mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-24 13:33:08 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			1780 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1780 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Convert string representing a number to float value, using given locale.
 | ||
|    Copyright (C) 1997-2016 Free Software Foundation, Inc.
 | ||
|    This file is part of the GNU C Library.
 | ||
|    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
 | ||
| 
 | ||
|    The GNU C Library is free software; you can redistribute it and/or
 | ||
|    modify it under the terms of the GNU Lesser General Public
 | ||
|    License as published by the Free Software Foundation; either
 | ||
|    version 2.1 of the License, or (at your option) any later version.
 | ||
| 
 | ||
|    The GNU C Library is distributed in the hope that it will be useful,
 | ||
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | ||
|    Lesser General Public License for more details.
 | ||
| 
 | ||
|    You should have received a copy of the GNU Lesser General Public
 | ||
|    License along with the GNU C Library; if not, see
 | ||
|    <http://www.gnu.org/licenses/>.  */
 | ||
| 
 | ||
| #include <xlocale.h>
 | ||
| 
 | ||
| extern double ____strtod_l_internal (const char *, char **, int, __locale_t);
 | ||
| 
 | ||
| /* Configuration part.  These macros are defined by `strtold.c',
 | ||
|    `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
 | ||
|    `long double' and `float' versions of the reader.  */
 | ||
| #ifndef FLOAT
 | ||
| # include <math_ldbl_opt.h>
 | ||
| # define FLOAT		double
 | ||
| # define FLT		DBL
 | ||
| # ifdef USE_WIDE_CHAR
 | ||
| #  define STRTOF	wcstod_l
 | ||
| #  define __STRTOF	__wcstod_l
 | ||
| #  define STRTOF_NAN	__wcstod_nan
 | ||
| # else
 | ||
| #  define STRTOF	strtod_l
 | ||
| #  define __STRTOF	__strtod_l
 | ||
| #  define STRTOF_NAN	__strtod_nan
 | ||
| # endif
 | ||
| # define MPN2FLOAT	__mpn_construct_double
 | ||
| # define FLOAT_HUGE_VAL	HUGE_VAL
 | ||
| #endif
 | ||
| /* End of configuration part.  */
 | ||
| 
 | ||
| #include <ctype.h>
 | ||
| #include <errno.h>
 | ||
| #include <float.h>
 | ||
| #include "../locale/localeinfo.h"
 | ||
| #include <locale.h>
 | ||
| #include <math.h>
 | ||
| #include <math_private.h>
 | ||
| #include <stdlib.h>
 | ||
| #include <string.h>
 | ||
| #include <stdint.h>
 | ||
| #include <rounding-mode.h>
 | ||
| #include <tininess.h>
 | ||
| 
 | ||
| /* The gmp headers need some configuration frobs.  */
 | ||
| #define HAVE_ALLOCA 1
 | ||
| 
 | ||
| /* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
 | ||
|    and _LONG_LONG_LIMB in it can take effect into gmp.h.  */
 | ||
| #include <gmp-mparam.h>
 | ||
| #include <gmp.h>
 | ||
| #include "gmp-impl.h"
 | ||
| #include "longlong.h"
 | ||
| #include "fpioconst.h"
 | ||
| 
 | ||
| #include <assert.h>
 | ||
| 
 | ||
| 
 | ||
| /* We use this code for the extended locale handling where the
 | ||
|    function gets as an additional argument the locale which has to be
 | ||
|    used.  To access the values we have to redefine the _NL_CURRENT and
 | ||
|    _NL_CURRENT_WORD macros.  */
 | ||
| #undef _NL_CURRENT
 | ||
| #define _NL_CURRENT(category, item) \
 | ||
|   (current->values[_NL_ITEM_INDEX (item)].string)
 | ||
| #undef _NL_CURRENT_WORD
 | ||
| #define _NL_CURRENT_WORD(category, item) \
 | ||
|   ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word)
 | ||
| 
 | ||
| #if defined _LIBC || defined HAVE_WCHAR_H
 | ||
| # include <wchar.h>
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef USE_WIDE_CHAR
 | ||
| # include <wctype.h>
 | ||
| # define STRING_TYPE wchar_t
 | ||
| # define CHAR_TYPE wint_t
 | ||
| # define L_(Ch) L##Ch
 | ||
| # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
 | ||
| # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
 | ||
| # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
 | ||
| # define TOLOWER(Ch) __towlower_l ((Ch), loc)
 | ||
| # define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
 | ||
| # define STRNCASECMP(S1, S2, N) \
 | ||
|   __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
 | ||
| #else
 | ||
| # define STRING_TYPE char
 | ||
| # define CHAR_TYPE char
 | ||
| # define L_(Ch) Ch
 | ||
| # define ISSPACE(Ch) __isspace_l ((Ch), loc)
 | ||
| # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
 | ||
| # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
 | ||
| # define TOLOWER(Ch) __tolower_l ((Ch), loc)
 | ||
| # define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr)
 | ||
| # define STRNCASECMP(S1, S2, N) \
 | ||
|   __strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| /* Constants we need from float.h; select the set for the FLOAT precision.  */
 | ||
| #define MANT_DIG	PASTE(FLT,_MANT_DIG)
 | ||
| #define	DIG		PASTE(FLT,_DIG)
 | ||
| #define	MAX_EXP		PASTE(FLT,_MAX_EXP)
 | ||
| #define	MIN_EXP		PASTE(FLT,_MIN_EXP)
 | ||
| #define MAX_10_EXP	PASTE(FLT,_MAX_10_EXP)
 | ||
| #define MIN_10_EXP	PASTE(FLT,_MIN_10_EXP)
 | ||
| #define MAX_VALUE	PASTE(FLT,_MAX)
 | ||
| #define MIN_VALUE	PASTE(FLT,_MIN)
 | ||
| 
 | ||
| /* Extra macros required to get FLT expanded before the pasting.  */
 | ||
| #define PASTE(a,b)	PASTE1(a,b)
 | ||
| #define PASTE1(a,b)	a##b
 | ||
| 
 | ||
| /* Function to construct a floating point number from an MP integer
 | ||
|    containing the fraction bits, a base 2 exponent, and a sign flag.  */
 | ||
| extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
 | ||
| 
 | ||
| /* Definitions according to limb size used.  */
 | ||
| #if	BITS_PER_MP_LIMB == 32
 | ||
| # define MAX_DIG_PER_LIMB	9
 | ||
| # define MAX_FAC_PER_LIMB	1000000000UL
 | ||
| #elif	BITS_PER_MP_LIMB == 64
 | ||
| # define MAX_DIG_PER_LIMB	19
 | ||
| # define MAX_FAC_PER_LIMB	10000000000000000000ULL
 | ||
| #else
 | ||
| # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
 | ||
| #endif
 | ||
| 
 | ||
| extern const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1];
 | ||
| 
 | ||
| #ifndef	howmany
