||
  ob->s.i = 0;
 | 
						||
  ob->s.b.encoding = DW_EH_PE_omit;
 | 
						||
#ifdef DWARF2_OBJECT_END_PTR_EXTENSION
 | 
						||
  ob->fde_end = NULL;
 | 
						||
#endif
 | 
						||
 | 
						||
  init_object_mutex_once ();
 | 
						||
  __gthread_mutex_lock (&object_mutex);
 | 
						||
 | 
						||
  ob->next = unseen_objects;
 | 
						||
  unseen_objects = ob;
 | 
						||
 | 
						||
  __gthread_mutex_unlock (&object_mutex);
 | 
						||
}
 | 
						||
hidden_def (__register_frame_info_bases)
 | 
						||
 | 
						||
void
 | 
						||
__register_frame_info (void *begin, struct object *ob)
 | 
						||
{
 | 
						||
  __register_frame_info_bases (begin, ob, 0, 0);
 | 
						||
}
 | 
						||
 | 
						||
void
 | 
						||
__register_frame (void *begin)
 | 
						||
{
 | 
						||
  struct object *ob;
 | 
						||
 | 
						||
  /* If .eh_frame is empty, don't register at all.  */
 | 
						||
  if (*(uword *) begin == 0)
 | 
						||
    return;
 | 
						||
 | 
						||
  ob = (struct object *) malloc (sizeof (struct object));
 | 
						||
  __register_frame_info_bases (begin, ob, 0, 0);
 | 
						||
}
 | 
						||
 | 
						||
/* Similar, but BEGIN is actually a pointer to a table of unwind entries
 | 
						||
   for different translation units.  Called from the file generated by
 | 
						||
   collect2.  */
 | 
						||
 | 
						||
void
 | 
						||
__register_frame_info_table_bases (void *begin, struct object *ob,
 | 
						||
				   void *tbase, void *dbase)
 | 
						||
{
 | 
						||
  ob->pc_begin = (void *)-1;
 | 
						||
  ob->tbase = tbase;
 | 
						||
  ob->dbase = dbase;
 | 
						||
  ob->u.array = begin;
 | 
						||
  ob->s.i = 0;
 | 
						||
  ob->s.b.from_array = 1;
 | 
						||
  ob->s.b.encoding = DW_EH_PE_omit;
 | 
						||
 | 
						||
  init_object_mutex_once ();
 | 
						||
  __gthread_mutex_lock (&object_mutex);
 | 
						||
 | 
						||
  ob->next = unseen_objects;
 | 
						||
  unseen_objects = ob;
 | 
						||
 | 
						||
  __gthread_mutex_unlock (&object_mutex);
 | 
						||
}
 | 
						||
hidden_def (__register_frame_info_table_bases)
 | 
						||
 | 
						||
void
 | 
						||
__register_frame_info_table (void *begin, struct object *ob)
 | 
						||
{
 | 
						||
  __register_frame_info_table_bases (begin, ob, 0, 0);
 | 
						||
}
 | 
						||
 | 
						||
void
 | 
						||
__register_frame_table (void *begin)
 | 
						||
{
 | 
						||
  struct object *ob = (struct object *) malloc (sizeof (struct object));
 | 
						||
  __register_frame_info_table_bases (begin, ob, 0, 0);
 | 
						||
}
 | 
						||
 | 
						||
/* Called from crtbegin.o to deregister the unwind info for an object.  */
 | 
						||
/* ??? Glibc has for a while now exported __register_frame_info and
 | 
						||
   __deregister_frame_info.  If we call __register_frame_info_bases
 | 
						||
   from crtbegin (wherein it is declared weak), and this object does
 | 
						||
   not get pulled from libgcc.a for other reasons, then the
 | 
						||
   invocation of __deregister_frame_info will be resolved from glibc.
 | 
						||
   Since the registration did not happen there, we'll abort.
