mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-11-03 20:53:13 +03:00 
			
		
		
		
	C23 adds various <math.h> function families originally defined in TS 18661-4. Add the rootn functions, which compute the Yth root of X for integer Y (with a domain error if Y is 0, even if X is a NaN). The integer exponent has type long long int in C23; it was intmax_t in TS 18661-4, and as with other interfaces changed after their initial appearance in the TS, I don't think we need to support the original version of the interface. As with pown and compoundn, I strongly encourage searching for worst cases for ulps error for these implementations (necessarily non-exhaustively, given the size of the input space). I also expect a custom implementation for a given format could be much faster as well as more accurate, although the implementation is simpler than those for pown and compoundn. This completes adding to glibc those TS 18661-4 functions (ignoring DFP) that are included in C23. See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=118592 regarding the C23 mathematical functions (not just the TS 18661-4 ones) missing built-in functions in GCC, where such functions might usefully be added. Tested for x86_64 and x86, and with build-many-glibcs.py.
		
			
				
	
	
		
			1222 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1222 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Copyright (C) 1997-2025 Free Software Foundation, Inc.
 | 
						|
   This file is part of the GNU C Library.
 | 
						|
 | 
						|
   The GNU C Library is free software; you can redistribute it and/or
 | 
						|
   modify it under the terms of the GNU Lesser General Public
 | 
						|
   License as published by the Free Software Foundation; either
 | 
						|
   version 2.1 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
   The GNU C Library is distributed in the hope that it will be useful,
 | 
						|
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
   Lesser General Public License for more details.
 | 
						|
 | 
						|
   You should have received a copy of the GNU Lesser General Public
 | 
						|
   License along with the GNU C Library; if not, see
 | 
						|
   <https://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
/*
 | 
						|
 *	ISO C99 Standard: 7.22 Type-generic math	<tgmath.h>
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef _TGMATH_H
 | 
						|
#define _TGMATH_H	1
 | 
						|
 | 
						|
#define __GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION
 | 
						|
#include <bits/libc-header-start.h>
 | 
						|
 | 
						|
/* Include the needed headers.  */
 | 
						|
#include <bits/floatn.h>
 | 
						|
#include <math.h>
 | 
						|
#include <complex.h>
 | 
						|
 | 
						|
 | 
						|
/* There are two variant implementations of type-generic macros in
 | 
						|
   this file: one for GCC 8 and later, using __builtin_tgmath and
 | 
						|
   where each macro expands each of its arguments only once, and one
 | 
						|
   for older GCC, using other compiler extensions but with macros
 | 
						|
   expanding their arguments many times (so resulting in exponential
 | 
						|
   blowup of the size of expansions when calls to such macros are
 | 
						|
   nested inside arguments to such macros).  Because of a long series
 | 
						|
   of defect fixes made after the initial release of TS 18661-1, GCC
 | 
						|
   versions before GCC 13 have __builtin_tgmath semantics that, when
 | 
						|
   integer arguments are passed to narrowing macros returning
 | 
						|
   _Float32x, or non-narrowing macros with at least two generic
 | 
						|
   arguments, do not always correspond to the C23 semantics, so more
 | 
						|
   complicated macro definitions are also used in some cases for
 | 
						|
   versions from GCC 8 to GCC 12.  */
 | 
						|
 | 
						|
#define __HAVE_BUILTIN_TGMATH __GNUC_PREREQ (8, 0)
 | 
						|
#define __HAVE_BUILTIN_TGMATH_C23 __GNUC_PREREQ (13, 0)
 | 
						|
 | 
						|
#if __GNUC_PREREQ (2, 7)
 | 
						|
 | 
						|
/* Certain cases of narrowing macros only need to call a single
 | 
						|
   function so cannot use __builtin_tgmath and do not need any
 | 
						|
   complicated logic.  */
 | 
						|
# if __HAVE_FLOAT128X
 | 
						|
#  error "Unsupported _Float128x type for <tgmath.h>."
 | 
						|
# endif
 | 
						|
# if ((__HAVE_FLOAT64X && !__HAVE_FLOAT128)		\
 | 
						|
      || (__HAVE_FLOAT128 && !__HAVE_FLOAT64X))
 | 
						|
#  error "Unsupported combination of types for <tgmath.h>."
 | 
						|
# endif
 | 
						|
# define __TGMATH_1_NARROW_D(F, X)		\
 | 
						|
  (F ## l (X))
 | 
						|
# define __TGMATH_2_NARROW_D(F, X, Y)		\
 | 
						|
  (F ## l (X, Y))
 | 
						|
# define __TGMATH_3_NARROW_D(F, X, Y, Z)	\
 | 
						|
  (F ## l (X, Y, Z))
 | 
						|
# define __TGMATH_1_NARROW_F64X(F, X)		\
 | 
						|
  (F ## f128 (X))
 | 
						|
# define __TGMATH_2_NARROW_F64X(F, X, Y)	\
 | 
						|
  (F ## f128 (X, Y))
 | 
						|
# define __TGMATH_3_NARROW_F64X(F, X, Y, Z)	\
 | 
						|
  (F ## f128 (X, Y, Z))
 | 
						|
# if !__HAVE_FLOAT128
 | 
						|
#  define __TGMATH_1_NARROW_F32X(F, X)		\
 | 
						|
  (F ## f64 (X))
 | 
						|
#  define __TGMATH_2_NARROW_F32X(F, X, Y)	\
 | 
						|
  (F ## f64 (X, Y))
 | 
						|
#  define __TGMATH_3_NARROW_F32X(F, X, Y, Z)	\
 | 
						|
  (F ## f64 (X, Y, Z))
 | 
						|
# endif
 | 
						|
 | 
						|
# if __HAVE_BUILTIN_TGMATH
 | 
						|
 | 
						|
#  if __HAVE_FLOAT16 && __GLIBC_USE (IEC_60559_TYPES_EXT)
 | 
						|
#   define __TG_F16_ARG(X) X ## f16,
 | 
						|
#  else
 | 
						|
#   define __TG_F16_ARG(X)
 | 
						|
#  endif
 | 
						|
#  if __HAVE_FLOAT32 && __GLIBC_USE (IEC_60559_TYPES_EXT)
 | 
						|
#   define __TG_F32_ARG(X) X ## f32,
 | 
						|
#  else
 | 
						|
#   define __TG_F32_ARG(X)
 | 
						|
#  endif
 | 
						|
#  if __HAVE_FLOAT64 && __GLIBC_USE (IEC_60559_TYPES_EXT)
 | 
						|
#   define __TG_F64_ARG(X) X ## f64,
 | 
						|
#  else
 | 
						|
#   define __TG_F64_ARG(X)
 | 
						|
#  endif
 | 
						|
#  if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
 | 
						|
#   define __TG_F128_ARG(X) X ## f128,
 | 
						|
#  else
 | 
						|
#   define __TG_F128_ARG(X)
 | 
						|
#  endif
 | 
						|
#  if __HAVE_FLOAT32X && __GLIBC_USE (IEC_60559_TYPES_EXT)
 | 
						|
#   define __TG_F32X_ARG(X) X ## f32x,
 | 
						|
#  else
 | 
						|
#   define __TG_F32X_ARG(X)
 | 
						|
#  endif
 | 
						|
#  if __HAVE_FLOAT64X && __GLIBC_USE (IEC_60559_TYPES_EXT)
 | 
						|
#   define __TG_F64X_ARG(X) X ## f64x,
 | 
						|
#  else
 | 
						|
#   define __TG_F64X_ARG(X)
 | 
						|
#  endif
 | 
						|
#  if __HAVE_FLOAT128X && __GLIBC_USE (IEC_60559_TYPES_EXT)
 | 
						|
#   define __TG_F128X_ARG(X) X ## f128x,
 | 
						|
#  else
 | 
						|
#   define __TG_F128X_ARG(X)
 | 
						|
#  endif
 | 
						|
 | 
						|
#  define __TGMATH_FUNCS(X) X ## f, X, X ## l,				\
 | 
						|
    __TG_F16_ARG (X) __TG_F32_ARG (X) __TG_F64_ARG (X) __TG_F128_ARG (X) \
 | 
						|
    __TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X)
 | 
						|
#  define __TGMATH_RCFUNCS(F, C) __TGMATH_FUNCS (F) __TGMATH_FUNCS (C)
 | 
						|
#  define __TGMATH_1(F, X) __builtin_tgmath (__TGMATH_FUNCS (F) (X))
 | 
						|
#  define __TGMATH_2(F, X, Y) __builtin_tgmath (__TGMATH_FUNCS (F) (X), (Y))
 | 
						|
#  define __TGMATH_2STD(F, X, Y) __builtin_tgmath (F ## f, F, F ## l, (X), (Y))
 | 
						|
#  define __TGMATH_3(F, X, Y, Z) __builtin_tgmath (__TGMATH_FUNCS (F)	\
 | 