 | ||
| #define	howmany(x,y)		(((x)+((y)-1))/(y))
 | ||
| #endif
 | ||
| #define SWAP(x, y)		({ typeof(x) _tmp = x; x = y; y = _tmp; })
 | ||
| 
 | ||
| #define	RETURN_LIMB_SIZE		howmany (MANT_DIG, BITS_PER_MP_LIMB)
 | ||
| 
 | ||
| #define RETURN(val,end)							      \
 | ||
|     do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end);		      \
 | ||
| 	 return val; } while (0)
 | ||
| 
 | ||
| /* Maximum size necessary for mpn integers to hold floating point
 | ||
|    numbers.  The largest number we need to hold is 10^n where 2^-n is
 | ||
|    1/4 ulp of the smallest representable value (that is, n = MANT_DIG
 | ||
|    - MIN_EXP + 2).  Approximate using 10^3 < 2^10.  */
 | ||
| #define	MPNSIZE		(howmany (1 + ((MANT_DIG - MIN_EXP + 2) * 10) / 3, \
 | ||
| 				  BITS_PER_MP_LIMB) + 2)
 | ||
| /* Declare an mpn integer variable that big.  */
 | ||
| #define	MPN_VAR(name)	mp_limb_t name[MPNSIZE]; mp_size_t name##size
 | ||
| /* Copy an mpn integer value.  */
 | ||
| #define MPN_ASSIGN(dst, src) \
 | ||
| 	memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
 | ||
| 
 | ||
| 
 | ||
| /* Set errno and return an overflowing value with sign specified by
 | ||
|    NEGATIVE.  */
 | ||
| static FLOAT
 | ||
| overflow_value (int negative)
 | ||
| {
 | ||
|   __set_errno (ERANGE);
 | ||
|   FLOAT result = math_narrow_eval ((negative ? -MAX_VALUE : MAX_VALUE)
 | ||
| 				   * MAX_VALUE);
 | ||
|   return result;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Set errno and return an underflowing value with sign specified by
 | ||
|    NEGATIVE.  */
 | ||
| static FLOAT
 | ||
| underflow_value (int negative)
 | ||
| {
 | ||
|   __set_errno (ERANGE);
 | ||
|   FLOAT result = math_narrow_eval ((negative ? -MIN_VALUE : MIN_VALUE)
 | ||
| 				   * MIN_VALUE);
 | ||
|   return result;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Return a floating point number of the needed type according to the given
 | ||
|    multi-precision number after possible rounding.  */
 | ||
| static FLOAT
 | ||
| round_and_return (mp_limb_t *retval, intmax_t exponent, int negative,
 | ||
| 		  mp_limb_t round_limb, mp_size_t round_bit, int more_bits)
 | ||
| {
 | ||
|   int mode = get_rounding_mode ();
 | ||
| 
 | ||
|   if (exponent < MIN_EXP - 1)
 | ||
|     {
 | ||
|       if (exponent < MIN_EXP - 1 - MANT_DIG)
 | ||
| 	return underflow_value (negative);
 | ||
| 
 | ||
|       mp_size_t shift = MIN_EXP - 1 - exponent;
 | ||
|       bool is_tiny = true;
 | ||
| 
 | ||
|       more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0;
 | ||
|       if (shift == MANT_DIG)
 | ||
| 	/* This is a special case to handle the very seldom case where
 | ||
| 	   the mantissa will be empty after the shift.  */
 | ||
| 	{
 | ||
| 	  int i;
 | ||
| 
 | ||
| 	  round_limb = retval[RETURN_LIMB_SIZE - 1];
 | ||
| 	  round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
 | ||
| 	  for (i = 0; i < RETURN_LIMB_SIZE - 1; ++i)
 | ||
| 	    more_bits |= retval[i] != 0;
 | ||
| 	  MPN_ZERO (retval, RETURN_LIMB_SIZE);
 | ||
| 	}
 | ||
|       else if (shift >= BITS_PER_MP_LIMB)
 | ||
| 	{
 | ||
| 	  int i;
 | ||
| 
 | ||
| 	  round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
 | ||
| 	  round_bit = (shift - 1) % BITS_PER_MP_LIMB;
 | ||
| 	  for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
 | ||
| 	    more_bits |= retval[i] != 0;
 | ||
| 	  more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1))
 | ||
| 			!= 0);
 | ||
| 
 | ||
| 	  /* __mpn_rshift requires 0 < shift < BITS_PER_MP_LIMB.  */
 | ||
| 	  if ((shift % BITS_PER_MP_LIMB) != 0)
 | ||
| 	    (void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
 | ||
| 			         RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
 | ||
| 			         shift % BITS_PER_MP_LIMB);
 | ||
| 	  else
 | ||
| 	    for (i = 0; i < RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB); i++)
 | ||
| 	      retval[i] = retval[i + (shift / BITS_PER_MP_LIMB)];
 | ||
| 	  MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
 | ||
| 		    shift / BITS_PER_MP_LIMB);
 | ||
| 	}
 | ||
|       else if (shift > 0)
 | ||
| 	{
 | ||
| 	  if (TININESS_AFTER_ROUNDING && shift == 1)
 | ||
| 	    {
 | ||
| 	      /* Whether the result counts as tiny depends on whether,
 | ||
| 		 after rounding to the normal precision, it still has
 | ||
| 		 a subnormal exponent.  */
 | ||
| 	      mp_limb_t retval_normal[RETURN_LIMB_SIZE];
 | ||
| 	      if (round_away (negative,
 | ||
| 			      (retval[0] & 1) != 0,
 | ||
| 			      (round_limb
 | ||
| 			       & (((mp_limb_t) 1) << round_bit)) != 0,
 | ||
| 			      (more_bits
 | ||
| 			       || ((round_limb
 | ||
| 				    & ((((mp_limb_t) 1) << round_bit) - 1))
 | ||
| 				   != 0)),
 | ||
| 			      mode))
 | ||
| 		{
 | ||
| 		  mp_limb_t cy = __mpn_add_1 (retval_normal, retval,
 | ||
| 					      RETURN_LIMB_SIZE, 1);
 | ||
| 
 | ||
| 		  if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
 | ||
| 		      ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
 | ||
| 		       ((retval_normal[RETURN_LIMB_SIZE - 1]
 | ||
| 			& (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB)))
 | ||
| 			!= 0)))
 | ||
| 		    is_tiny = false;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  round_limb = retval[0];
 | ||
| 	  round_bit = shift - 1;
 | ||
| 	  (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
 | ||
| 	}
 | ||
|       /* This is a hook for the m68k long double format, where the
 | ||
| 	 exponent bias is the same for normalized and denormalized
 | ||
| 	 numbers.  */
 | ||
| #ifndef DENORM_EXP
 | ||
| # define DENORM_EXP (MIN_EXP - 2)
 | ||
| #endif
 | ||
|       exponent = DENORM_EXP;
 | ||
|       if (is_tiny
 | ||
| 	  && ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0
 | ||
| 	      || more_bits
 | ||
| 	      || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0))
 | ||
| 	{
 | ||
| 	  __set_errno (ERANGE);
 | ||
| 	  FLOAT force_underflow = MIN_VALUE * MIN_VALUE;
 | ||
| 	  math_force_eval (force_underflow);