 | 
						||
 | 
						||
   Therefore, declare a new deregistration entry point that does the
 | 
						||
   exact same thing, but will resolve to the same library as
 | 
						||
   implements __register_frame_info_bases.  */
 | 
						||
 | 
						||
void *
 | 
						||
__deregister_frame_info_bases (void *begin)
 | 
						||
{
 | 
						||
  struct object **p;
 | 
						||
  struct object *ob = 0;
 | 
						||
 | 
						||
  /* If .eh_frame is empty, we haven't registered.  */
 | 
						||
  if (*(uword *) begin == 0)
 | 
						||
    return ob;
 | 
						||
 | 
						||
  init_object_mutex_once ();
 | 
						||
  __gthread_mutex_lock (&object_mutex);
 | 
						||
 | 
						||
  for (p = &unseen_objects; *p ; p = &(*p)->next)
 | 
						||
    if ((*p)->u.single == begin)
 | 
						||
      {
 | 
						||
	ob = *p;
 | 
						||
	*p = ob->next;
 | 
						||
	goto out;
 | 
						||
      }
 | 
						||
 | 
						||
  for (p = &seen_objects; *p ; p = &(*p)->next)
 | 
						||
    if ((*p)->s.b.sorted)
 | 
						||
      {
 | 
						||
	if ((*p)->u.sort->orig_data == begin)
 | 
						||
	  {
 | 
						||
	    ob = *p;
 | 
						||
	    *p = ob->next;
 | 
						||
	    free (ob->u.sort);
 | 
						||
	    goto out;
 | 
						||
	  }
 | 
						||
      }
 | 
						||
    else
 | 
						||
      {
 | 
						||
	if ((*p)->u.single == begin)
 | 
						||
	  {
 | 
						||
	    ob = *p;
 | 
						||
	    *p = ob->next;
 | 
						||
	    goto out;
 | 
						||
	  }
 | 
						||
      }
 | 
						||
 | 
						||
  __gthread_mutex_unlock (&object_mutex);
 | 
						||
  abort ();
 | 
						||
 | 
						||
 out:
 | 
						||
  __gthread_mutex_unlock (&object_mutex);
 | 
						||
  return (void *) ob;
 | 
						||
}
 | 
						||
hidden_def (__deregister_frame_info_bases)
 | 
						||
 | 
						||
void *
 | 
						||
__deregister_frame_info (void *begin)
 | 
						||
{
 | 
						||
  return __deregister_frame_info_bases (begin);
 | 
						||
}
 | 
						||
 | 
						||
void
 | 
						||
__deregister_frame (void *begin)
 | 
						||
{
 | 
						||
  /* If .eh_frame is empty, we haven't registered.  */
 | 
						||
  if (*(uword *) begin != 0)
 | 
						||
    free (__deregister_frame_info_bases (begin));
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/* Like base_of_encoded_value, but take the base from a struct object
 | 
						||
   instead of an _Unwind_Context.  */
 | 
						||
 | 
						||
static _Unwind_Ptr
 | 
						||
base_from_object (unsigned char encoding, struct object *ob)
 | 
						||
{
 | 
						||
  if (encoding == DW_EH_PE_omit)
 | 
						||
    return 0;
 | 
						||
 | 
						||
  switch (encoding & 0x70)
 | 
						||
    {
 | 
						||
    case DW_EH_PE_absptr:
 | 
						||
    case DW_EH_PE_pcrel:
 | 
						||
    case DW_EH_PE_aligned:
 | 
						||
      return 0;
 | 
						||
 | 
						||
    case DW_EH_PE_textrel:
 | 
						||
      return (_Unwind_Ptr) ob->tbase;
 | 
						||
    case DW_EH_PE_datarel:
 | 
						||
      return (_Unwind_Ptr) ob->dbase;
 | 
						||
    }
 | 
						||
  abort ();
 | 
						||
}
 | 
						||
 | 
						||
/* Return the FDE pointer encoding from the CIE.  */
 | 
						||
/* ??? This is a subset of extract_cie_info from unwind-dw2.c.  */
 | 
						||
 | 
						||
static int
 | 
						||
get_cie_encoding (struct dwarf_cie *cie)
 | 
						||
{
 | 
						||
  const unsigned char *aug, *p;
 | 
						||
  _Unwind_Ptr dummy;
 | 
						||
  _Unwind_Word utmp;
 | 
						||
  _Unwind_Sword stmp;
 | 
						||
 | 
						||
  aug = cie->augmentation;
 | 
						||
  if (aug[0] != 'z')
 | 
						||
    return DW_EH_PE_absptr;
 | 
						||
 | 
						||
  /* Skip the augmentation string.  */
 | 
						||
  p = aug + strlen ((const char *) aug) + 1;
 | 
						||
  p = read_uleb128 (p, &utmp);		/* Skip code alignment.  */
 | 
						||
  p = read_sleb128 (p, &stmp);		/* Skip data alignment.  */
 | 
						||
  p++;					/* Skip return address column.  */
 | 
						||
 | 
						||
  aug++;				/* Skip 'z' */
 | 
						||
  p = read_uleb128 (p, &utmp);		/* Skip augmentation length.  */
 | 
						||
  while (1)
 | 
						||
    {
 | 
						||
      /* This is what we're looking for.  */
 | 
						||
      if (*aug == 'R')
 | 
						||
	return *p;
 | 
						||
      /* Personality encoding and pointer.  */
 | 
						||
      else if (*aug == 'P')
 | 
						||
	{
 | 
						||
	  /* ??? Avoid dereferencing indirect pointers, since we're
 | 
						||
	     faking the base address.  Gotta keep DW_EH_PE_aligned
 | 
						||
	     intact, however.  */
 | 
						||
	  p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy);
 | 
						||
	}
 | 
						||
      /* LSDA encoding.  */
 | 
						||
      else if (*aug == 'L')
 | 
						||
	p++;
 | 
						||
      /* Otherwise end of string, or unknown augmentation.  */
 | 
						||
      else
 | 
						||
	return DW_EH_PE_absptr;
 | 
						||
      aug++;
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
static inline int
 | 
						||
get_fde_encoding (struct dwarf_fde *f)
 | 
						||
{
 | 
						||
  return get_cie_encoding (get_cie (f));
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/* Sorting an array of FDEs by address.