						|
						   (X), (Y), (Z))
 | 
						|
#  define __TGMATH_1C(F, C, X) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) (X))
 | 
						|
#  define __TGMATH_2C(F, C, X, Y) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) \
 | 
						|
						    (X), (Y))
 | 
						|
 | 
						|
#  define __TGMATH_NARROW_FUNCS_F(X) X, X ## l,
 | 
						|
#  define __TGMATH_NARROW_FUNCS_F16(X)				\
 | 
						|
    __TG_F32_ARG (X) __TG_F64_ARG (X) __TG_F128_ARG (X)		\
 | 
						|
    __TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X)
 | 
						|
#  define __TGMATH_NARROW_FUNCS_F32(X)				\
 | 
						|
    __TG_F64_ARG (X) __TG_F128_ARG (X)				\
 | 
						|
    __TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X)
 | 
						|
#  define __TGMATH_NARROW_FUNCS_F64(X)		\
 | 
						|
    __TG_F128_ARG (X)				\
 | 
						|
    __TG_F64X_ARG (X) __TG_F128X_ARG (X)
 | 
						|
#  define __TGMATH_NARROW_FUNCS_F32X(X)		\
 | 
						|
    __TG_F64X_ARG (X) __TG_F128X_ARG (X)	\
 | 
						|
    __TG_F64_ARG (X) __TG_F128_ARG (X)
 | 
						|
 | 
						|
#  define __TGMATH_1_NARROW_F(F, X)				\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F (F) (X))
 | 
						|
#  define __TGMATH_2_NARROW_F(F, X, Y)				\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F (F) (X), (Y))
 | 
						|
#  define __TGMATH_3_NARROW_F(F, X, Y, Z)			\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F (F) (X), (Y), (Z))
 | 
						|
#  define __TGMATH_1_NARROW_F16(F, X)				\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F16 (F) (X))
 | 
						|
#  define __TGMATH_2_NARROW_F16(F, X, Y)			\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F16 (F) (X), (Y))
 | 
						|
#  define __TGMATH_3_NARROW_F16(F, X, Y, Z)				\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F16 (F) (X), (Y), (Z))
 | 
						|
#  define __TGMATH_1_NARROW_F32(F, X)				\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32 (F) (X))
 | 
						|
#  define __TGMATH_2_NARROW_F32(F, X, Y)			\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32 (F) (X), (Y))
 | 
						|
#  define __TGMATH_3_NARROW_F32(F, X, Y, Z)				\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32 (F) (X), (Y), (Z))
 | 
						|
#  define __TGMATH_1_NARROW_F64(F, X)				\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X))
 | 
						|
#  define __TGMATH_2_NARROW_F64(F, X, Y)			\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X), (Y))
 | 
						|
#  define __TGMATH_3_NARROW_F64(F, X, Y, Z)				\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X), (Y), (Z))
 | 
						|
#  if __HAVE_FLOAT128 && __HAVE_BUILTIN_TGMATH_C23
 | 
						|
#   define __TGMATH_1_NARROW_F32X(F, X)				\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X))
 | 
						|
#   define __TGMATH_2_NARROW_F32X(F, X, Y)			\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X), (Y))
 | 
						|
#   define __TGMATH_3_NARROW_F32X(F, X, Y, Z)				\
 | 
						|
  __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X), (Y), (Z))
 | 
						|
#  endif
 | 
						|
 | 
						|
# endif
 | 
						|
 | 
						|
# if !__HAVE_BUILTIN_TGMATH_C23
 | 
						|
#  ifdef __NO_LONG_DOUBLE_MATH
 | 
						|
#   define __tgml(fct) fct
 | 
						|
#  else
 | 
						|
#   define __tgml(fct) fct ## l
 | 
						|
#  endif
 | 
						|
 | 
						|
/* __floating_type expands to 1 if TYPE is a floating type (including
 | 
						|
   complex floating types), 0 if TYPE is an integer type (including
 | 
						|
   complex integer types).  __real_integer_type expands to 1 if TYPE
 | 
						|
   is a real integer type.  __complex_integer_type expands to 1 if
 | 
						|
   TYPE is a complex integer type.  All these macros expand to integer
 | 
						|
   constant expressions.  All these macros can assume their argument
 | 
						|
   has an arithmetic type (not vector, decimal floating-point or
 | 
						|
   fixed-point), valid to pass to tgmath.h macros.  */
 | 
						|
#  if __GNUC_PREREQ (3, 1)
 | 
						|
/* __builtin_classify_type expands to an integer constant expression
 | 
						|
   in GCC 3.1 and later.  Default conversions applied to the argument
 | 
						|
   of __builtin_classify_type mean it always returns 1 for real
 | 
						|
   integer types rather than ever returning different values for
 | 
						|
   character, boolean or enumerated types.  */
 | 
						|
#   define __floating_type(type)				\
 | 
						|
  (__builtin_classify_type (__real__ ((type) 0)) == 8)
 | 
						|
#   define __real_integer_type(type)		\
 | 
						|
  (__builtin_classify_type ((type) 0) == 1)
 | 
						|
#   define __complex_integer_type(type)				\
 | 
						|
  (__builtin_classify_type ((type) 0) == 9			\
 | 
						|
   && __builtin_classify_type (__real__ ((type) 0)) == 1)
 | 
						|
#  else
 | 
						|
/* GCC versions predating __builtin_classify_type are also looser on
 | 
						|
   what counts as an integer constant expression.  */
 | 
						|
#   define __floating_type(type) (((type) 1.25) != 1)
 | 
						|
#   define __real_integer_type(type) (((type) (1.25 + _Complex_I)) == 1)
 | 
						|
#   define __complex_integer_type(type)			\
 | 
						|
  (((type) (1.25 + _Complex_I)) == (1 + _Complex_I))
 | 
						|
#  endif
 | 
						|
 | 
						|
/* Whether an expression (of arithmetic type) has a real type.  */
 | 
						|
#  define __expr_is_real(E) (__builtin_classify_type (E) != 9)
 | 
						|
 | 
						|
/* Type T1 if E is 1, type T2 is E is 0.  */
 | 
						|
#  define __tgmath_type_if(T1, T2, E)					\
 | 
						|
  __typeof__ (*(0 ? (__typeof__ (0 ? (T2 *) 0 : (void *) (E))) 0	\
 | 
						|
		: (__typeof__ (0 ? (T1 *) 0 : (void *) (!(E)))) 0))
 | 
						|
 | 
						|
/* The tgmath real type for T, where E is 0 if T is an integer type
 | 
						|
   and 1 for a floating type.  If T has a complex type, it is
 | 
						|
   unspecified whether the return type is real or complex (but it has
 | 
						|
   the correct corresponding real type).  */
 | 
						|
#  define __tgmath_real_type_sub(T, E) \
 | 
						|
  __tgmath_type_if (T, double, E)
 | 
						|
 | 
						|
/* The tgmath real type of EXPR.  */
 | 
						|
#  define __tgmath_real_type(expr) \
 | 
						|
  __tgmath_real_type_sub (__typeof__ ((__typeof__ (+(expr))) 0),	      \
 | 
						|
			  __floating_type (__typeof__ (+(expr))))
 | 
						|
 | 
						|
/* The tgmath complex type for T, where E1 is 1 if T has a floating
 | 
						|
   type and 0 otherwise, E2 is 1 if T has a real integer type and 0
 | 
						|
   otherwise, and E3 is 1 if T has a complex type and 0 otherwise.  */
 | 
						|
#  define __tgmath_complex_type_sub(T, E1, E2, E3)			\
 | 
						|
  __typeof__ (*(0							\
 | 
						|
		? (__typeof__ (0 ? (T *) 0 : (void *) (!(E1)))) 0	\
 | 
						|
		: (__typeof__ (0					\
 | 
						|
			       ? (__typeof__ (0				\
 | 
						|
					      ? (double *) 0		\
 | 
						|
					      : (void *) (!(E2)))) 0	\
 | 
						|
			       : (__typeof__ (0				\
 | 
						|
					      ? (_Complex double *) 0	\
 | 
						|
					      : (void *) (!(E3)))) 0)) 0))
 | 
						|
 | 
						|
/* The tgmath complex type of EXPR.  */
 | 
						|
#  define __tgmath_complex_type(expr)					\
 | 
						|
  __tgmath_complex_type_sub (__typeof__ ((__typeof__ (+(expr))) 0),	\
 | 
						|
			     __floating_type (__typeof__ (+(expr))),	\
 | 
						|
			     __real_integer_type (__typeof__ (+(expr))), \
 | 
						|
			     __complex_integer_type (__typeof__ (+(expr))))
 | 
						|
 | 
						|
/* The tgmath real type of EXPR1 combined with EXPR2, without handling