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   if (exponent > MAX_EXP)
 | ||
|     goto overflow;
 | ||
| 
 | ||
|   if (round_away (negative,
 | ||
| 		  (retval[0] & 1) != 0,
 | ||
| 		  (round_limb & (((mp_limb_t) 1) << round_bit)) != 0,
 | ||
| 		  (more_bits
 | ||
| 		   || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0),
 | ||
| 		  mode))
 | ||
|     {
 | ||
|       mp_limb_t cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
 | ||
| 
 | ||
|       if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
 | ||
| 	  ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
 | ||
| 	   (retval[RETURN_LIMB_SIZE - 1]
 | ||
| 	    & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
 | ||
| 	{
 | ||
| 	  ++exponent;
 | ||
| 	  (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
 | ||
| 	  retval[RETURN_LIMB_SIZE - 1]
 | ||
| 	    |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB);
 | ||
| 	}
 | ||
|       else if (exponent == DENORM_EXP
 | ||
| 	       && (retval[RETURN_LIMB_SIZE - 1]
 | ||
| 		   & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB)))
 | ||
| 	       != 0)
 | ||
| 	  /* The number was denormalized but now normalized.  */
 | ||
| 	exponent = MIN_EXP - 1;
 | ||
|     }
 | ||
| 
 | ||
|   if (exponent > MAX_EXP)
 | ||
|   overflow:
 | ||
|     return overflow_value (negative);
 | ||
| 
 | ||
|   return MPN2FLOAT (retval, exponent, negative);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
 | ||
|    into N.  Return the size of the number limbs in NSIZE at the first
 | ||
|    character od the string that is not part of the integer as the function
 | ||
|    value.  If the EXPONENT is small enough to be taken as an additional
 | ||
|    factor for the resulting number (see code) multiply by it.  */
 | ||
| static const STRING_TYPE *
 | ||
| str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize,
 | ||
| 	    intmax_t *exponent
 | ||
| #ifndef USE_WIDE_CHAR
 | ||
| 	    , const char *decimal, size_t decimal_len, const char *thousands
 | ||
| #endif
 | ||
| 
 | ||
| 	    )
 | ||
| {
 | ||
|   /* Number of digits for actual limb.  */
 | ||
|   int cnt = 0;
 | ||
|   mp_limb_t low = 0;
 | ||
|   mp_limb_t start;
 | ||
| 
 | ||
|   *nsize = 0;
 | ||
|   assert (digcnt > 0);
 | ||
|   do
 | ||
|     {
 | ||
|       if (cnt == MAX_DIG_PER_LIMB)
 | ||
| 	{
 | ||
| 	  if (*nsize == 0)
 | ||
| 	    {
 | ||
| 	      n[0] = low;
 | ||
| 	      *nsize = 1;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      mp_limb_t cy;
 | ||
| 	      cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
 | ||
| 	      cy += __mpn_add_1 (n, n, *nsize, low);
 | ||
| 	      if (cy != 0)
 | ||
| 		{
 | ||
| 		  assert (*nsize < MPNSIZE);
 | ||
| 		  n[*nsize] = cy;
 | ||
| 		  ++(*nsize);
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  cnt = 0;
 | ||
| 	  low = 0;
 | ||
| 	}
 | ||
| 
 | ||
|       /* There might be thousands separators or radix characters in
 | ||
| 	 the string.  But these all can be ignored because we know the
 | ||
| 	 format of the number is correct and we have an exact number
 | ||
| 	 of characters to read.  */
 | ||
| #ifdef USE_WIDE_CHAR
 | ||
|       if (*str < L'0' || *str > L'9')
 | ||
| 	++str;
 | ||
| #else
 | ||
|       if (*str < '0' || *str > '9')
 | ||
| 	{
 | ||
| 	  int inner = 0;
 | ||
| 	  if (thousands != NULL && *str == *thousands
 | ||
| 	      && ({ for (inner = 1; thousands[inner] != '\0'; ++inner)
 | ||
| 		      if (thousands[inner] != str[inner])
 | ||
| 			break;
 | ||
| 		    thousands[inner] == '\0'; }))
 | ||
| 	    str += inner;
 | ||
| 	  else
 | ||
| 	    str += decimal_len;
 | ||
| 	}
 | ||
| #endif
 | ||
|       low = low * 10 + *str++ - L_('0');
 | ||
|       ++cnt;
 | ||
|     }
 | ||
|   while (--digcnt > 0);
 | ||
| 
 | ||
|   if (*exponent > 0 && *exponent <= MAX_DIG_PER_LIMB - cnt)
 | ||
|     {
 | ||
|       low *= _tens_in_limb[*exponent];
 | ||
|       start = _tens_in_limb[cnt + *exponent];
 | ||
|       *exponent = 0;
 | ||
|     }
 | ||
|   else
 | ||
|     start = _tens_in_limb[cnt];
 | ||
| 
 | ||
|   if (*nsize == 0)
 | ||
|     {
 | ||
|       n[0] = low;
 | ||
|       *nsize = 1;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       mp_limb_t cy;
 | ||
|       cy = __mpn_mul_1 (n, n, *nsize, start);
 | ||
|       cy += __mpn_add_1 (n, n, *nsize, low);
 | ||
|       if (cy != 0)
 | ||
| 	{
 | ||
| 	  assert (*nsize < MPNSIZE);
 | ||
| 	  n[(*nsize)++] = cy;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   return str;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
 | ||
|    with the COUNT most significant bits of LIMB.
 | ||
| 
 | ||
|    Implemented as a macro, so that __builtin_constant_p works even at -O0.
 | ||
| 
 | ||
|    Tege doesn't like this macro so I have to write it here myself. :)
 | ||
|    --drepper */
 | ||
| #define __mpn_lshift_1(ptr, size, count, limb) \
 | ||
|   do									\
 | ||
|     {									\
 | ||
|       mp_limb_t *__ptr = (ptr);						\
 | ||
|       if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB)	\
 | ||
| 	{								\
 | ||
| 	  mp_size_t i;							\
 | ||
| 	  for (i = (size) - 1; i > 0; --i)				\
 | ||
| 	    __ptr[i] = __ptr[i - 1];					\
 | ||
| 	  __ptr[0] = (limb);						\
 | ||
| 	}								\
 | ||
|       else								\
 | ||
| 	{								\
 | ||
| 	  /* We assume count > 0 && count < BITS_PER_MP_LIMB here.  */	\
 | ||
| 	  unsigned int __count = (count);				\
 | ||
| 	  (void) __mpn_lshift (__ptr, __ptr, size, __count);		\
 | ||
| 	  __ptr[0] |= (limb) >> (BITS_PER_MP_LIMB - __count);		\
 | ||
| 	}								\
 | ||
|     }									\
 | ||
|   while (0)
 | ||
| 
 | ||
| 
 | ||
| #define INTERNAL(x) INTERNAL1(x)
 | ||
| #define INTERNAL1(x) __##x##_internal
 | ||
| #ifndef ____STRTOF_INTERNAL
 | ||
| # define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
 | ||
| #endif
 | ||
| 
 | ||
| /* This file defines a function to check for correct grouping.  */
 | ||
| #include "grouping.h"
 | ||
| 
 | ||
| 
 | ||
| /* Return a floating point number with the value of the given string NPTR.