 | 
						||
   (Ideally we would have the linker sort the FDEs so we don't have to do
 | 
						||
   it at run time. But the linkers are not yet prepared for this.)  */
 | 
						||
 | 
						||
/* Return the Nth pc_begin value from FDE x.  */
 | 
						||
 | 
						||
static inline _Unwind_Ptr
 | 
						||
get_pc_begin (fde *x, size_t n)
 | 
						||
{
 | 
						||
  _Unwind_Ptr p;
 | 
						||
  memcpy (&p, x->pc_begin + n * sizeof (_Unwind_Ptr), sizeof (_Unwind_Ptr));
 | 
						||
  return p;
 | 
						||
}
 | 
						||
 | 
						||
/* Comparison routines.  Three variants of increasing complexity.  */
 | 
						||
 | 
						||
static int
 | 
						||
fde_unencoded_compare (struct object *ob __attribute__((unused)),
 | 
						||
		       fde *x, fde *y)
 | 
						||
{
 | 
						||
  _Unwind_Ptr x_ptr = get_pc_begin (x, 0);
 | 
						||
  _Unwind_Ptr y_ptr = get_pc_begin (y, 0);
 | 
						||
 | 
						||
  if (x_ptr > y_ptr)
 | 
						||
    return 1;
 | 
						||
  if (x_ptr < y_ptr)
 | 
						||
    return -1;
 | 
						||
  return 0;
 | 
						||
}
 | 
						||
 | 
						||
static int
 | 
						||
fde_single_encoding_compare (struct object *ob, fde *x, fde *y)
 | 
						||
{
 | 
						||
  _Unwind_Ptr base, x_ptr, y_ptr;
 | 
						||
 | 
						||
  base = base_from_object (ob->s.b.encoding, ob);
 | 
						||
  read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr);
 | 
						||
  read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr);
 | 
						||
 | 
						||
  if (x_ptr > y_ptr)
 | 
						||
    return 1;
 | 
						||
  if (x_ptr < y_ptr)
 | 
						||
    return -1;
 | 
						||
  return 0;
 | 
						||
}
 | 
						||
 | 
						||
static int
 | 
						||
fde_mixed_encoding_compare (struct object *ob, fde *x, fde *y)
 | 
						||
{
 | 
						||
  int x_encoding, y_encoding;
 | 
						||
  _Unwind_Ptr x_ptr, y_ptr;
 | 
						||
 | 
						||
  x_encoding = get_fde_encoding (x);
 | 
						||
  read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob),
 | 
						||
				x->pc_begin, &x_ptr);
 | 
						||
 | 
						||
  y_encoding = get_fde_encoding (y);
 | 
						||
  read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob),
 | 
						||
				y->pc_begin, &y_ptr);
 | 
						||
 | 
						||
  if (x_ptr > y_ptr)
 | 
						||
    return 1;
 | 
						||
  if (x_ptr < y_ptr)
 | 
						||
    return -1;
 | 
						||
  return 0;
 | 
						||
}
 | 
						||
 | 
						||
typedef int (*fde_compare_t) (struct object *, fde *, fde *);
 | 
						||
 | 
						||
 | 
						||
/* This is a special mix of insertion sort and heap sort, optimized for
 | 
						||
   the data sets that actually occur. They look like
 | 
						||
   101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
 | 
						||
   I.e. a linearly increasing sequence (coming from functions in the text
 | 
						||
   section), with additionally a few unordered elements (coming from functions
 | 
						||
   in gnu_linkonce sections) whose values are higher than the values in the
 | 
						||
   surrounding linear sequence (but not necessarily higher than the values
 | 
						||
   at the end of the linear sequence!).
 | 
						||
   The worst-case total run time is O(N) + O(n log (n)), where N is the
 | 
						||
   total number of FDEs and n is the number of erratic ones.  */
 | 
						||
 | 
						||
struct fde_accumulator
 | 
						||
{
 | 
						||
  struct fde_vector *linear;
 | 
						||
  struct fde_vector *erratic;
 | 
						||
};
 | 
						||
 | 
						||
static int
 | 
						||
start_fde_sort (struct fde_accumulator *accu, size_t count)
 | 
						||
{
 | 
						||
  size_t size;
 | 
						||
  if (! count)
 | 
						||
    return 0;
 | 
						||
 | 
						||
  size = sizeof (struct fde_vector) + sizeof (fde *) * count;
 | 
						||
  if ((accu->linear = (struct fde_vector *) malloc (size)))
 | 
						||
    {
 | 
						||
      accu->linear->count = 0;
 | 
						||
      if ((accu->erratic = (struct fde_vector *) malloc (size)))
 | 
						||
	accu->erratic->count = 0;
 | 
						||
      return 1;
 | 
						||
    }
 | 
						||
  else
 | 
						||
    return 0;
 | 
						||
}
 | 
						||
 | 
						||
static inline void
 | 
						||
fde_insert (struct fde_accumulator *accu, fde *this_fde)
 | 
						||
{
 | 
						||
  if (accu->linear)
 | 
						||
    accu->linear->array[accu->linear->count++] = this_fde;
 | 
						||
}
 | 
						||
 | 
						||
/* Split LINEAR into a linear sequence with low values and an erratic
 | 
						||
   sequence with high values, put the linear one (of longest possible
 | 
						||
   length) into LINEAR and the erratic one into ERRATIC. This is O(N).
 | 
						||
 | 
						||
   Because the longest linear sequence we are trying to locate within the
 | 
						||
   incoming LINEAR array can be interspersed with (high valued) erratic
 | 
						||
   entries.  We construct a chain indicating the sequenced entries.