 | 
						|
   the C23 rule of interpreting integer arguments as _Float32x if any
 | 
						|
   argument is _FloatNx.  */
 | 
						|
#  define __tgmath_real_type2_base(expr1, expr2)			\
 | 
						|
  __typeof ((__tgmath_real_type (expr1)) 0 + (__tgmath_real_type (expr2)) 0)
 | 
						|
 | 
						|
/* The tgmath complex type of EXPR1 combined with EXPR2, without
 | 
						|
   handling the C23 rule of interpreting integer arguments as
 | 
						|
   _Float32x if any argument is _FloatNx.  */
 | 
						|
#  define __tgmath_complex_type2_base(expr1, expr2)	\
 | 
						|
  __typeof ((__tgmath_complex_type (expr1)) 0		\
 | 
						|
	    + (__tgmath_complex_type (expr2)) 0)
 | 
						|
 | 
						|
/* The tgmath real type of EXPR1 combined with EXPR2 and EXPR3,
 | 
						|
   without handling the C23 rule of interpreting integer arguments as
 | 
						|
   _Float32x if any argument is _FloatNx.  */
 | 
						|
#  define __tgmath_real_type3_base(expr1, expr2, expr3)	\
 | 
						|
  __typeof ((__tgmath_real_type (expr1)) 0		\
 | 
						|
	    + (__tgmath_real_type (expr2)) 0		\
 | 
						|
	    + (__tgmath_real_type (expr3)) 0)
 | 
						|
 | 
						|
/* The tgmath real or complex type of EXPR1 combined with EXPR2 (and
 | 
						|
   EXPR3 if applicable).  */
 | 
						|
#  if __HAVE_FLOATN_NOT_TYPEDEF
 | 
						|
#   define __tgmath_real_type2(expr1, expr2)				\
 | 
						|
  __tgmath_type_if (_Float32x, __tgmath_real_type2_base (expr1, expr2), \
 | 
						|
		    _Generic ((expr1) + (expr2), _Float32x: 1, default: 0))
 | 
						|
#   define __tgmath_complex_type2(expr1, expr2)				\
 | 
						|
  __tgmath_type_if (_Float32x,						\
 | 
						|
		    __tgmath_type_if (_Complex _Float32x,		\
 | 
						|
				      __tgmath_complex_type2_base (expr1, \
 | 
						|
								   expr2), \
 | 
						|
				      _Generic ((expr1) + (expr2),	\
 | 
						|
						_Complex _Float32x: 1,	\
 | 
						|
						default: 0)),		\
 | 
						|
		    _Generic ((expr1) + (expr2), _Float32x: 1, default: 0))
 | 
						|
#   define __tgmath_real_type3(expr1, expr2, expr3)			\
 | 
						|
  __tgmath_type_if (_Float32x,						\
 | 
						|
		    __tgmath_real_type3_base (expr1, expr2, expr3),	\
 | 
						|
		    _Generic ((expr1) + (expr2) + (expr3),		\
 | 
						|
			      _Float32x: 1, default: 0))
 | 
						|
#  else
 | 
						|
#   define __tgmath_real_type2(expr1, expr2)	\
 | 
						|
  __tgmath_real_type2_base (expr1, expr2)
 | 
						|
#   define __tgmath_complex_type2(expr1, expr2)	\
 | 
						|
  __tgmath_complex_type2_base (expr1, expr2)
 | 
						|
#   define __tgmath_real_type3(expr1, expr2, expr3)	\
 | 
						|
  __tgmath_real_type3_base (expr1, expr2, expr3)
 | 
						|
#  endif
 | 
						|
 | 
						|
#  if (__HAVE_DISTINCT_FLOAT16			\
 | 
						|
      || __HAVE_DISTINCT_FLOAT32		\
 | 
						|
      || __HAVE_DISTINCT_FLOAT64		\
 | 
						|
      || __HAVE_DISTINCT_FLOAT32X		\
 | 
						|
      || __HAVE_DISTINCT_FLOAT64X		\
 | 
						|
      || __HAVE_DISTINCT_FLOAT128X)
 | 
						|
#   error "Unsupported _FloatN or _FloatNx types for <tgmath.h>."
 | 
						|
#  endif
 | 
						|
 | 
						|
/* Expand to text that checks if ARG_COMB has type _Float128, and if
 | 
						|
   so calls the appropriately suffixed FCT (which may include a cast),
 | 
						|
   or FCT and CFCT for complex functions, with arguments ARG_CALL.
 | 
						|
   __TGMATH_F128LD (only used in the __HAVE_FLOAT64X_LONG_DOUBLE case,
 | 
						|
   for narrowing macros) handles long double the same as
 | 
						|
   _Float128.  */
 | 
						|
#  if __HAVE_DISTINCT_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
 | 
						|
#   if (!__HAVE_FLOAT64X			\
 | 
						|
       || __HAVE_FLOAT64X_LONG_DOUBLE		\
 | 
						|
       || !__HAVE_FLOATN_NOT_TYPEDEF)
 | 
						|
#    define __TGMATH_F128(arg_comb, fct, arg_call)			\
 | 
						|
  __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128)	\
 | 
						|
  ? fct ## f128 arg_call :
 | 
						|
#    define __TGMATH_F128LD(arg_comb, fct, arg_call)			\
 | 
						|
  (__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128)	\
 | 
						|
   || __builtin_types_compatible_p (__typeof (+(arg_comb)), long double)) \
 | 
						|
  ? fct ## f128 arg_call :
 | 
						|
#    define __TGMATH_CF128(arg_comb, fct, cfct, arg_call)		\
 | 
						|
  __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \
 | 
						|
  ? (__expr_is_real (arg_comb)						\
 | 
						|
     ? fct ## f128 arg_call						\
 | 
						|
     : cfct ## f128 arg_call) :
 | 
						|
#   else
 | 
						|
/* _Float64x is a distinct type at the C language level, which must be
 | 
						|
   handled like _Float128.  */
 | 
						|
#    define __TGMATH_F128(arg_comb, fct, arg_call)			\
 | 
						|
  (__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128)	\
 | 
						|
   || __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float64x)) \
 | 
						|
  ? fct ## f128 arg_call :
 | 
						|
#    define __TGMATH_CF128(arg_comb, fct, cfct, arg_call)		\
 | 
						|
  (__builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \
 | 
						|
   || __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)),	\
 | 
						|
				    _Float64x))				\
 | 
						|
  ? (__expr_is_real (arg_comb)						\
 | 
						|
     ? fct ## f128 arg_call						\
 | 
						|
     : cfct ## f128 arg_call) :
 | 
						|
#   endif
 | 
						|
#  else
 | 
						|
#   define __TGMATH_F128(arg_comb, fct, arg_call) /* Nothing.  */
 | 
						|
#   define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) /* Nothing.  */
 | 
						|
#  endif
 | 
						|
 | 
						|
# endif /* !__HAVE_BUILTIN_TGMATH_C23.  */
 | 
						|
 | 
						|
/* We have two kinds of generic macros: to support functions which are
 | 
						|
   only defined on real valued parameters and those which are defined
 | 
						|
   for complex functions as well.  */
 | 
						|
# if __HAVE_BUILTIN_TGMATH
 | 
						|
 | 
						|
#  define __TGMATH_UNARY_REAL_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val))
 | 
						|
#  define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val))
 | 
						|
#  define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct)	\
 | 
						|
  __TGMATH_2 (Fct, (Val1), (Val2))
 | 
						|
#  define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct)	\
 | 
						|
  __TGMATH_2STD (Fct, (Val1), (Val2))
 | 
						|
#  if __HAVE_BUILTIN_TGMATH_C23
 | 
						|
#   define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct)	\
 | 
						|
  __TGMATH_2 (Fct, (Val1), (Val2))
 | 
						|
#  endif
 | 
						|
#  define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct)	\
 | 
						|
  __TGMATH_2STD (Fct, (Val1), (Val2))
 | 
						|
#  if __HAVE_BUILTIN_TGMATH_C23
 | 
						|
#   define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
 | 
						|
  __TGMATH_3 (Fct, (Val1), (Val2), (Val3))
 | 
						|
#   define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct)	\
 | 
						|
  __TGMATH_3 (Fct, (Val1), (Val2), (Val3))
 | 
						|
#  endif
 | 
						|
#  define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct)	\
 | 
						|
  __TGMATH_3 (Fct, (Val1), (Val2), (Val3))
 | 
						|
#  define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct)	\
 | 
						|
  __TGMATH_1C (Fct, Cfct, (Val))
 | 
						|
#  define __TGMATH_UNARY_IMAG(Val, Cfct) __TGMATH_1 (Cfct, (Val))
 | 
						|
#  define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct)	\
 | 
						|
  __TGMATH_1C (Fct, Cfct, (Val))
 | 
						|