 | ||
|    Set *ENDPTR to the character after the last used one.  If the number is
 | ||
|    smaller than the smallest representable number, set `errno' to ERANGE and
 | ||
|    return 0.0.  If the number is too big to be represented, set `errno' to
 | ||
|    ERANGE and return HUGE_VAL with the appropriate sign.  */
 | ||
| FLOAT
 | ||
| ____STRTOF_INTERNAL (const STRING_TYPE *nptr, STRING_TYPE **endptr, int group,
 | ||
| 		     __locale_t loc)
 | ||
| {
 | ||
|   int negative;			/* The sign of the number.  */
 | ||
|   MPN_VAR (num);		/* MP representation of the number.  */
 | ||
|   intmax_t exponent;		/* Exponent of the number.  */
 | ||
| 
 | ||
|   /* Numbers starting `0X' or `0x' have to be processed with base 16.  */
 | ||
|   int base = 10;
 | ||
| 
 | ||
|   /* When we have to compute fractional digits we form a fraction with a
 | ||
|      second multi-precision number (and we sometimes need a second for
 | ||
|      temporary results).  */
 | ||
|   MPN_VAR (den);
 | ||
| 
 | ||
|   /* Representation for the return value.  */
 | ||
|   mp_limb_t retval[RETURN_LIMB_SIZE];
 | ||
|   /* Number of bits currently in result value.  */
 | ||
|   int bits;
 | ||
| 
 | ||
|   /* Running pointer after the last character processed in the string.  */
 | ||
|   const STRING_TYPE *cp, *tp;
 | ||
|   /* Start of significant part of the number.  */
 | ||
|   const STRING_TYPE *startp, *start_of_digits;
 | ||
|   /* Points at the character following the integer and fractional digits.  */
 | ||
|   const STRING_TYPE *expp;
 | ||
|   /* Total number of digit and number of digits in integer part.  */
 | ||
|   size_t dig_no, int_no, lead_zero;
 | ||
|   /* Contains the last character read.  */
 | ||
|   CHAR_TYPE c;
 | ||
| 
 | ||
| /* We should get wint_t from <stddef.h>, but not all GCC versions define it
 | ||
|    there.  So define it ourselves if it remains undefined.  */
 | ||
| #ifndef _WINT_T
 | ||
|   typedef unsigned int wint_t;
 | ||
| #endif
 | ||
|   /* The radix character of the current locale.  */
 | ||
| #ifdef USE_WIDE_CHAR
 | ||
|   wchar_t decimal;
 | ||
| #else
 | ||
|   const char *decimal;
 | ||
|   size_t decimal_len;
 | ||
| #endif
 | ||
|   /* The thousands character of the current locale.  */
 | ||
| #ifdef USE_WIDE_CHAR
 | ||
|   wchar_t thousands = L'\0';
 | ||
| #else
 | ||
|   const char *thousands = NULL;
 | ||
| #endif
 | ||
|   /* The numeric grouping specification of the current locale,
 | ||
|      in the format described in <locale.h>.  */
 | ||
|   const char *grouping;
 | ||
|   /* Used in several places.  */
 | ||
|   int cnt;
 | ||
| 
 | ||
|   struct __locale_data *current = loc->__locales[LC_NUMERIC];
 | ||
| 
 | ||
|   if (__glibc_unlikely (group))
 | ||
|     {
 | ||
|       grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
 | ||
|       if (*grouping <= 0 || *grouping == CHAR_MAX)
 | ||
| 	grouping = NULL;
 | ||
|       else
 | ||
| 	{
 | ||
| 	  /* Figure out the thousands separator character.  */
 | ||
| #ifdef USE_WIDE_CHAR
 | ||
| 	  thousands = _NL_CURRENT_WORD (LC_NUMERIC,
 | ||
| 					_NL_NUMERIC_THOUSANDS_SEP_WC);
 | ||
| 	  if (thousands == L'\0')
 | ||
| 	    grouping = NULL;
 | ||
| #else
 | ||
| 	  thousands = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
 | ||
| 	  if (*thousands == '\0')
 | ||
| 	    {
 | ||
| 	      thousands = NULL;
 | ||
| 	      grouping = NULL;
 | ||
| 	    }
 | ||
| #endif
 | ||
| 	}
 | ||
|     }
 | ||
|   else
 | ||
|     grouping = NULL;
 | ||
| 
 | ||
|   /* Find the locale's decimal point character.  */
 | ||
| #ifdef USE_WIDE_CHAR
 | ||
|   decimal = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
 | ||
|   assert (decimal != L'\0');
 | ||
| # define decimal_len 1
 | ||
| #else
 | ||
|   decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
 | ||
|   decimal_len = strlen (decimal);
 | ||
|   assert (decimal_len > 0);
 | ||
| #endif
 | ||
| 
 | ||
|   /* Prepare number representation.  */
 | ||
|   exponent = 0;
 | ||
|   negative = 0;
 | ||
|   bits = 0;
 | ||
| 
 | ||
|   /* Parse string to get maximal legal prefix.  We need the number of
 | ||
|      characters of the integer part, the fractional part and the exponent.  */
 | ||
|   cp = nptr - 1;
 | ||
|   /* Ignore leading white space.  */
 | ||
|   do
 | ||
|     c = *++cp;
 | ||
|   while (ISSPACE (c));
 | ||
| 
 | ||
|   /* Get sign of the result.  */
 | ||
|   if (c == L_('-'))
 | ||
|     {
 | ||
|       negative = 1;
 | ||
|       c = *++cp;
 | ||
|     }
 | ||
|   else if (c == L_('+'))
 | ||
|     c = *++cp;
 | ||
| 
 | ||
|   /* Return 0.0 if no legal string is found.
 | ||
|      No character is used even if a sign was found.  */
 | ||
| #ifdef USE_WIDE_CHAR
 | ||
|   if (c == (wint_t) decimal
 | ||
|       && (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9')
 | ||
|     {
 | ||
|       /* We accept it.  This funny construct is here only to indent
 | ||
| 	 the code correctly.  */
 | ||
|     }
 | ||
| #else
 | ||
|   for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
 | ||
|     if (cp[cnt] != decimal[cnt])
 | ||
|       break;
 | ||
|   if (decimal[cnt] == '\0' && cp[cnt] >= '0' && cp[cnt] <= '9')
 | ||
|     {
 | ||
|       /* We accept it.  This funny construct is here only to indent
 | ||
| 	 the code correctly.  */
 | ||
|     }
 | ||
| #endif
 | ||
|   else if (c < L_('0') || c > L_('9'))
 | ||
|     {
 | ||
|       /* Check for `INF' or `INFINITY'.  */
 | ||
|       CHAR_TYPE lowc = TOLOWER_C (c);
 | ||
| 
 | ||
|       if (lowc == L_('i') && STRNCASECMP (cp, L_("inf"), 3) == 0)
 | ||
| 	{
 | ||
| 	  /* Return +/- infinity.  */
 | ||
| 	  if (endptr != NULL)
 | ||
| 	    *endptr = (STRING_TYPE *)
 | ||
| 		      (cp + (STRNCASECMP (cp + 3, L_("inity"), 5) == 0
 | ||
| 			     ? 8 : 3));
 | ||
| 
 | ||
| 	  return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
 | ||
| 	}
 | ||
| 
 | ||
|       if (lowc == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0)
 | ||
| 	{
 | ||
| 	  /* Return NaN.  */
 | ||
| 	  FLOAT retval = NAN;
 | ||
| 
 | ||
| 	  cp += 3;
 | ||
| 
 | ||
| 	  /* Match `(n-char-sequence-digit)'.  */
 | ||
| 	  if (*cp == L_('('))
 | ||
| 	    {
 | ||
| 	      const STRING_TYPE *startp = cp;
 | ||
| 	      STRING_TYPE *endp;
 | ||
| 	      retval = STRTOF_NAN (cp + 1, &endp, L_(')'));
 | ||
| 	      if (*endp == L_(')'))
 | ||
| 		/* Consume the closing parenthesis.  */
 | ||
| 		cp = endp + 1;
 | ||
| 	      else
 | ||
| 		/* Only match the NAN part.  */
 | ||
| 		cp = startp;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  if (endptr != NULL)
 | ||
| 	    *endptr = (STRING_TYPE *) cp;
 | ||
| 
 | ||
| 	  return retval;
 | ||
| 	}
 | ||
| 
 | ||
|       /* It is really a text we do not recognize.  */
 | ||
|       RETURN (0.0, nptr);
 | ||
|     }
 | ||
| 
 | ||
|   /* First look whether we are faced with a hexadecimal number.  */
 | ||
|   if (c == L_('0') && TOLOWER (cp[1]) == L_('x'))
 | ||
|     {
 | ||
|       /* Okay, it is a hexa-decimal number.  Remember this and skip
 | ||
| 	 the characters.  BTW: hexadecimal numbers must not be
 | ||
| 	 grouped.  */
 | ||
|       base = 16;
 | ||
|       cp += 2;
 | ||
|       c = *cp;
 | ||
|       grouping = NULL;
 | ||
|     }
 | ||
| 
 | ||
|   /* Record the start of the digits, in case we will check their grouping.  */
 | ||
|   start_of_digits = startp = cp;
 | ||
| 
 | ||
|   /* Ignore leading zeroes.  This helps us to avoid useless computations.  */
 | ||
| #ifdef USE_WIDE_CHAR
 | ||
|   while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands))
 | ||
|     c = *++cp;
 | ||
| #else
 | ||
|   if (__glibc_likely (thousands == NULL))
 | ||
|     while (c == '0')
 | ||
|       c = *++cp;
 | ||
|   else
 | ||
|     {
 | ||
|       /* We also have the multibyte thousands string.  */
 | ||
|       while (1)
 | ||
| 	{
 | ||
| 	  if (c != '0')
 | ||
| 	    {
 | ||
| 	      for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
 | ||
| 		if (thousands[cnt] != cp[cnt])
 | ||
| 		  break;
 | ||
| 	      if (thousands[cnt] != '\0')
 | ||
| 		break;
 | ||
| 	      cp += cnt - 1;
 | ||
| 	    }
 | ||
| 	  c = *++cp;
 | ||
| 	}
 | ||
|     }
 | ||
| #endif
 | ||
| 
 | ||
|   /* If no other digit but a '0' is found the result is 0.0.