 | 
						||
   To avoid having to allocate this chain, we overlay it onto the space of
 | 
						||
   the ERRATIC array during construction.  A final pass iterates over the
 | 
						||
   chain to determine what should be placed in the ERRATIC array, and
 | 
						||
   what is the linear sequence.  This overlay is safe from aliasing.  */
 | 
						||
 | 
						||
static void
 | 
						||
fde_split (struct object *ob, fde_compare_t fde_compare,
 | 
						||
	   struct fde_vector *linear, struct fde_vector *erratic)
 | 
						||
{
 | 
						||
  static fde *marker;
 | 
						||
  size_t count = linear->count;
 | 
						||
  fde **chain_end = ▮
 | 
						||
  size_t i, j, k;
 | 
						||
 | 
						||
  /* This should optimize out, but it is wise to make sure this assumption
 | 
						||
     is correct. Should these have different sizes, we cannot cast between
 | 
						||
     them and the overlaying onto ERRATIC will not work.  */
 | 
						||
  if (sizeof (fde *) != sizeof (fde **))
 | 
						||
    abort ();
 | 
						||
 | 
						||
  for (i = 0; i < count; i++)
 | 
						||
    {
 | 
						||
      fde **probe;
 | 
						||
 | 
						||
      for (probe = chain_end;
 | 
						||
	   probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0;
 | 
						||
	   probe = chain_end)
 | 
						||
	{
 | 
						||
	  chain_end = (fde **) erratic->array[probe - linear->array];
 | 
						||
	  erratic->array[probe - linear->array] = NULL;
 | 
						||
	}
 | 
						||
      erratic->array[i] = (fde *) chain_end;
 | 
						||
      chain_end = &linear->array[i];
 | 
						||
    }
 | 
						||
 | 
						||
  /* Each entry in LINEAR which is part of the linear sequence we have
 | 
						||
     discovered will correspond to a non-NULL entry in the chain we built in
 | 
						||
     the ERRATIC array.  */
 | 
						||
  for (i = j = k = 0; i < count; i++)
 | 
						||
    if (erratic->array[i])
 | 
						||
      linear->array[j++] = linear->array[i];
 | 
						||
    else
 | 
						||
      erratic->array[k++] = linear->array[i];
 | 
						||
  linear->count = j;
 | 
						||
  erratic->count = k;
 | 
						||
}
 | 
						||
 | 
						||
/* This is O(n log(n)).  BSD/OS defines heapsort in stdlib.h, so we must
 | 
						||
   use a name that does not conflict.  */
 | 
						||
 | 
						||
static void
 | 
						||
frame_heapsort (struct object *ob, fde_compare_t fde_compare,
 | 
						||
		struct fde_vector *erratic)
 | 
						||
{
 | 
						||
  /* For a description of this algorithm, see:
 | 
						||
     Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
 | 
						||
     p. 60-61.  */
 | 
						||
  fde ** a = erratic->array;
 | 
						||
  /* A portion of the array is called a "heap" if for all i>=0:
 | 
						||
     If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
 | 
						||
     If i and 2i+2 are valid indices, then a[i] >= a[2i+2].  */
 | 
						||
#define SWAP(x,y) do { fde * tmp = x; x = y; y = tmp; } while (0)
 | 
						||
  size_t n = erratic->count;
 | 
						||
  size_t m = n;
 | 
						||
  size_t i;
 | 
						||
 | 
						||
  while (m > 0)
 | 
						||
    {
 | 
						||
      /* Invariant: a[m..n-1] is a heap.  */
 | 
						||
      m--;
 | 
						||
      for (i = m; 2*i+1 < n; )
 | 
						||
	{
 | 
						||
	  if (2*i+2 < n
 | 
						||
	      && fde_compare (ob, a[2*i+2], a[2*i+1]) > 0
 | 
						||
	      && fde_compare (ob, a[2*i+2], a[i]) > 0)
 | 
						||
	    {
 | 
						||
	      SWAP (a[i], a[2*i+2]);
 | 
						||
	      i = 2*i+2;
 | 
						||
	    }
 | 
						||
	  else if (fde_compare (ob, a[2*i+1], a[i]) > 0)
 | 
						||
	    {
 | 
						||
	      SWAP (a[i], a[2*i+1]);
 | 
						||
	      i = 2*i+1;
 | 
						||
	    }
 | 
						||
	  else
 | 
						||
	    break;
 | 
						||
	}
 | 
						||
    }
 | 
						||
  while (n > 1)
 | 
						||
    {
 | 
						||
      /* Invariant: a[0..n-1] is a heap.  */
 | 
						||
      n--;
 | 
						||
      SWAP (a[0], a[n]);
 | 
						||
      for (i = 0; 2*i+1 < n; )
 | 
						||
	{
 | 
						||
	  if (2*i+2 < n
 | 
						||
	      && fde_compare (ob, a[2*i+2], a[2*i+1]) > 0
 | 
						||
	      && fde_compare (ob, a[2*i+2], a[i]) > 0)
 | 
						||
	    {
 | 