#  define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct)	\
 | 
						|
  __TGMATH_1 (Cfct, (Val))
 | 
						|
#  if __HAVE_BUILTIN_TGMATH_C23
 | 
						|
#   define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct)	\
 | 
						|
  __TGMATH_2C (Fct, Cfct, (Val1), (Val2))
 | 
						|
#  endif
 | 
						|
 | 
						|
# endif
 | 
						|
 | 
						|
# if !__HAVE_BUILTIN_TGMATH
 | 
						|
#  define __TGMATH_UNARY_REAL_ONLY(Val, Fct)				\
 | 
						|
  (__extension__ ((sizeof (+(Val)) == sizeof (double)			      \
 | 
						|
		      || __builtin_classify_type (Val) != 8)		      \
 | 
						|
		     ? (__tgmath_real_type (Val)) Fct (Val)		      \
 | 
						|
		     : (sizeof (+(Val)) == sizeof (float))		      \
 | 
						|
		     ? (__tgmath_real_type (Val)) Fct##f (Val)		      \
 | 
						|
		     : __TGMATH_F128 ((Val), (__tgmath_real_type (Val)) Fct,  \
 | 
						|
				      (Val))				      \
 | 
						|
		     (__tgmath_real_type (Val)) __tgml(Fct) (Val)))
 | 
						|
 | 
						|
#  define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) \
 | 
						|
     (__extension__ ((sizeof (+(Val)) == sizeof (double)		      \
 | 
						|
		      || __builtin_classify_type (Val) != 8)		      \
 | 
						|
		     ? Fct (Val)					      \
 | 
						|
		     : (sizeof (+(Val)) == sizeof (float))		      \
 | 
						|
		     ? Fct##f (Val)					      \
 | 
						|
		     : __TGMATH_F128 ((Val), Fct, (Val))		      \
 | 
						|
		     __tgml(Fct) (Val)))
 | 
						|
 | 
						|
#  define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
 | 
						|
     (__extension__ ((sizeof (+(Val1)) == sizeof (double)		      \
 | 
						|
		      || __builtin_classify_type (Val1) != 8)		      \
 | 
						|
		     ? (__tgmath_real_type (Val1)) Fct (Val1, Val2)	      \
 | 
						|
		     : (sizeof (+(Val1)) == sizeof (float))		      \
 | 
						|
		     ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2)	      \
 | 
						|
		     : __TGMATH_F128 ((Val1), (__tgmath_real_type (Val1)) Fct, \
 | 
						|
				    (Val1, Val2))			      \
 | 
						|
		     (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
 | 
						|
 | 
						|
#  define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \
 | 
						|
     (__extension__ ((sizeof (+(Val1)) == sizeof (double)		      \
 | 
						|
		      || __builtin_classify_type (Val1) != 8)		      \
 | 
						|
		     ? (__tgmath_real_type (Val1)) Fct (Val1, Val2)	      \
 | 
						|
		     : (sizeof (+(Val1)) == sizeof (float))		      \
 | 
						|
		     ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2)	      \
 | 
						|
		     : (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
 | 
						|
# endif
 | 
						|
 | 
						|
# if !__HAVE_BUILTIN_TGMATH_C23
 | 
						|
#  define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
 | 
						|
     (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double)	      \
 | 
						|
		      && __builtin_classify_type ((Val1) + (Val2)) == 8)      \
 | 
						|
		     ? __TGMATH_F128 ((Val1) + (Val2),			      \
 | 
						|
				      (__tgmath_real_type2 (Val1, Val2)) Fct, \
 | 
						|
				      (Val1, Val2))			      \
 | 
						|
		     (__tgmath_real_type2 (Val1, Val2))			      \
 | 
						|
		     __tgml(Fct) (Val1, Val2)				      \
 | 
						|
		     : (sizeof (+(Val1)) == sizeof (double)		      \
 | 
						|
			|| sizeof (+(Val2)) == sizeof (double)		      \
 | 
						|
			|| __builtin_classify_type (Val1) != 8		      \
 | 
						|
			|| __builtin_classify_type (Val2) != 8)		      \
 | 
						|
		     ? (__tgmath_real_type2 (Val1, Val2))		      \
 | 
						|
		       Fct (Val1, Val2)					      \
 | 
						|
		     : (__tgmath_real_type2 (Val1, Val2))		      \
 | 
						|
		       Fct##f (Val1, Val2)))
 | 
						|
# endif
 | 
						|
 | 
						|
# if !__HAVE_BUILTIN_TGMATH
 | 
						|
#  define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \
 | 
						|
     (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double)	      \
 | 
						|
		      && __builtin_classify_type ((Val1) + (Val2)) == 8)      \
 | 
						|
		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | 
						|
				  + (__tgmath_real_type (Val2)) 0))	      \
 | 
						|
		       __tgml(Fct) (Val1, Val2)				      \
 | 
						|
		     : (sizeof (+(Val1)) == sizeof (double)		      \
 | 
						|
			|| sizeof (+(Val2)) == sizeof (double)		      \
 | 
						|
			|| __builtin_classify_type (Val1) != 8		      \
 | 
						|
			|| __builtin_classify_type (Val2) != 8)		      \
 | 
						|
		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | 
						|
				   + (__tgmath_real_type (Val2)) 0))	      \
 | 
						|
		       Fct (Val1, Val2)					      \
 | 
						|
		     : (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | 
						|
				   + (__tgmath_real_type (Val2)) 0))	      \
 | 
						|
		       Fct##f (Val1, Val2)))
 | 
						|
# endif
 | 
						|
 | 
						|
# if !__HAVE_BUILTIN_TGMATH_C23
 | 
						|
#  define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
 | 
						|
     (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double)	      \
 | 
						|
		      && __builtin_classify_type ((Val1) + (Val2)) == 8)      \
 | 
						|
		     ? __TGMATH_F128 ((Val1) + (Val2),			      \
 | 
						|
				      (__tgmath_real_type2 (Val1, Val2)) Fct, \
 | 
						|
				      (Val1, Val2, Val3))		      \
 | 
						|
		     (__tgmath_real_type2 (Val1, Val2))			      \
 | 
						|
		     __tgml(Fct) (Val1, Val2, Val3)			      \
 | 
						|
		     : (sizeof (+(Val1)) == sizeof (double)		      \
 | 
						|
			|| sizeof (+(Val2)) == sizeof (double)		      \
 | 
						|
			|| __builtin_classify_type (Val1) != 8		      \
 | 
						|
			|| __builtin_classify_type (Val2) != 8)		      \
 | 
						|
		     ? (__tgmath_real_type2 (Val1, Val2))		      \
 | 
						|
		       Fct (Val1, Val2, Val3)				      \
 | 
						|
		     : (__tgmath_real_type2 (Val1, Val2))		      \
 | 
						|
		       Fct##f (Val1, Val2, Val3)))
 | 
						|
 | 
						|
#  define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
 | 
						|
     (__extension__ ((sizeof ((Val1) + (Val2) + (Val3)) > sizeof (double)     \
 | 
						|
		      && __builtin_classify_type ((Val1) + (Val2) + (Val3))   \
 | 
						|
			 == 8)						      \
 | 
						|
		     ? __TGMATH_F128 ((Val1) + (Val2) + (Val3),		      \
 | 
						|
				      (__tgmath_real_type3 (Val1, Val2,	      \
 | 
						|
							    Val3)) Fct,	      \
 | 
						|
				      (Val1, Val2, Val3))		      \
 | 
						|
		     (__tgmath_real_type3 (Val1, Val2, Val3))		      \
 | 
						|
		       __tgml(Fct) (Val1, Val2, Val3)			      \
 | 
						|
		     : (sizeof (+(Val1)) == sizeof (double)		      \
 | 
						|
			|| sizeof (+(Val2)) == sizeof (double)		      \
 | 
						|
			|| sizeof (+(Val3)) == sizeof (double)		      \
 | 
						|
			|| __builtin_classify_type (Val1) != 8		      \
 | 
						|
			|| __builtin_classify_type (Val2) != 8		      \
 | 
						|
			|| __builtin_classify_type (Val3) != 8)		      \
 | 
						|
		     ? (__tgmath_real_type3 (Val1, Val2, Val3))		      \
 | 
						|
		       Fct (Val1, Val2, Val3)				      \
 | 
						|
		     : (__tgmath_real_type3 (Val1, Val2, Val3))		      \
 | 
						|
		       Fct##f (Val1, Val2, Val3)))
 | 
						|
# endif
 | 
						|
 | 
						|
# if !__HAVE_BUILTIN_TGMATH
 | 
						|
#  define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \
 | 
						|
     (__extension__ ((sizeof (+(Val1)) == sizeof (double)		\
 | 
						|