 | ||
|      Return current read pointer.  */
 | ||
|   CHAR_TYPE lowc = TOLOWER (c);
 | ||
|   if (!((c >= L_('0') && c <= L_('9'))
 | ||
| 	|| (base == 16 && lowc >= L_('a') && lowc <= L_('f'))
 | ||
| 	|| (
 | ||
| #ifdef USE_WIDE_CHAR
 | ||
| 	    c == (wint_t) decimal
 | ||
| #else
 | ||
| 	    ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
 | ||
| 		 if (decimal[cnt] != cp[cnt])
 | ||
| 		   break;
 | ||
| 	       decimal[cnt] == '\0'; })
 | ||
| #endif
 | ||
| 	    /* '0x.' alone is not a valid hexadecimal number.
 | ||
| 	       '.' alone is not valid either, but that has been checked
 | ||
| 	       already earlier.  */
 | ||
| 	    && (base != 16
 | ||
| 		|| cp != start_of_digits
 | ||
| 		|| (cp[decimal_len] >= L_('0') && cp[decimal_len] <= L_('9'))
 | ||
| 		|| ({ CHAR_TYPE lo = TOLOWER (cp[decimal_len]);
 | ||
| 		      lo >= L_('a') && lo <= L_('f'); })))
 | ||
| 	|| (base == 16 && (cp != start_of_digits
 | ||
| 			   && lowc == L_('p')))
 | ||
| 	|| (base != 16 && lowc == L_('e'))))
 | ||
|     {
 | ||
| #ifdef USE_WIDE_CHAR
 | ||
|       tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
 | ||
| 					 grouping);
 | ||
| #else
 | ||
|       tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
 | ||
| 					 grouping);
 | ||
| #endif
 | ||
|       /* If TP is at the start of the digits, there was no correctly
 | ||
| 	 grouped prefix of the string; so no number found.  */
 | ||
|       RETURN (negative ? -0.0 : 0.0,
 | ||
| 	      tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp);
 | ||
|     }
 | ||
| 
 | ||
|   /* Remember first significant digit and read following characters until the
 | ||
|      decimal point, exponent character or any non-FP number character.  */
 | ||
|   startp = cp;
 | ||
|   dig_no = 0;
 | ||
|   while (1)
 | ||
|     {
 | ||
|       if ((c >= L_('0') && c <= L_('9'))
 | ||
| 	  || (base == 16
 | ||
| 	      && ({ CHAR_TYPE lo = TOLOWER (c);
 | ||
| 		    lo >= L_('a') && lo <= L_('f'); })))
 | ||
| 	++dig_no;
 | ||
|       else
 | ||
| 	{
 | ||
| #ifdef USE_WIDE_CHAR
 | ||
| 	  if (__builtin_expect ((wint_t) thousands == L'\0', 1)
 | ||
| 	      || c != (wint_t) thousands)
 | ||
| 	    /* Not a digit or separator: end of the integer part.  */
 | ||
| 	    break;
 | ||
| #else
 | ||
| 	  if (__glibc_likely (thousands == NULL))
 | ||
| 	    break;
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
 | ||
| 		if (thousands[cnt] != cp[cnt])
 | ||
| 		  break;
 | ||
| 	      if (thousands[cnt] != '\0')
 | ||
| 		break;
 | ||
| 	      cp += cnt - 1;
 | ||
| 	    }
 | ||
| #endif
 | ||
| 	}
 | ||
|       c = *++cp;
 | ||
|     }
 | ||
| 
 | ||
|   if (__builtin_expect (grouping != NULL, 0) && cp > start_of_digits)
 | ||
|     {
 | ||
|       /* Check the grouping of the digits.  */
 | ||
| #ifdef USE_WIDE_CHAR
 | ||
|       tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
 | ||
| 					 grouping);
 | ||
| #else
 | ||
|       tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
 | ||
| 					 grouping);
 | ||
| #endif
 | ||
|       if (cp != tp)
 | ||
| 	{
 | ||
| 	  /* Less than the entire string was correctly grouped.  */
 | ||
| 
 | ||
| 	  if (tp == start_of_digits)
 | ||
| 	    /* No valid group of numbers at all: no valid number.  */
 | ||
| 	    RETURN (0.0, nptr);
 | ||
| 
 | ||
| 	  if (tp < startp)
 | ||
| 	    /* The number is validly grouped, but consists
 | ||
| 	       only of zeroes.  The whole value is zero.  */
 | ||
| 	    RETURN (negative ? -0.0 : 0.0, tp);
 | ||
| 
 | ||
| 	  /* Recompute DIG_NO so we won't read more digits than
 | ||
| 	     are properly grouped.  */
 | ||
| 	  cp = tp;
 | ||
| 	  dig_no = 0;
 | ||
| 	  for (tp = startp; tp < cp; ++tp)
 | ||
| 	    if (*tp >= L_('0') && *tp <= L_('9'))
 | ||
| 	      ++dig_no;
 | ||
| 
 | ||
| 	  int_no = dig_no;
 | ||
| 	  lead_zero = 0;
 | ||
| 
 | ||
| 	  goto number_parsed;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   /* We have the number of digits in the integer part.  Whether these
 | ||
|      are all or any is really a fractional digit will be decided
 | ||
|      later.  */
 | ||
|   int_no = dig_no;
 | ||
|   lead_zero = int_no == 0 ? (size_t) -1 : 0;
 | ||
| 
 | ||
|   /* Read the fractional digits.  A special case are the 'american
 | ||
|      style' numbers like `16.' i.e. with decimal point but without
 | ||
|      trailing digits.  */
 | ||
|   if (
 | ||
| #ifdef USE_WIDE_CHAR
 | ||
|       c == (wint_t) decimal
 | ||
| #else
 | ||
|       ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
 | ||
| 	   if (decimal[cnt] != cp[cnt])
 | ||
| 	     break;
 | ||
| 	 decimal[cnt] == '\0'; })
 | ||
| #endif
 | ||
|       )
 | ||
|     {
 | ||
|       cp += decimal_len;
 | ||
|       c = *cp;
 | ||
|       while ((c >= L_('0') && c <= L_('9')) ||
 | ||
| 	     (base == 16 && ({ CHAR_TYPE lo = TOLOWER (c);
 | ||
| 			       lo >= L_('a') && lo <= L_('f'); })))
 | ||
| 	{
 | ||
| 	  if (c != L_('0') && lead_zero == (size_t) -1)
 | ||
| 	    lead_zero = dig_no - int_no;
 | ||
| 	  ++dig_no;
 | ||
| 	  c = *++cp;
 | ||
| 	}
 | ||
|     }
 | ||
|   assert (dig_no <= (uintmax_t) INTMAX_MAX);
 | ||
| 
 | ||
|   /* Remember start of exponent (if any).  */
 | ||
|   expp = cp;
 | ||
| 
 | ||
|   /* Read exponent.  */
 | ||
|   lowc = TOLOWER (c);
 | ||
|   if ((base == 16 && lowc == L_('p'))