						||
	      SWAP (a[i], a[2*i+2]);
 | 
						||
	      i = 2*i+2;
 | 
						||
	    }
 | 
						||
	  else if (fde_compare (ob, a[2*i+1], a[i]) > 0)
 | 
						||
	    {
 | 
						||
	      SWAP (a[i], a[2*i+1]);
 | 
						||
	      i = 2*i+1;
 | 
						||
	    }
 | 
						||
	  else
 | 
						||
	    break;
 | 
						||
	}
 | 
						||
    }
 | 
						||
#undef SWAP
 | 
						||
}
 | 
						||
 | 
						||
/* Merge V1 and V2, both sorted, and put the result into V1.  */
 | 
						||
static void
 | 
						||
fde_merge (struct object *ob, fde_compare_t fde_compare,
 | 
						||
	   struct fde_vector *v1, struct fde_vector *v2)
 | 
						||
{
 | 
						||
  size_t i1, i2;
 | 
						||
  fde * fde2;
 | 
						||
 | 
						||
  i2 = v2->count;
 | 
						||
  if (i2 > 0)
 | 
						||
    {
 | 
						||
      i1 = v1->count;
 | 
						||
      do
 | 
						||
	{
 | 
						||
	  i2--;
 | 
						||
	  fde2 = v2->array[i2];
 | 
						||
	  while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0)
 | 
						||
	    {
 | 
						||
	      v1->array[i1+i2] = v1->array[i1-1];
 | 
						||
	      i1--;
 | 
						||
	    }
 | 
						||
	  v1->array[i1+i2] = fde2;
 | 
						||
	}
 | 
						||
      while (i2 > 0);
 | 
						||
      v1->count += v2->count;
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
static void
 | 
						||
end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count)
 | 
						||
{
 | 
						||
  fde_compare_t fde_compare;
 | 
						||
 | 
						||
  if (accu->linear->count != count)
 | 
						||
    abort ();
 | 
						||
 | 
						||
  if (ob->s.b.mixed_encoding)
 | 
						||
    fde_compare = fde_mixed_encoding_compare;
 | 
						||
  else if (ob->s.b.encoding == DW_EH_PE_absptr)
 | 
						||
    fde_compare = fde_unencoded_compare;
 | 
						||
  else
 | 
						||
    fde_compare = fde_single_encoding_compare;
 | 
						||
 | 
						||
  if (accu->erratic)
 | 
						||
    {
 | 
						||
      fde_split (ob, fde_compare, accu->linear, accu->erratic);
 | 
						||
      if (accu->linear->count + accu->erratic->count != count)
 | 
						||
	abort ();
 | 
						||
      frame_heapsort (ob, fde_compare, accu->erratic);
 | 
						||
      fde_merge (ob, fde_compare, accu->linear, accu->erratic);
 | 
						||
      free (accu->erratic);
 | 
						||
    }
 | 
						||
  else
 | 
						||
    {
 | 
						||
      /* We've not managed to malloc an erratic array,
 | 
						||
	 so heap sort in the linear one.  */
 | 
						||
      frame_heapsort (ob, fde_compare, accu->linear);
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/* Update encoding, mixed_encoding, and pc_begin for OB for the
 | 
						||
   fde array beginning at THIS_FDE.  Return the number of fdes
 | 
						||
   encountered along the way.  */
 | 
						||
 | 
						||
static size_t
 | 
						||
classify_object_over_fdes (struct object *ob, fde *this_fde)
 | 
						||
{
 | 
						||
  struct dwarf_cie *last_cie = 0;
 | 
						||
  size_t count = 0;
 | 
						||
  int encoding = DW_EH_PE_absptr;
 | 
						||
  _Unwind_Ptr base = 0;
 | 
						||
 | 
						||
  for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
 | 
						||
    {
 | 
						||
      struct dwarf_cie *this_cie;
 | 
						||
      _Unwind_Ptr mask, pc_begin;
 | 
						||
 | 
						||
      /* Skip CIEs.  */
 | 
						||
      if (this_fde->CIE_delta == 0)
 | 
						||
	continue;
 | 
						||
 | 
						||
      /* Determine the encoding for this FDE.  Note mixed encoded
 | 
						||
	 objects for later.  */
 | 
						||
      this_cie = get_cie (this_fde);
 | 
						||
      if (this_cie != last_cie)
 | 
						||
	{
 | 
						||
	  last_cie = this_cie;
 | 
						||
	  encoding = get_cie_encoding (this_cie);
 | 
						||
	  base = base_from_object (encoding, ob);
 | 
						||
	  if (ob->s.b.encoding == DW_EH_PE_omit)
 | 
						||
	    ob->s.b.encoding = encoding;
 | 
						||
	  else if (ob->s.b.encoding != encoding)
 | 
						||
	    ob->s.b.mixed_encoding = 1;
 | 
						||
	}
 | 
						||
 | 
						||
      read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
 | 
						||
				    &pc_begin);
 | 
						||
 | 
						||
      /* Take care to ignore link-once functions that were removed.