		      || __builtin_classify_type (Val1) != 8)		\
 | 
						|
		     ? Fct (Val1, Val2, Val3)				\
 | 
						|
		     : (sizeof (+(Val1)) == sizeof (float))		\
 | 
						|
		     ? Fct##f (Val1, Val2, Val3)			\
 | 
						|
		     : __TGMATH_F128 ((Val1), Fct, (Val1, Val2, Val3))	\
 | 
						|
		     __tgml(Fct) (Val1, Val2, Val3)))
 | 
						|
 | 
						|
/* XXX This definition has to be changed as soon as the compiler understands
 | 
						|
   the imaginary keyword.  */
 | 
						|
#  define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
 | 
						|
     (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double)	      \
 | 
						|
		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
 | 
						|
		     ? (__expr_is_real (Val)				      \
 | 
						|
			? (__tgmath_complex_type (Val)) Fct (Val)	      \
 | 
						|
			: (__tgmath_complex_type (Val)) Cfct (Val))	      \
 | 
						|
		     : (sizeof (+__real__ (Val)) == sizeof (float))	      \
 | 
						|
		     ? (__expr_is_real (Val)				      \
 | 
						|
			? (__tgmath_complex_type (Val)) Fct##f (Val)	      \
 | 
						|
			: (__tgmath_complex_type (Val)) Cfct##f (Val))	      \
 | 
						|
		     : __TGMATH_CF128 ((Val),				      \
 | 
						|
				       (__tgmath_complex_type (Val)) Fct,     \
 | 
						|
				       (__tgmath_complex_type (Val)) Cfct,    \
 | 
						|
				       (Val))				      \
 | 
						|
		     (__expr_is_real (Val)				      \
 | 
						|
		      ? (__tgmath_complex_type (Val)) __tgml(Fct) (Val)	      \
 | 
						|
		      : (__tgmath_complex_type (Val)) __tgml(Cfct) (Val))))
 | 
						|
 | 
						|
#  define __TGMATH_UNARY_IMAG(Val, Cfct) \
 | 
						|
     (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double)	      \
 | 
						|
		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
 | 
						|
		     ? (__typeof__ ((__tgmath_real_type (Val)) 0	      \
 | 
						|
				    + _Complex_I)) Cfct (Val)		      \
 | 
						|
		     : (sizeof (+__real__ (Val)) == sizeof (float))	      \
 | 
						|
		     ? (__typeof__ ((__tgmath_real_type (Val)) 0	      \
 | 
						|
				    + _Complex_I)) Cfct##f (Val)	      \
 | 
						|
		     : __TGMATH_F128 (__real__ (Val),			      \
 | 
						|
				      (__typeof__			      \
 | 
						|
				       ((__tgmath_real_type (Val)) 0	      \
 | 
						|
					+ _Complex_I)) Cfct, (Val))	      \
 | 
						|
		     (__typeof__ ((__tgmath_real_type (Val)) 0		      \
 | 
						|
				  + _Complex_I)) __tgml(Cfct) (Val)))
 | 
						|
 | 
						|
/* XXX This definition has to be changed as soon as the compiler understands
 | 
						|
   the imaginary keyword.  */
 | 
						|
#  define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
 | 
						|
     (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double)	      \
 | 
						|
		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
 | 
						|
		     ? (__expr_is_real (Val)				      \
 | 
						|
			? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
 | 
						|
			  Fct (Val)					      \
 | 
						|
			: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
 | 
						|
			  Cfct (Val))					      \
 | 
						|
		     : (sizeof (+__real__ (Val)) == sizeof (float))	      \
 | 
						|
		     ? (__expr_is_real (Val)				      \
 | 
						|
			? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
 | 
						|
			  Fct##f (Val)					      \
 | 
						|
			: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
 | 
						|
			  Cfct##f (Val))				      \
 | 
						|
		     : __TGMATH_CF128 ((Val), \
 | 
						|
				       (__typeof__			      \
 | 
						|
					(__real__			      \
 | 
						|
					 (__tgmath_real_type (Val)) 0)) Fct,  \
 | 
						|
				       (__typeof__			      \
 | 
						|
					(__real__			      \
 | 
						|
					 (__tgmath_real_type (Val)) 0)) Cfct, \
 | 
						|
				       (Val))				      \
 | 
						|
		     (__expr_is_real (Val)				      \
 | 
						|
		      ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))  \
 | 
						|
		      __tgml(Fct) (Val)					      \
 | 
						|
		      : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))  \
 | 
						|
		      __tgml(Cfct) (Val))))
 | 
						|
#  define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct)	\
 | 
						|
  __TGMATH_UNARY_REAL_IMAG_RET_REAL ((Val), Cfct, Cfct)
 | 
						|
# endif
 | 
						|
 | 
						|
# if !__HAVE_BUILTIN_TGMATH_C23
 | 
						|
/* XXX This definition has to be changed as soon as the compiler understands
 | 
						|
   the imaginary keyword.  */
 | 
						|
#  define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
 | 
						|
     (__extension__ ((sizeof (__real__ (Val1)				      \
 | 
						|
			      + __real__ (Val2)) > sizeof (double)	      \
 | 
						|
		      && __builtin_classify_type (__real__ (Val1)	      \
 | 
						|
						  + __real__ (Val2)) == 8)    \
 | 
						|
		     ? __TGMATH_CF128 ((Val1) + (Val2),			      \
 | 
						|
				       (__tgmath_complex_type2 (Val1, Val2))  \
 | 
						|
				       Fct,				      \
 | 
						|
				       (__tgmath_complex_type2 (Val1, Val2))  \
 | 
						|
				       Cfct,				      \
 | 
						|
				       (Val1, Val2))			      \
 | 
						|
		     (__expr_is_real ((Val1) + (Val2))			      \
 | 
						|
		      ? (__tgmath_complex_type2 (Val1, Val2))		      \
 | 
						|
		      __tgml(Fct) (Val1, Val2)				      \
 | 
						|
		      : (__tgmath_complex_type2 (Val1, Val2))		      \
 | 
						|
		      __tgml(Cfct) (Val1, Val2))			      \
 | 
						|
		     : (sizeof (+__real__ (Val1)) == sizeof (double)	      \
 | 
						|
			|| sizeof (+__real__ (Val2)) == sizeof (double)	      \
 | 
						|
			|| __builtin_classify_type (__real__ (Val1)) != 8     \
 | 
						|
			|| __builtin_classify_type (__real__ (Val2)) != 8)    \
 | 
						|
		     ? (__expr_is_real ((Val1) + (Val2))		      \
 | 
						|
			? (__tgmath_complex_type2 (Val1, Val2))		      \
 | 
						|
			  Fct (Val1, Val2)				      \
 | 
						|
			: (__tgmath_complex_type2 (Val1, Val2))		      \
 | 
						|
			  Cfct (Val1, Val2))				      \
 | 
						|
		     : (__expr_is_real ((Val1) + (Val2))		      \
 | 
						|
			? (__tgmath_complex_type2 (Val1, Val2))		      \
 | 
						|
			  Fct##f (Val1, Val2)				      \
 | 
						|
			: (__tgmath_complex_type2 (Val1, Val2))		      \
 | 
						|
			  Cfct##f (Val1, Val2))))
 | 
						|
# endif
 | 
						|
 | 
						|
# if !__HAVE_BUILTIN_TGMATH
 | 
						|
#  define __TGMATH_1_NARROW_F(F, X)					\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (double) \
 | 
						|
		  ? F ## l (X)						\
 | 
						|
		  : F (X)))
 | 
						|
#  define __TGMATH_2_NARROW_F(F, X, Y)					\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0			\
 | 
						|
			  + (__tgmath_real_type (Y)) 0) > sizeof (double) \
 | 
						|
		  ? F ## l (X, Y)					\
 | 
						|
		  : F (X, Y)))
 | 
						|
#  define __TGMATH_3_NARROW_F(F, X, Y, Z)				\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0			\
 | 
						|
			  + (__tgmath_real_type (Y)) 0			\
 | 
						|
			  + (__tgmath_real_type (Z)) 0) > sizeof (double) \
 | 
						|
		  ? F ## l (X, Y, Z)					\
 | 
						|
		  : F (X, Y, Z)))
 | 
						|
# endif
 | 
						|
/* In most cases, these narrowing macro definitions based on sizeof
 | 
						|
   ensure that the function called has the right argument format, as
 | 
						|
   for other <tgmath.h> macros for compilers before GCC 8, but may not
 | 
						|
   have exactly the argument type (among the types with that format)
 | 
						|
   specified in the standard logic.