 | ||
|       || (base != 16 && lowc == L_('e')))
 | ||
|     {
 | ||
|       int exp_negative = 0;
 | ||
| 
 | ||
|       c = *++cp;
 | ||
|       if (c == L_('-'))
 | ||
| 	{
 | ||
| 	  exp_negative = 1;
 | ||
| 	  c = *++cp;
 | ||
| 	}
 | ||
|       else if (c == L_('+'))
 | ||
| 	c = *++cp;
 | ||
| 
 | ||
|       if (c >= L_('0') && c <= L_('9'))
 | ||
| 	{
 | ||
| 	  intmax_t exp_limit;
 | ||
| 
 | ||
| 	  /* Get the exponent limit. */
 | ||
| 	  if (base == 16)
 | ||
| 	    {
 | ||
| 	      if (exp_negative)
 | ||
| 		{
 | ||
| 		  assert (int_no <= (uintmax_t) (INTMAX_MAX
 | ||
| 						 + MIN_EXP - MANT_DIG) / 4);
 | ||
| 		  exp_limit = -MIN_EXP + MANT_DIG + 4 * (intmax_t) int_no;
 | ||
| 		}
 | ||
| 	      else
 | ||
| 		{
 | ||
| 		  if (int_no)
 | ||
| 		    {
 | ||
| 		      assert (lead_zero == 0
 | ||
| 			      && int_no <= (uintmax_t) INTMAX_MAX / 4);
 | ||
| 		      exp_limit = MAX_EXP - 4 * (intmax_t) int_no + 3;
 | ||
| 		    }
 | ||
| 		  else if (lead_zero == (size_t) -1)
 | ||
| 		    {
 | ||
| 		      /* The number is zero and this limit is
 | ||
| 			 arbitrary.  */
 | ||
| 		      exp_limit = MAX_EXP + 3;
 | ||
| 		    }
 | ||
| 		  else
 | ||
| 		    {
 | ||
| 		      assert (lead_zero
 | ||
| 			      <= (uintmax_t) (INTMAX_MAX - MAX_EXP - 3) / 4);
 | ||
| 		      exp_limit = (MAX_EXP
 | ||
| 				   + 4 * (intmax_t) lead_zero
 | ||
| 				   + 3);
 | ||
| 		    }
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      if (exp_negative)
 | ||
| 		{
 | ||
| 		  assert (int_no
 | ||
| 			  <= (uintmax_t) (INTMAX_MAX + MIN_10_EXP - MANT_DIG));
 | ||
| 		  exp_limit = -MIN_10_EXP + MANT_DIG + (intmax_t) int_no;
 | ||
| 		}
 | ||
| 	      else
 | ||
| 		{
 | ||
| 		  if (int_no)
 | ||
| 		    {
 | ||
| 		      assert (lead_zero == 0
 | ||
| 			      && int_no <= (uintmax_t) INTMAX_MAX);
 | ||
| 		      exp_limit = MAX_10_EXP - (intmax_t) int_no + 1;
 | ||
| 		    }
 | ||
| 		  else if (lead_zero == (size_t) -1)
 | ||
| 		    {
 | ||
| 		      /* The number is zero and this limit is
 | ||
| 			 arbitrary.  */
 | ||
| 		      exp_limit = MAX_10_EXP + 1;
 | ||
| 		    }
 | ||
| 		  else
 | ||
| 		    {
 | ||
| 		      assert (lead_zero
 | ||
| 			      <= (uintmax_t) (INTMAX_MAX - MAX_10_EXP - 1));
 | ||
| 		      exp_limit = MAX_10_EXP + (intmax_t) lead_zero + 1;
 | ||
| 		    }
 | ||
| 		}
 | ||
| 	    }
 | ||
| 
 | ||
| 	  if (exp_limit < 0)
 | ||
| 	    exp_limit = 0;
 | ||
| 
 | ||
| 	  do
 | ||
| 	    {
 | ||
| 	      if (__builtin_expect ((exponent > exp_limit / 10
 | ||
| 				     || (exponent == exp_limit / 10
 | ||
| 					 && c - L_('0') > exp_limit % 10)), 0))
 | ||
| 		/* The exponent is too large/small to represent a valid
 | ||
| 		   number.  */
 | ||
| 		{
 | ||
| 		  FLOAT result;
 | ||
| 
 | ||
| 		  /* We have to take care for special situation: a joker
 | ||
| 		     might have written "0.0e100000" which is in fact
 | ||
| 		     zero.  */
 | ||
| 		  if (lead_zero == (size_t) -1)
 | ||
| 		    result = negative ? -0.0 : 0.0;
 | ||
| 		  else
 | ||
| 		    {
 | ||
| 		      /* Overflow or underflow.  */
 | ||
| 		      result = (exp_negative
 | ||
| 				? underflow_value (negative)
 | ||
| 				: overflow_value (negative));
 | ||
| 		    }
 | ||
| 
 | ||
| 		  /* Accept all following digits as part of the exponent.  */
 | ||
| 		  do
 | ||
| 		    ++cp;
 | ||
| 		  while (*cp >= L_('0') && *cp <= L_('9'));
 | ||
| 
 | ||
| 		  RETURN (result, cp);
 | ||
| 		  /* NOTREACHED */
 | ||
| 		}
 | ||
| 
 | ||
| 	      exponent *= 10;
 | ||
| 	      exponent += c - L_('0');
 | ||
| 
 | ||
| 	      c = *++cp;
 | ||
| 	    }
 | ||
| 	  while (c >= L_('0') && c <= L_('9'));
 | ||
| 
 | ||
| 	  if (exp_negative)
 | ||
| 	    exponent = -exponent;
 | ||
| 	}
 | ||
|       else
 | ||
| 	cp = expp;
 | ||
|     }
 | ||
| 
 | ||
|   /* We don't want to have to work with trailing zeroes after the radix.  */
 | ||
|   if (dig_no > int_no)
 | ||
|     {
 | ||
|       while (expp[-1] == L_('0'))
 | ||
| 	{
 | ||
| 	  --expp;
 | ||
| 	  --dig_no;
 | ||
| 	}
 | ||
|       assert (dig_no >= int_no);
 | ||
|     }
 | ||
| 
 | ||
|   if (dig_no == int_no && dig_no > 0 && exponent < 0)
 | ||
|     do
 | ||
|       {
 | ||
| 	while (! (base == 16 ? ISXDIGIT (expp[-1]) : ISDIGIT (expp[-1])))
 | ||
| 	  --expp;
 | ||
| 
 | ||
| 	if (expp[-1] != L_('0'))
 | ||
| 	  break;
 | ||
| 
 | ||
| 	--expp;
 | ||
| 	--dig_no;
 | ||
| 	--int_no;
 | ||
| 	exponent += base == 16 ? 4 : 1;
 | ||
|       }
 | ||
|     while (dig_no > 0 && exponent < 0);
 | ||
| 
 | ||
|  number_parsed:
 | ||
| 
 | ||
|   /* The whole string is parsed.  Store the address of the next character.  */
 | ||
|   if (endptr)
 | ||
|     *endptr = (STRING_TYPE *) cp;
 | ||
| 
 | ||
|   if (dig_no == 0)
 | ||
|     return negative ? -0.0 : 0.0;
 | ||
| 
 | ||
|   if (lead_zero)
 | ||
|     {
 | ||
|       /* Find the decimal point */
 | ||
| #ifdef USE_WIDE_CHAR
 | ||
|       while (*startp != decimal)
 | ||
| 	++startp;
 | ||
| #else
 | ||
|       while (1)
 | ||
| 	{
 | ||
| 	  if (*startp == decimal[0])
 | ||
| 	    {
 | ||
| 	      for (cnt = 1; decimal[cnt] != '\0'; ++cnt)
 | ||
| 		if (decimal[cnt] != startp[cnt])
 | ||
| 		  break;
 | ||
| 	      if (decimal[cnt] == '\0')
 | ||
| 		break;
 | ||
| 	    }
 | ||
| 	  ++startp;
 | ||
| 	}
 | ||