 | 
						||
	 In these cases, the function address will be NULL, but if
 | 
						||
	 the encoding is smaller than a pointer a true NULL may not
 | 
						||
	 be representable.  Assume 0 in the representable bits is NULL.  */
 | 
						||
      mask = size_of_encoded_value (encoding);
 | 
						||
      if (mask < sizeof (void *))
 | 
						||
	mask = (1L << (mask << 3)) - 1;
 | 
						||
      else
 | 
						||
	mask = -1;
 | 
						||
 | 
						||
      if ((pc_begin & mask) == 0)
 | 
						||
	continue;
 | 
						||
 | 
						||
      count += 1;
 | 
						||
      if ((void *) pc_begin < ob->pc_begin)
 | 
						||
	ob->pc_begin = (void *) pc_begin;
 | 
						||
    }
 | 
						||
 | 
						||
  return count;
 | 
						||
}
 | 
						||
 | 
						||
static void
 | 
						||
add_fdes (struct object *ob, struct fde_accumulator *accu, fde *this_fde)
 | 
						||
{
 | 
						||
  struct dwarf_cie *last_cie = 0;
 | 
						||
  int encoding = ob->s.b.encoding;
 | 
						||
  _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
 | 
						||
 | 
						||
  for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
 | 
						||
    {
 | 
						||
      struct dwarf_cie *this_cie;
 | 
						||
 | 
						||
      /* Skip CIEs.  */
 | 
						||
      if (this_fde->CIE_delta == 0)
 | 
						||
	continue;
 | 
						||
 | 
						||
      if (ob->s.b.mixed_encoding)
 | 
						||
	{
 | 
						||
	  /* Determine the encoding for this FDE.  Note mixed encoded
 | 
						||
	     objects for later.  */
 | 
						||
	  this_cie = get_cie (this_fde);
 | 
						||
	  if (this_cie != last_cie)
 | 
						||
	    {
 | 
						||
	      last_cie = this_cie;
 | 
						||
	      encoding = get_cie_encoding (this_cie);
 | 
						||
	      base = base_from_object (encoding, ob);
 | 
						||
	    }
 | 
						||
	}
 | 
						||
 | 
						||
      if (encoding == DW_EH_PE_absptr)
 | 
						||
	{
 | 
						||
	  if (get_pc_begin (this_fde, 0) == 0)
 | 
						||
	    continue;
 | 
						||
	}
 | 
						||
      else
 | 
						||
	{
 | 
						||
	  _Unwind_Ptr pc_begin, mask;
 | 
						||
 | 
						||
	  read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
 | 
						||
					&pc_begin);
 | 
						||
 | 
						||
	  /* Take care to ignore link-once functions that were removed.
 | 
						||
	     In these cases, the function address will be NULL, but if
 | 
						||
	     the encoding is smaller than a pointer a true NULL may not
 | 
						||
	     be representable.  Assume 0 in the representable bits is NULL.  */
 | 
						||
	  mask = size_of_encoded_value (encoding);
 | 
						||
	  if (mask < sizeof (void *))
 | 
						||
	    mask = (1L << (mask << 3)) - 1;
 | 
						||
	  else
 | 
						||
	    mask = -1;
 | 
						||
 | 
						||
	  if ((pc_begin & mask) == 0)
 | 
						||
	    continue;
 | 
						||
	}
 | 
						||
 | 
						||
      fde_insert (accu, this_fde);
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
/* Set up a sorted array of pointers to FDEs for a loaded object.  We
 | 
						||
   count up the entries before allocating the array because it's likely to
 | 
						||
   be faster.  We can be called multiple times, should we have failed to
 | 
						||
   allocate a sorted fde array on a previous occasion.  */
 | 
						||
 | 
						||
static void
 | 
						||
init_object (struct object* ob)
 | 
						||
{
 | 
						||
  struct fde_accumulator accu;
 | 
						||
  size_t count;
 | 
						||
 | 
						||
  count = ob->s.b.count;
 | 
						||
  if (count == 0)
 | 
						||
    {
 | 
						||
      if (ob->s.b.from_array)
 | 
						||
	{
 | 
						||
	  fde **p = ob->u.array;
 | 
						||
	  for (count = 0; *p; ++p)
 | 
						||
	    count += classify_object_over_fdes (ob, *p);
 | 
						||
	}
 | 
						||
      else
 | 
						||
	count = classify_object_over_fdes (ob, ob->u.single);
 | 
						||
 | 
						||
      /* The count field we have in the main struct object is somewhat
 | 
						||
	 limited, but should suffice for virtually all cases.  If the
 | 
						||
	 counted value doesn't fit, re-write a zero.  The worst that
 | 
						||
	 happens is that we re-count next time -- admittedly non-trivial
 | 
						||
	 in that this implies some 2M fdes, but at least we function.  */
 | 
						||
      ob->s.b.count = count;
 | 
						||
      if (ob->s.b.count != count)
 | 
						||
	ob->s.b.count = 0;
 | 
						||
    }
 | 
						||
 | 
						||
  if (!start_fde_sort (&accu, count))
 | 
						||
    return;
 | 
						||
 | 
						||
  if (ob->s.b.from_array)
 | 
						||
    {
 | 
						||
      fde **p;
 | 
						||
      for (p = ob->u.array; *p; ++p)
 | 
						||
	add_fdes (ob, &accu, *p);
 | 
						||
    }
 | 
						||
  else
 | 
						||
    add_fdes (ob, &accu, ob->u.single);
 | 
						||
 | 
						||
  end_fde_sort (ob, &accu, count);
 | 
						||
 | 
						||
  /* Save the original fde pointer, since this is the key by which the
 | 
						||
     DSO will deregister the object.  */
 | 
						||
  accu.linear->orig_data = ob->u.single;
 | 
						||
  ob->u.sort = accu.linear;
 | 
						||
 | 
						||
  ob->s.b.sorted = 1;
 | 
						||
}
 | 
						||
 | 
						||
/* A linear search through a set of FDEs for the given PC.  This is
 | 
						||
   used when there was insufficient memory to allocate and sort an
 | 
						||
   array.  */
 | 
						||
 | 
						||
static fde *
 | 
						||
linear_search_fdes (struct object *ob, fde *this_fde, void *pc)
 | 
						||
{
 | 
						||
  struct dwarf_cie *last_cie = 0;
 | 
						||
  int encoding = ob->s.b.encoding;
 | 
						||
  _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
 | 
						||
 | 
						||
  for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
 | 
						||
    {
 | 
						||
      struct dwarf_cie *this_cie;
 | 
						||
      _Unwind_Ptr pc_begin, pc_range;
 | 
						||
 | 
						||
      /* Skip CIEs.  */
 | 
						||
      if (this_fde->CIE_delta == 0)
 | 
						||
	continue;
 | 
						||
 | 
						||
      if (ob->s.b.mixed_encoding)
 | 
						||
	{
 | 
						||
	  /* Determine the encoding for this FDE.  Note mixed encoded
 | 
						||
	     objects for later.  */
 | 
						||
	  this_cie = get_cie (this_fde);
 | 
						||
	  if (this_cie != last_cie)
 | 
						||
	    {
 | 
						||
	      last_cie = this_cie;
 | 
						||
	      encoding = get_cie_encoding (this_cie);
 | 
						||
	      base = base_from_object (encoding, ob);
 | 
						||
	    }
 | 
						||
	}
 | 
						||
 | 
						||
      if (encoding == DW_EH_PE_absptr)
 | 
						||
	{
 | 
						||
	  pc_begin = get_pc_begin (this_fde, 0);
 | 
						||
	  pc_range = get_pc_begin (this_fde, 1);
 | 
						||
	  if (pc_begin == 0)
 | 
						||
	    continue;
 | 
						||
	}
 | 
						||
      else
 | 
						||
	{
 | 
						||
	  _Unwind_Ptr mask;
 | 
						||
	  const unsigned char *p;
 | 
						||
 | 
						||
	  p = read_encoded_value_with_base (encoding, base,
 | 
						||
					    this_fde->pc_begin, &pc_begin);
 | 
						||
	  read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
 | 
						||
 | 
						||
	  /* Take care to ignore link-once functions that were removed.