 | 
						|
 | 
						|
   In the case of macros for _Float32x return type, when _Float64x
 | 
						|
   exists, _Float64 arguments should result in the *f64 function being
 | 
						|
   called while _Float32x, float and double arguments should result in
 | 
						|
   the *f64x function being called (and integer arguments are
 | 
						|
   considered to have type _Float32x if any argument has type
 | 
						|
   _FloatNx, or double otherwise).  These cases cannot be
 | 
						|
   distinguished using sizeof (or at all if the types are typedefs
 | 
						|
   rather than different types, in which case we err on the side of
 | 
						|
   using the wider type if unsure).  */
 | 
						|
# if !__HAVE_BUILTIN_TGMATH_C23
 | 
						|
#  if __HAVE_FLOATN_NOT_TYPEDEF
 | 
						|
#   define __TGMATH_NARROW_F32X_USE_F64X(X)			\
 | 
						|
  !__builtin_types_compatible_p (__typeof (+(X)), _Float64)
 | 
						|
#  else
 | 
						|
#   define __TGMATH_NARROW_F32X_USE_F64X(X)			\
 | 
						|
  (__builtin_types_compatible_p (__typeof (+(X)), double)	\
 | 
						|
   || __builtin_types_compatible_p (__typeof (+(X)), float)	\
 | 
						|
   || !__floating_type (__typeof (+(X))))
 | 
						|
#  endif
 | 
						|
# endif
 | 
						|
# if __HAVE_FLOAT64X_LONG_DOUBLE && __HAVE_DISTINCT_FLOAT128
 | 
						|
#  if !__HAVE_BUILTIN_TGMATH
 | 
						|
#   define __TGMATH_1_NARROW_F32(F, X)					\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
 | 
						|
		  ? __TGMATH_F128LD ((X), F, (X))			\
 | 
						|
		  F ## f64x (X)						\
 | 
						|
		  : F ## f64 (X)))
 | 
						|
#   define __TGMATH_2_NARROW_F32(F, X, Y)				\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0			\
 | 
						|
			  + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
 | 
						|
		  ? __TGMATH_F128LD ((X) + (Y), F, (X, Y))		\
 | 
						|
		  F ## f64x (X, Y)					\
 | 
						|
		  : F ## f64 (X, Y)))
 | 
						|
#   define __TGMATH_3_NARROW_F32(F, X, Y, Z)				\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0			\
 | 
						|
			  + (__tgmath_real_type (Y)) 0			\
 | 
						|
			  + (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \
 | 
						|
		  ? __TGMATH_F128LD ((X) + (Y) + (Z), F, (X, Y, Z))	\
 | 
						|
		  F ## f64x (X, Y, Z)					\
 | 
						|
		  : F ## f64 (X, Y, Z)))
 | 
						|
#   define __TGMATH_1_NARROW_F64(F, X)					\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
 | 
						|
		  ? __TGMATH_F128LD ((X), F, (X))			\
 | 
						|
		  F ## f64x (X)						\
 | 
						|
		  : F ## f128 (X)))
 | 
						|
#   define __TGMATH_2_NARROW_F64(F, X, Y)				\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0			\
 | 
						|
			  + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
 | 
						|
		  ? __TGMATH_F128LD ((X) + (Y), F, (X, Y))		\
 | 
						|
		  F ## f64x (X, Y)					\
 | 
						|
		  : F ## f128 (X, Y)))
 | 
						|
#   define __TGMATH_3_NARROW_F64(F, X, Y, Z)				\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0			\
 | 
						|
			  + (__tgmath_real_type (Y)) 0			\
 | 
						|
			  + (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \
 | 
						|
		  ? __TGMATH_F128LD ((X) + (Y) + (Z), F, (X, Y, Z))	\
 | 
						|
		  F ## f64x (X, Y, Z)					\
 | 
						|
		  : F ## f128 (X, Y, Z)))
 | 
						|
#  endif
 | 
						|
#  if !__HAVE_BUILTIN_TGMATH_C23
 | 
						|
#   define __TGMATH_1_NARROW_F32X(F, X)					\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
 | 
						|
		  || __TGMATH_NARROW_F32X_USE_F64X (X)			\
 | 
						|
		  ? __TGMATH_F128 ((X), F, (X))				\
 | 
						|
		  F ## f64x (X)						\
 | 
						|
		  : F ## f64 (X)))
 | 
						|
#   define __TGMATH_2_NARROW_F32X(F, X, Y)				\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0			\
 | 
						|
			  + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
 | 
						|
		  || __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y))		\
 | 
						|
		  ? __TGMATH_F128 ((X) + (Y), F, (X, Y))		\
 | 
						|
		  F ## f64x (X, Y)					\
 | 
						|
		  : F ## f64 (X, Y)))
 | 
						|
#   define __TGMATH_3_NARROW_F32X(F, X, Y, Z)				\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0			\
 | 
						|
			  + (__tgmath_real_type (Y)) 0			\
 | 
						|
			  + (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \
 | 
						|
		  || __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y) + (Z))	\
 | 
						|
		  ? __TGMATH_F128 ((X) + (Y) + (Z), F, (X, Y, Z))	\
 | 
						|
		  F ## f64x (X, Y, Z)					\
 | 
						|
		  : F ## f64 (X, Y, Z)))
 | 
						|
#  endif
 | 
						|
# elif __HAVE_FLOAT128
 | 
						|
#  if !__HAVE_BUILTIN_TGMATH
 | 
						|
#   define __TGMATH_1_NARROW_F32(F, X)					\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
 | 
						|
		  ? F ## f128 (X)					\
 | 
						|
		  : F ## f64 (X)))
 | 
						|
#   define __TGMATH_2_NARROW_F32(F, X, Y)				\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0			\
 | 
						|
			  + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
 | 
						|
		  ? F ## f128 (X, Y)					\
 | 
						|
		  : F ## f64 (X, Y)))
 | 
						|
#   define __TGMATH_3_NARROW_F32(F, X, Y, Z)				\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0			\
 | 
						|
			  + (__tgmath_real_type (Y)) 0			\
 | 
						|
			  + (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \
 | 
						|
		  ? F ## f128 (X, Y, Z)					\
 | 
						|
		  : F ## f64 (X, Y, Z)))
 | 
						|
#   define __TGMATH_1_NARROW_F64(F, X)		\
 | 
						|
  (F ## f128 (X))
 | 
						|
#   define __TGMATH_2_NARROW_F64(F, X, Y)	\
 | 
						|
  (F ## f128 (X, Y))
 | 
						|
#   define __TGMATH_3_NARROW_F64(F, X, Y, Z)	\
 | 
						|
  (F ## f128 (X, Y, Z))
 | 
						|
#  endif
 | 
						|
#  if !__HAVE_BUILTIN_TGMATH_C23
 | 
						|
#   define __TGMATH_1_NARROW_F32X(F, X)					\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float32x) \
 | 
						|
		  || __TGMATH_NARROW_F32X_USE_F64X (X)			\
 | 
						|
		  ? F ## f64x (X)					\
 | 
						|
		  : F ## f64 (X)))
 | 
						|
#   define __TGMATH_2_NARROW_F32X(F, X, Y)				\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0			\
 | 
						|
			  + (__tgmath_real_type (Y)) 0) > sizeof (_Float32x) \
 | 
						|
		  || __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y))		\
 | 
						|
		  ? F ## f64x (X, Y)					\
 | 
						|
		  : F ## f64 (X, Y)))
 | 
						|
#   define __TGMATH_3_NARROW_F32X(F, X, Y, Z)				\
 | 
						|
  (__extension__ (sizeof ((__tgmath_real_type (X)) 0			\
 | 
						|
			  + (__tgmath_real_type (Y)) 0			\
 | 
						|
			  + (__tgmath_real_type (Z)) 0) > sizeof (_Float32x) \
 | 
						|
		  || __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y) + (Z))	\
 | 
						|
		  ? F ## f64x (X, Y, Z)					\
 | 
						|
		  : F ## f64 (X, Y, Z)))
 | 
						|
#  endif
 | 
						|
# else
 | 
						|
#  if !__HAVE_BUILTIN_TGMATH
 | 
						|
#   define __TGMATH_1_NARROW_F32(F, X)		\
 | 
						|
  (F ## f64 (X))
 | 
						|
#   define __TGMATH_2_NARROW_F32(F, X, Y)	\
 | 
						|
  (F ## f64 (X, Y))
 | 
						|
#   define __TGMATH_3_NARROW_F32(F, X, Y, Z)	\
 | 
						|
  (F ## f64 (X, Y, Z))
 | 
						|
#  endif
 | 
						|
# endif
 | 
						|
#else
 | 
						|
# error "Unsupported compiler; you cannot use <tgmath.h>"
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* Unary functions defined for real and complex values.  */
 | 
						|
 | 
						|
 | 
						|
/* Trigonometric functions.  */
 | 
						|
 | 
						|
/* Arc cosine of X.  */
 | 
						|
#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
 | 
						|
/* Arc sine of X.  */
 | 
						|
#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
 | 
						|
/* Arc tangent of X.  */
 | 
						|
#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
 | 
						|
/* Arc tangent of Y/X.  */
 | 
						|
#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
 | 
						|
 | 
						|
/* Cosine of X.  */
 | 
						|
#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
 | 
						|
/* Sine of X.  */
 | 
						|
#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
 | 
						|
/* Tangent of X.  */
 | 
						|
#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
 | 
						|
 | 
						|
#if __GLIBC_USE (IEC_60559_FUNCS_EXT_C23)
 | 
						|
/* Arc cosine of X, divided by pi..  */
 | 
						|
# define acospi(Val) __TGMATH_UNARY_REAL_ONLY (Val, acospi)
 | 
						|
/* Arc sine of X, divided by pi..  */
 | 
						|
# define asinpi(Val) __TGMATH_UNARY_REAL_ONLY (Val, asinpi)
 | 
						|
/* Arc tangent of X, divided by pi.  */
 | 
						|
# define atanpi(Val) __TGMATH_UNARY_REAL_ONLY (Val, atanpi)
 | 
						|
/* Arc tangent of Y/X, divided by pi.  */
 | 
						|
#define atan2pi(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2pi)
 | 
						|
 | 
						|
/* Cosine of pi * X.  */
 | 
						|
# define cospi(Val) __TGMATH_UNARY_REAL_ONLY (Val, cospi)
 | 
						|
/* Sine of pi * X.  */
 | 
						|
# define sinpi(Val) __TGMATH_UNARY_REAL_ONLY (Val, sinpi)
 | 
						|
/* Tangent of pi * X.  */
 | 
						|
# define tanpi(Val) __TGMATH_UNARY_REAL_ONLY (Val, tanpi)
 | 
						|
#endif
 | 
						|
 | 
						|
/* Hyperbolic functions.  */
 | 
						|