| #endif
 | ||
|       startp += lead_zero + decimal_len;
 | ||
|       assert (lead_zero <= (base == 16
 | ||
| 			    ? (uintmax_t) INTMAX_MAX / 4
 | ||
| 			    : (uintmax_t) INTMAX_MAX));
 | ||
|       assert (lead_zero <= (base == 16
 | ||
| 			    ? ((uintmax_t) exponent
 | ||
| 			       - (uintmax_t) INTMAX_MIN) / 4
 | ||
| 			    : ((uintmax_t) exponent - (uintmax_t) INTMAX_MIN)));
 | ||
|       exponent -= base == 16 ? 4 * (intmax_t) lead_zero : (intmax_t) lead_zero;
 | ||
|       dig_no -= lead_zero;
 | ||
|     }
 | ||
| 
 | ||
|   /* If the BASE is 16 we can use a simpler algorithm.  */
 | ||
|   if (base == 16)
 | ||
|     {
 | ||
|       static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
 | ||
| 				     4, 4, 4, 4, 4, 4, 4, 4 };
 | ||
|       int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB;
 | ||
|       int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
 | ||
|       mp_limb_t val;
 | ||
| 
 | ||
|       while (!ISXDIGIT (*startp))
 | ||
| 	++startp;
 | ||
|       while (*startp == L_('0'))
 | ||
| 	++startp;
 | ||
|       if (ISDIGIT (*startp))
 | ||
| 	val = *startp++ - L_('0');
 | ||
|       else
 | ||
| 	val = 10 + TOLOWER (*startp++) - L_('a');
 | ||
|       bits = nbits[val];
 | ||
|       /* We cannot have a leading zero.  */
 | ||
|       assert (bits != 0);
 | ||
| 
 | ||
|       if (pos + 1 >= 4 || pos + 1 >= bits)
 | ||
| 	{
 | ||
| 	  /* We don't have to care for wrapping.  This is the normal
 | ||
| 	     case so we add the first clause in the `if' expression as
 | ||
| 	     an optimization.  It is a compile-time constant and so does
 | ||
| 	     not cost anything.  */
 | ||
| 	  retval[idx] = val << (pos - bits + 1);
 | ||
| 	  pos -= bits;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  retval[idx--] = val >> (bits - pos - 1);
 | ||
| 	  retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1));
 | ||
| 	  pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1);
 | ||
| 	}
 | ||
| 
 | ||
|       /* Adjust the exponent for the bits we are shifting in.  */
 | ||
|       assert (int_no <= (uintmax_t) (exponent < 0
 | ||
| 				     ? (INTMAX_MAX - bits + 1) / 4
 | ||
| 				     : (INTMAX_MAX - exponent - bits + 1) / 4));
 | ||
|       exponent += bits - 1 + ((intmax_t) int_no - 1) * 4;
 | ||
| 
 | ||
|       while (--dig_no > 0 && idx >= 0)
 | ||
| 	{
 | ||
| 	  if (!ISXDIGIT (*startp))
 | ||
| 	    startp += decimal_len;
 | ||
| 	  if (ISDIGIT (*startp))
 | ||
| 	    val = *startp++ - L_('0');
 | ||
| 	  else
 | ||
| 	    val = 10 + TOLOWER (*startp++) - L_('a');
 | ||
| 
 | ||
| 	  if (pos + 1 >= 4)
 | ||
| 	    {
 | ||
| 	      retval[idx] |= val << (pos - 4 + 1);
 | ||
| 	      pos -= 4;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      retval[idx--] |= val >> (4 - pos - 1);
 | ||
| 	      val <<= BITS_PER_MP_LIMB - (4 - pos - 1);
 | ||
| 	      if (idx < 0)
 | ||
| 		{
 | ||
| 		  int rest_nonzero = 0;
 | ||
| 		  while (--dig_no > 0)
 | ||
| 		    {
 | ||
| 		      if (*startp != L_('0'))
 | ||
| 			{
 | ||
| 			  rest_nonzero = 1;
 | ||
| 			  break;
 | ||
| 			}
 | ||
| 		      startp++;
 | ||
| 		    }
 | ||
| 		  return round_and_return (retval, exponent, negative, val,
 | ||
| 					   BITS_PER_MP_LIMB - 1, rest_nonzero);
 | ||
| 		}
 | ||
| 
 | ||
| 	      retval[idx] = val;
 | ||
| 	      pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1);
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       /* We ran out of digits.  */
 | ||
|       MPN_ZERO (retval, idx);
 | ||
| 
 | ||
|       return round_and_return (retval, exponent, negative, 0, 0, 0);
 | ||
|     }
 | ||
| 
 | ||
|   /* Now we have the number of digits in total and the integer digits as well
 | ||
|      as the exponent and its sign.  We can decide whether the read digits are
 | ||
|      really integer digits or belong to the fractional part; i.e. we normalize
 | ||
|      123e-2 to 1.23.  */
 | ||
|   {
 | ||
|     intmax_t incr = (exponent < 0
 | ||
| 		     ? MAX (-(intmax_t) int_no, exponent)
 | ||
| 		     : MIN ((intmax_t) dig_no - (intmax_t) int_no, exponent));
 | ||
|     int_no += incr;
 | ||
|     exponent -= incr;
 | ||
|   }
 | ||
| 
 | ||
|   if (__glibc_unlikely (exponent > MAX_10_EXP + 1 - (intmax_t) int_no))
 | ||
|     return overflow_value (negative);
 | ||
| 
 | ||
|   /* 10^(MIN_10_EXP-1) is not normal.  Thus, 10^(MIN_10_EXP-1) /
 | ||
|      2^MANT_DIG is below half the least subnormal, so anything with a
 | ||
|      base-10 exponent less than the base-10 exponent (which is
 | ||
|      MIN_10_EXP - 1 - ceil(MANT_DIG*log10(2))) of that value
 | ||
|      underflows.  DIG is floor((MANT_DIG-1)log10(2)), so an exponent
 | ||
|      below MIN_10_EXP - (DIG + 3) underflows.  But EXPONENT is
 | ||
|      actually an exponent multiplied only by a fractional part, not an
 | ||
|      integer part, so an exponent below MIN_10_EXP - (DIG + 2)
 | ||
|      underflows.  */
 | ||
|   if (__glibc_unlikely (exponent < MIN_10_EXP - (DIG + 2)))
 | ||
|     return underflow_value (negative);
 | ||
| 
 | ||
|   if (int_no > 0)
 | ||
|     {
 | ||
|       /* Read the integer part as a multi-precision number to NUM.  */
 | ||
|       startp = str_to_mpn (startp, int_no, num, &numsize, &exponent
 | ||
| #ifndef USE_WIDE_CHAR
 | ||
| 			   , decimal, decimal_len, thousands
 | ||