 | 
						||
	     In these cases, the function address will be NULL, but if
 | 
						||
	     the encoding is smaller than a pointer a true NULL may not
 | 
						||
	     be representable.  Assume 0 in the representable bits is NULL.  */
 | 
						||
	  mask = size_of_encoded_value (encoding);
 | 
						||
	  if (mask < sizeof (void *))
 | 
						||
	    mask = (1L << (mask << 3)) - 1;
 | 
						||
	  else
 | 
						||
	    mask = -1;
 | 
						||
 | 
						||
	  if ((pc_begin & mask) == 0)
 | 
						||
	    continue;
 | 
						||
	}
 | 
						||
 | 
						||
      if ((_Unwind_Ptr) pc - pc_begin < pc_range)
 | 
						||
	return this_fde;
 | 
						||
    }
 | 
						||
 | 
						||
  return NULL;
 | 
						||
}
 | 
						||
 | 
						||
/* Binary search for an FDE containing the given PC.  Here are three
 | 
						||
   implementations of increasing complexity.  */
 | 
						||
 | 
						||
static fde *
 | 
						||
binary_search_unencoded_fdes (struct object *ob, void *pc)
 | 
						||
{
 | 
						||
  struct fde_vector *vec = ob->u.sort;
 | 
						||
  size_t lo, hi;
 | 
						||
 | 
						||
  for (lo = 0, hi = vec->count; lo < hi; )
 | 
						||
    {
 | 
						||
      size_t i = (lo + hi) / 2;
 | 
						||
      fde *f = vec->array[i];
 | 
						||
      void *pc_begin;
 | 
						||
      uaddr pc_range;
 | 
						||
 | 
						||
      pc_begin = (void *) get_pc_begin (f, 0);
 | 
						||
      pc_range = (uaddr) get_pc_begin (f, 1);
 | 
						||
 | 
						||
      if (pc < pc_begin)
 | 
						||
	hi = i;
 | 
						||
      else if (pc >= pc_begin + pc_range)
 | 
						||
	lo = i + 1;
 | 
						||
      else
 | 
						||
	return f;
 | 
						||
    }
 | 
						||
 | 
						||
  return NULL;
 | 
						||
}
 | 
						||
 | 
						||
static fde *
 | 
						||
binary_search_single_encoding_fdes (struct object *ob, void *pc)
 | 
						||
{
 | 
						||
  struct fde_vector *vec = ob->u.sort;
 | 
						||
  int encoding = ob->s.b.encoding;
 | 
						||
  _Unwind_Ptr base = base_from_object (encoding, ob);
 | 
						||
  size_t lo, hi;
 | 
						||
 | 
						||
  for (lo = 0, hi = vec->count; lo < hi; )
 | 
						||
    {
 | 
						||
      size_t i = (lo + hi) / 2;
 | 
						||
      fde *f = vec->array[i];
 | 
						||
      _Unwind_Ptr pc_begin, pc_range;
 | 
						||
      const unsigned char *p;
 | 
						||
 | 
						||
      p = read_encoded_value_with_base (encoding, base, f->pc_begin,
 | 
						||
					&pc_begin);
 | 
						||
      read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
 | 
						||
 | 
						||
      if ((_Unwind_Ptr) pc < pc_begin)
 | 
						||
	hi = i;
 | 
						||
      else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
 | 
						||
	lo = i + 1;
 | 
						||
      else
 | 
						||
	return f;
 | 
						||
    }
 | 
						||
 | 
						||
  return NULL;
 | 
						||
}
 | 
						||
 | 
						||
static fde *
 | 
						||
binary_search_mixed_encoding_fdes (struct object *ob, void *pc)
 | 
						||
{
 | 
						||
  struct fde_vector *vec = ob->u.sort;
 | 
						||
  size_t lo, hi;
 | 
						||
 | 
						||
  for (lo = 0, hi = vec->count; lo < hi; )
 | 
						||
    {
 | 
						||
      size_t i = (lo + hi) / 2;
 | 
						||
      fde *f = vec->array[i];
 | 
						||
      _Unwind_Ptr pc_begin, pc_range;
 | 
						||
      const unsigned char *p;
 | 
						||
      int encoding;
 | 
						||
 | 
						||
      encoding = get_fde_encoding (f);
 | 
						||
      p = read_encoded_value_with_base (encoding,
 | 
						||
					base_from_object (encoding, ob),
 | 
						||
					f->pc_begin, &pc_begin);
 | 
						||
      read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
 | 
						||
 | 
						||
      if ((_Unwind_Ptr) pc < pc_begin)
 | 
						||
	hi = i;
 | 
						||
      else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
 | 
						||
	lo = i + 1;
 | 
						||
      else
 | 
						||