 | 
						|
/* Hyperbolic arc cosine of X.  */
 | 
						|
#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
 | 
						|
/* Hyperbolic arc sine of X.  */
 | 
						|
#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
 | 
						|
/* Hyperbolic arc tangent of X.  */
 | 
						|
#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
 | 
						|
 | 
						|
/* Hyperbolic cosine of X.  */
 | 
						|
#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
 | 
						|
/* Hyperbolic sine of X.  */
 | 
						|
#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
 | 
						|
/* Hyperbolic tangent of X.  */
 | 
						|
#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
 | 
						|
 | 
						|
 | 
						|
/* Exponential and logarithmic functions.  */
 | 
						|
 | 
						|
/* Exponential function of X.  */
 | 
						|
#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
 | 
						|
 | 
						|
/* Break VALUE into a normalized fraction and an integral power of 2.  */
 | 
						|
#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
 | 
						|
 | 
						|
/* X times (two to the EXP power).  */
 | 
						|
#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
 | 
						|
 | 
						|
/* Natural logarithm of X.  */
 | 
						|
#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
 | 
						|
 | 
						|
/* Base-ten logarithm of X.  */
 | 
						|
#ifdef __USE_GNU
 | 
						|
# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, clog10)
 | 
						|
#else
 | 
						|
# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
 | 
						|
#endif
 | 
						|
 | 
						|
/* Return exp(X) - 1.  */
 | 
						|
#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
 | 
						|
 | 
						|
/* Return log(1 + X).  */
 | 
						|
#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
 | 
						|
 | 
						|
/* Return the base 2 signed integral exponent of X.  */
 | 
						|
#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
 | 
						|
 | 
						|
/* Compute base-2 exponential of X.  */
 | 
						|
#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
 | 
						|
 | 
						|
/* Compute base-2 logarithm of X.  */
 | 
						|
#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
 | 
						|
 | 
						|
#if __GLIBC_USE (IEC_60559_FUNCS_EXT_C23)
 | 
						|
/* Compute exponent to base ten.  */
 | 
						|
#define exp10(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp10)
 | 
						|
 | 
						|
/* Return exp2(X) - 1.  */
 | 
						|
#define exp2m1(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2m1)
 | 
						|
 | 
						|
/* Return exp10(X) - 1.  */
 | 
						|
#define exp10m1(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp10m1)
 | 
						|
 | 
						|
/* Return log2(1 + X).  */
 | 
						|
#define log2p1(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2p1)
 | 
						|
 | 
						|
/* Return log10(1 + X).  */
 | 
						|
#define log10p1(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10p1)
 | 
						|
 | 
						|
/* Return log(1 + X).  */
 | 
						|
#define logp1(Val) __TGMATH_UNARY_REAL_ONLY (Val, logp1)
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* Power functions.  */
 | 
						|
 | 
						|
/* Return X to the Y power.  */
 | 
						|
#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
 | 
						|
 | 
						|
/* Return the square root of X.  */
 | 
						|
#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
 | 
						|
 | 
						|
/* Return `sqrt(X*X + Y*Y)'.  */
 | 
						|
#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
 | 
						|
 | 
						|
/* Return the cube root of X.  */
 | 
						|
#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
 | 
						|
 | 
						|
#if __GLIBC_USE (IEC_60559_FUNCS_EXT_C23)
 | 
						|
/* Return 1+X to the Y power.  */
 | 
						|
# define compoundn(Val1, Val2)					\
 | 
						|
  __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, compoundn)
 | 
						|
 | 
						|
/* Return X to the Y power.  */
 | 
						|
# define pown(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, pown)
 | 
						|
 | 
						|
/* Return X to the Y power.  */
 | 
						|
# define powr(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, powr)
 | 
						|
 | 
						|
/* Return the Yth root of X.  */
 | 
						|
# define rootn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, rootn)
 | 
						|
 | 
						|
/* Return 1/sqrt(X).  */
 | 
						|
# define rsqrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, rsqrt)
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* Nearest integer, absolute value, and remainder functions.  */
 | 
						|
 | 
						|
/* Smallest integral value not less than X.  */
 | 
						|
#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
 | 
						|
 | 
						|
/* Absolute value of X.  */
 | 
						|
#define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs)
 | 
						|
 | 
						|
/* Largest integer not greater than X.  */
 | 
						|
#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
 | 
						|
 | 
						|
/* Floating-point modulo remainder of X/Y.  */
 | 
						|
#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
 | 
						|
 | 
						|
/* Round X to integral valuein floating-point format using current
 | 
						|
   rounding direction, but do not raise inexact exception.  */
 | 
						|
#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
 | 
						|
 | 
						|
/* Round X to nearest integral value, rounding halfway cases away from
 | 
						|
   zero.  */
 | 
						|
#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
 | 
						|
 | 
						|
/* Round X to the integral value in floating-point format nearest but
 | 
						|
   not larger in magnitude.  */
 | 
						|
#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
 | 
						|
 | 
						|
/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
 | 
						|
   and magnitude congruent `mod 2^n' to the magnitude of the integral
 | 
						|
   quotient x/y, with n >= 3.  */
 | 
						|
#define remquo(Val1, Val2, Val3) \
 | 
						|
     __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
 | 
						|
 | 
						|
/* Round X to nearest integral value according to current rounding
 | 
						|
   direction.  */
 | 
						|
#define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lrint)
 | 
						|
#define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llrint)
 | 
						|
 | 
						|
/* Round X to nearest integral value, rounding halfway cases away from
 | 
						|
   zero.  */
 | 
						|
#define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lround)
 | 
						|
#define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llround)
 | 
						|
 | 
						|
 | 
						|
/* Return X with its signed changed to Y's.  */
 | 
						|
#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
 | 
						|
 | 
						|
/* Error and gamma functions.  */
 | 
						|
#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
 | 
						|
#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
 | 
						|
#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
 | 
						|
#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
 | 
						|
 | 
						|
 | 
						|
/* Return the integer nearest X in the direction of the
 | 
						|
   prevailing rounding mode.  */
 | 
						|
#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
 | 
						|
 | 
						|
#if __GLIBC_USE (IEC_60559_BFP_EXT_C23)
 | 
						|
/* Return X - epsilon.  */
 | 
						|
# define nextdown(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextdown)
 | 
						|
/* Return X + epsilon.  */
 | 
						|
# define nextup(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextup)
 | 
						|
#endif
 | 
						|
 | 
						|
/* Return X + epsilon if X < Y, X - epsilon if X > Y.  */
 | 
						|
#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
 | 
						|
#define nexttoward(Val1, Val2) \
 | 
						|
     __TGMATH_BINARY_FIRST_REAL_STD_ONLY (Val1, Val2, nexttoward)
 | 
						|
 | 
						|
/* Return the remainder of integer division X / Y with infinite precision.  */
 | 
						|
#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
 | 
						|
 | 
						|
/* Return X times (2 to the Nth power).  */
 | 
						|
#ifdef __USE_MISC
 | 
						|
# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, scalb)
 | 
						|
#endif
 | 
						|
 | 
						|
/* Return X times (2 to the Nth power).  */
 | 
						|
#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
 | 
						|
 | 
						|
/* Return X times (2 to the Nth power).  */
 | 
						|
#define scalbln(Val1, Val2) \
 | 
						|
     __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
 | 
						|
 | 
						|
/* Return the binary exponent of X, which must be nonzero.  */
 | 
						|
#define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, ilogb)
 | 
						|
 | 
						|
 | 
						|
/* Return positive difference between X and Y.  */
 | 
						|
#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
 | 
						|
 | 
						|
#if __GLIBC_USE (ISOC23) && !defined __USE_GNU
 | 
						|
/* Return maximum numeric value from X and Y.  */
 | 
						|