	return f;
 | 
						||
    }
 | 
						||
 | 
						||
  return NULL;
 | 
						||
}
 | 
						||
 | 
						||
static fde *
 | 
						||
search_object (struct object* ob, void *pc)
 | 
						||
{
 | 
						||
  /* If the data hasn't been sorted, try to do this now.  We may have
 | 
						||
     more memory available than last time we tried.  */
 | 
						||
  if (! ob->s.b.sorted)
 | 
						||
    {
 | 
						||
      init_object (ob);
 | 
						||
 | 
						||
      /* Despite the above comment, the normal reason to get here is
 | 
						||
	 that we've not processed this object before.  A quick range
 | 
						||
	 check is in order.  */
 | 
						||
      if (pc < ob->pc_begin)
 | 
						||
	return NULL;
 | 
						||
    }
 | 
						||
 | 
						||
  if (ob->s.b.sorted)
 | 
						||
    {
 | 
						||
      if (ob->s.b.mixed_encoding)
 | 
						||
	return binary_search_mixed_encoding_fdes (ob, pc);
 | 
						||
      else if (ob->s.b.encoding == DW_EH_PE_absptr)
 | 
						||
	return binary_search_unencoded_fdes (ob, pc);
 | 
						||
      else
 | 
						||
	return binary_search_single_encoding_fdes (ob, pc);
 | 
						||
    }
 | 
						||
  else
 | 
						||
    {
 | 
						||
      /* Long slow labourious linear search, cos we've no memory.  */
 | 
						||
      if (ob->s.b.from_array)
 | 
						||
	{
 | 
						||
	  fde **p;
 | 
						||
	  for (p = ob->u.array; *p ; p++)
 | 
						||
	    {
 | 
						||
	      fde *f = linear_search_fdes (ob, *p, pc);
 | 
						||
	      if (f)
 | 
						||
		return f;
 | 
						||
	    }
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
      else
 | 
						||
	return linear_search_fdes (ob, ob->u.single, pc);
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
fde *
 | 
						||
_Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases)
 | 
						||
{
 | 
						||
  struct object *ob;
 | 
						||
  fde *f = NULL;
 | 
						||
 | 
						||
  init_object_mutex_once ();
 | 
						||
  __gthread_mutex_lock (&object_mutex);
 | 
						||
 | 
						||
  /* Linear search through the classified objects, to find the one
 | 
						||
     containing the pc.  Note that pc_begin is sorted descending, and
 | 
						||
     we expect objects to be non-overlapping.  */
 | 
						||
  for (ob = seen_objects; ob; ob = ob->next)
 | 
						||
    if (pc >= ob->pc_begin)
 | 
						||
      {
 | 
						||
	f = search_object (ob, pc);
 | 
						||
	if (f)
 | 
						||
	  goto fini;
 | 
						||
	break;
 | 
						||
      }
 | 
						||
 | 
						||
  /* Classify and search the objects we've not yet processed.  */
 | 
						||
  while ((ob = unseen_objects))
 | 
						||
    {
 | 
						||
      struct object **p;
 | 
						||
 | 
						||
      unseen_objects = ob->next;
 | 
						||
      f = search_object (ob, pc);
 | 
						||
 | 
						||
      /* Insert the object into the classified list.  */
 | 
						||
      for (p = &seen_objects; *p ; p = &(*p)->next)
 | 
						||
	if ((*p)->pc_begin < ob->pc_begin)
 | 
						||
	  break;
 | 
						||
      ob->next = *p;
 | 
						||
      *p = ob;
 | 
						||
 | 
						||
      if (f)
 | 
						||
	goto fini;
 | 
						||
    }
 | 
						||
 | 
						||
 fini:
 | 
						||
  __gthread_mutex_unlock (&object_mutex);
 | 
						||
 | 
						||
  if (f)
 | 
						||
    {
 | 
						||
      int encoding;
 | 
						||
      _Unwind_Ptr func;
 | 
						||
 | 
						||
      bases->tbase = ob->tbase;
 | 
						||
      bases->dbase = ob->dbase;
 | 
						||
 | 
						||
      encoding = ob->s.b.encoding;
 | 
						||
      if (ob->s.b.mixed_encoding)
 | 
						||
	encoding = get_fde_encoding (f);
 | 
						||
      read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
 | 
						||
				    f->pc_begin, &func);
 | 
						||
      bases->func = (void *) func;
 | 
						||
    }
 | 
						||
 | 
						||
  return f;
 | 
						||
}
 | 
						||
 | 
						||
#endif
 |