# define fmax(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, fmax)
 | 
						|
 | 
						|
/* Return minimum numeric value from X and Y.  */
 | 
						|
# define fmin(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, fmin)
 | 
						|
#else
 | 
						|
/* Return maximum numeric value from X and Y.  */
 | 
						|
# define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
 | 
						|
 | 
						|
/* Return minimum numeric value from X and Y.  */
 | 
						|
# define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* Multiply-add function computed as a ternary operation.  */
 | 
						|
#define fma(Val1, Val2, Val3) \
 | 
						|
     __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
 | 
						|
 | 
						|
#if __GLIBC_USE (IEC_60559_BFP_EXT_C23)
 | 
						|
/* Round X to nearest integer value, rounding halfway cases to even.  */
 | 
						|
# define roundeven(Val) __TGMATH_UNARY_REAL_ONLY (Val, roundeven)
 | 
						|
 | 
						|
# define fromfp(Val1, Val2, Val3)					\
 | 
						|
  __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfp)
 | 
						|
 | 
						|
# define ufromfp(Val1, Val2, Val3)					\
 | 
						|
  __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfp)
 | 
						|
 | 
						|
# define fromfpx(Val1, Val2, Val3)					\
 | 
						|
  __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfpx)
 | 
						|
 | 
						|
# define ufromfpx(Val1, Val2, Val3)					\
 | 
						|
  __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfpx)
 | 
						|
 | 
						|
/* Like ilogb, but returning long int.  */
 | 
						|
# define llogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llogb)
 | 
						|
#endif
 | 
						|
 | 
						|
#if __GLIBC_USE (IEC_60559_BFP_EXT)
 | 
						|
/* Return value with maximum magnitude.  */
 | 
						|
# define fmaxmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaxmag)
 | 
						|
 | 
						|
/* Return value with minimum magnitude.  */
 | 
						|
# define fminmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminmag)
 | 
						|
#endif
 | 
						|
 | 
						|
#if __GLIBC_USE (ISOC23)
 | 
						|
/* Return maximum value from X and Y.  */
 | 
						|
# define fmaximum(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaximum)
 | 
						|
 | 
						|
/* Return minimum value from X and Y.  */
 | 
						|
# define fminimum(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminimum)
 | 
						|
 | 
						|
/* Return maximum numeric value from X and Y.  */
 | 
						|
# define fmaximum_num(Val1, Val2)			\
 | 
						|
  __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaximum_num)
 | 
						|
 | 
						|
/* Return minimum numeric value from X and Y.  */
 | 
						|
# define fminimum_num(Val1, Val2)			\
 | 
						|
  __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminimum_num)
 | 
						|
 | 
						|
/* Return value with maximum magnitude.  */
 | 
						|
# define fmaximum_mag(Val1, Val2)			\
 | 
						|
  __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaximum_mag)
 | 
						|
 | 
						|
/* Return value with minimum magnitude.  */
 | 
						|
# define fminimum_mag(Val1, Val2)			\
 | 
						|
  __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminimum_mag)
 | 
						|
 | 
						|
/* Return numeric value with maximum magnitude.  */
 | 
						|
# define fmaximum_mag_num(Val1, Val2)				\
 | 
						|
  __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaximum_mag_num)
 | 
						|
 | 
						|
/* Return numeric value with minimum magnitude.  */
 | 
						|
# define fminimum_mag_num(Val1, Val2)				\
 | 
						|
  __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminimum_mag_num)
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* Absolute value, conjugates, and projection.  */
 | 
						|
 | 
						|
/* Argument value of Z.  */
 | 
						|
#define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, carg)
 | 
						|
 | 
						|
/* Complex conjugate of Z.  */
 | 
						|
#define conj(Val) __TGMATH_UNARY_IMAG (Val, conj)
 | 
						|
 | 
						|
/* Projection of Z onto the Riemann sphere.  */
 | 
						|
#define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj)
 | 
						|
 | 
						|
 | 
						|
/* Decomposing complex values.  */
 | 
						|
 | 
						|
/* Imaginary part of Z.  */
 | 
						|
#define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, cimag)
 | 
						|
 | 
						|
/* Real part of Z.  */
 | 
						|
#define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, creal)
 | 
						|
 | 
						|
 | 
						|
/* Narrowing functions.  */
 | 
						|
 | 
						|
#if __GLIBC_USE (IEC_60559_BFP_EXT_C23)
 | 
						|
 | 
						|
/* Add.  */
 | 
						|
# define fadd(Val1, Val2) __TGMATH_2_NARROW_F (fadd, Val1, Val2)
 | 
						|
# define dadd(Val1, Val2) __TGMATH_2_NARROW_D (dadd, Val1, Val2)
 | 
						|
 | 
						|
/* Divide.  */
 | 
						|
# define fdiv(Val1, Val2) __TGMATH_2_NARROW_F (fdiv, Val1, Val2)
 | 
						|
# define ddiv(Val1, Val2) __TGMATH_2_NARROW_D (ddiv, Val1, Val2)
 | 
						|
 | 
						|
/* Multiply.  */
 | 
						|
# define fmul(Val1, Val2) __TGMATH_2_NARROW_F (fmul, Val1, Val2)
 | 
						|
# define dmul(Val1, Val2) __TGMATH_2_NARROW_D (dmul, Val1, Val2)
 | 
						|
 | 
						|
/* Subtract.  */
 | 
						|
# define fsub(Val1, Val2) __TGMATH_2_NARROW_F (fsub, Val1, Val2)
 | 
						|
# define dsub(Val1, Val2) __TGMATH_2_NARROW_D (dsub, Val1, Val2)
 | 
						|
 | 
						|
/* Square root.  */
 | 
						|
# define fsqrt(Val) __TGMATH_1_NARROW_F (fsqrt, Val)
 | 
						|
# define dsqrt(Val) __TGMATH_1_NARROW_D (dsqrt, Val)
 | 
						|
 | 
						|
/* Fused multiply-add.  */
 | 
						|
# define ffma(Val1, Val2, Val3) __TGMATH_3_NARROW_F (ffma, Val1, Val2, Val3)
 | 
						|
# define dfma(Val1, Val2, Val3) __TGMATH_3_NARROW_D (dfma, Val1, Val2, Val3)
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if __GLIBC_USE (IEC_60559_TYPES_EXT)
 | 
						|
 | 
						|
# if __HAVE_FLOAT16
 | 
						|
#  define f16add(Val1, Val2) __TGMATH_2_NARROW_F16 (f16add, Val1, Val2)
 | 
						|
#  define f16div(Val1, Val2) __TGMATH_2_NARROW_F16 (f16div, Val1, Val2)
 | 
						|
#  define f16mul(Val1, Val2) __TGMATH_2_NARROW_F16 (f16mul, Val1, Val2)
 | 
						|
#  define f16sub(Val1, Val2) __TGMATH_2_NARROW_F16 (f16sub, Val1, Val2)
 | 
						|
#  define f16sqrt(Val) __TGMATH_1_NARROW_F16 (f16sqrt, Val)
 | 
						|
#  define f16fma(Val1, Val2, Val3)			\
 | 
						|
  __TGMATH_3_NARROW_F16 (f16fma, Val1, Val2, Val3)
 | 
						|
# endif
 | 
						|
 | 
						|
# if __HAVE_FLOAT32
 | 
						|
#  define f32add(Val1, Val2) __TGMATH_2_NARROW_F32 (f32add, Val1, Val2)
 | 
						|
#  define f32div(Val1, Val2) __TGMATH_2_NARROW_F32 (f32div, Val1, Val2)
 | 
						|
#  define f32mul(Val1, Val2) __TGMATH_2_NARROW_F32 (f32mul, Val1, Val2)
 | 
						|
#  define f32sub(Val1, Val2) __TGMATH_2_NARROW_F32 (f32sub, Val1, Val2)
 | 
						|
#  define f32sqrt(Val) __TGMATH_1_NARROW_F32 (f32sqrt, Val)
 | 
						|
#  define f32fma(Val1, Val2, Val3)			\
 | 
						|
  __TGMATH_3_NARROW_F32 (f32fma, Val1, Val2, Val3)
 | 
						|
# endif
 | 
						|
 | 
						|
# if __HAVE_FLOAT64 && (__HAVE_FLOAT64X || __HAVE_FLOAT128)
 | 
						|
#  define f64add(Val1, Val2) __TGMATH_2_NARROW_F64 (f64add, Val1, Val2)
 | 
						|
#  define f64div(Val1, Val2) __TGMATH_2_NARROW_F64 (f64div, Val1, Val2)
 | 
						|
#  define f64mul(Val1, Val2) __TGMATH_2_NARROW_F64 (f64mul, Val1, Val2)
 | 
						|
#  define f64sub(Val1, Val2) __TGMATH_2_NARROW_F64 (f64sub, Val1, Val2)
 | 
						|
#  define f64sqrt(Val) __TGMATH_1_NARROW_F64 (f64sqrt, Val)
 | 
						|
#  define f64fma(Val1, Val2, Val3)			\
 | 
						|
  __TGMATH_3_NARROW_F64 (f64fma, Val1, Val2, Val3)
 | 
						|
# endif
 | 
						|
 | 
						|
# if __HAVE_FLOAT32X
 | 
						|
#  define f32xadd(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xadd, Val1, Val2)
 | 
						|
#  define f32xdiv(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xdiv, Val1, Val2)
 | 
						|
#  define f32xmul(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xmul, Val1, Val2)
 | 
						|
#  define f32xsub(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xsub, Val1, Val2)
 | 
						|
#  define f32xsqrt(Val) __TGMATH_1_NARROW_F32X (f32xsqrt, Val)
 | 
						|
#  define f32xfma(Val1, Val2, Val3)			\
 | 
						|
  __TGMATH_3_NARROW_F32X (f32xfma, Val1, Val2, Val3)
 | 
						|
# endif
 | 
						|
 | 
						|
# if __HAVE_FLOAT64X && (__HAVE_FLOAT128X || __HAVE_FLOAT128)
 | 
						|
#  define f64xadd(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xadd, Val1, Val2)
 | 
						|
#  define f64xdiv(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xdiv, Val1, Val2)
 | 
						|
#  define f64xmul(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xmul, Val1, Val2)
 | 
						|
#  define f64xsub(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xsub, Val1, Val2)
 | 
						|
#  define f64xsqrt(Val) __TGMATH_1_NARROW_F64X (f64xsqrt, Val)
 | 
						|
#  define f64xfma(Val1, Val2, Val3)			\
 | 
						|
  __TGMATH_3_NARROW_F64X (f64xfma, Val1, Val2, Val3)
 | 
						|
# endif
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#endif /* tgmath.h */
 |