| #endif
 | ||
| 			   );
 | ||
| 
 | ||
|       if (exponent > 0)
 | ||
| 	{
 | ||
| 	  /* We now multiply the gained number by the given power of ten.  */
 | ||
| 	  mp_limb_t *psrc = num;
 | ||
| 	  mp_limb_t *pdest = den;
 | ||
| 	  int expbit = 1;
 | ||
| 	  const struct mp_power *ttab = &_fpioconst_pow10[0];
 | ||
| 
 | ||
| 	  do
 | ||
| 	    {
 | ||
| 	      if ((exponent & expbit) != 0)
 | ||
| 		{
 | ||
| 		  size_t size = ttab->arraysize - _FPIO_CONST_OFFSET;
 | ||
| 		  mp_limb_t cy;
 | ||
| 		  exponent ^= expbit;
 | ||
| 
 | ||
| 		  /* FIXME: not the whole multiplication has to be
 | ||
| 		     done.  If we have the needed number of bits we
 | ||
| 		     only need the information whether more non-zero
 | ||
| 		     bits follow.  */
 | ||
| 		  if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET)
 | ||
| 		    cy = __mpn_mul (pdest, psrc, numsize,
 | ||
| 				    &__tens[ttab->arrayoff
 | ||
| 					   + _FPIO_CONST_OFFSET],
 | ||
| 				    size);
 | ||
| 		  else
 | ||
| 		    cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
 | ||
| 						  + _FPIO_CONST_OFFSET],
 | ||
| 				    size, psrc, numsize);
 | ||
| 		  numsize += size;
 | ||
| 		  if (cy == 0)
 | ||
| 		    --numsize;
 | ||
| 		  (void) SWAP (psrc, pdest);
 | ||
| 		}
 | ||
| 	      expbit <<= 1;
 | ||
| 	      ++ttab;
 | ||
| 	    }
 | ||
| 	  while (exponent != 0);
 | ||
| 
 | ||
| 	  if (psrc == den)
 | ||
| 	    memcpy (num, den, numsize * sizeof (mp_limb_t));
 | ||
| 	}
 | ||
| 
 | ||
|       /* Determine how many bits of the result we already have.  */
 | ||
|       count_leading_zeros (bits, num[numsize - 1]);
 | ||
|       bits = numsize * BITS_PER_MP_LIMB - bits;
 | ||
| 
 | ||
|       /* Now we know the exponent of the number in base two.
 | ||
| 	 Check it against the maximum possible exponent.  */
 | ||
|       if (__glibc_unlikely (bits > MAX_EXP))
 | ||
| 	return overflow_value (negative);
 | ||
| 
 | ||
|       /* We have already the first BITS bits of the result.  Together with
 | ||
| 	 the information whether more non-zero bits follow this is enough
 | ||
| 	 to determine the result.  */
 | ||
|       if (bits > MANT_DIG)
 | ||
| 	{
 | ||
| 	  int i;
 | ||
| 	  const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
 | ||
| 	  const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
 | ||
| 	  const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
 | ||
| 						     : least_idx;
 | ||
| 	  const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
 | ||
| 						     : least_bit - 1;
 | ||
| 
 | ||
| 	  if (least_bit == 0)
 | ||
| 	    memcpy (retval, &num[least_idx],
 | ||
| 		    RETURN_LIMB_SIZE * sizeof (mp_limb_t));
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      for (i = least_idx; i < numsize - 1; ++i)
 | ||
| 		retval[i - least_idx] = (num[i] >> least_bit)
 | ||
| 					| (num[i + 1]
 | ||
| 					   << (BITS_PER_MP_LIMB - least_bit));
 | ||
| 	      if (i - least_idx < RETURN_LIMB_SIZE)
 | ||
| 		retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  /* Check whether any limb beside the ones in RETVAL are non-zero.  */
 | ||
| 	  for (i = 0; num[i] == 0; ++i)
 | ||
| 	    ;
 | ||
| 
 | ||
| 	  return round_and_return (retval, bits - 1, negative,
 | ||
| 				   num[round_idx], round_bit,
 | ||
| 				   int_no < dig_no || i < round_idx);
 | ||
| 	  /* NOTREACHED */
 | ||
| 	}
 | ||
|       else if (dig_no == int_no)
 | ||
| 	{
 | ||
| 	  const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
 | ||
| 	  const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
 | ||
| 
 | ||
| 	  if (target_bit == is_bit)
 | ||
| 	    {
 | ||
| 	      memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
 | ||
| 		      numsize * sizeof (mp_limb_t));
 | ||
| 	      /* FIXME: the following loop can be avoided if we assume a
 | ||
| 		 maximal MANT_DIG value.  */
 | ||
| 	      MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
 | ||
| 	    }
 | ||
| 	  else if (target_bit > is_bit)
 | ||
| 	    {
 | ||
| 	      (void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
 | ||
| 				   num, numsize, target_bit - is_bit);
 | ||
| 	      /* FIXME: the following loop can be avoided if we assume a
 | ||
| 		 maximal MANT_DIG value.  */
 | ||
| 	      MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      mp_limb_t cy;
 | ||
| 	      assert (numsize < RETURN_LIMB_SIZE);
 | ||
| 
 | ||
| 	      cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
 | ||
| 				 num, numsize, is_bit - target_bit);
 | ||
| 	      retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
 | ||
| 	      /* FIXME: the following loop can be avoided if we assume a
 | ||
| 		 maximal MANT_DIG value.  */
 | ||
| 	      MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
 | ||
| 	    }
 | ||
| 
 | ||
| 	  return round_and_return (retval, bits - 1, negative, 0, 0, 0);
 | ||
| 	  /* NOTREACHED */
 | ||
| 	}
 | ||
| 
 | ||
|       /* Store the bits we already have.  */
 | ||
|       memcpy (retval, num, numsize * sizeof (mp_limb_t));
 | ||
| #if RETURN_LIMB_SIZE > 1
 | ||
|       if (numsize < RETURN_LIMB_SIZE)
 | ||
| # if RETURN_LIMB_SIZE == 2
 | ||
| 	retval[numsize] = 0;
 | ||
| # else
 | ||
| 	MPN_ZERO (retval + numsize, RETURN_LIMB_SIZE - numsize);
 | ||
| # endif
 | ||
| #endif
 | ||
|     }
 | ||
| 
 | ||
|   /* We have to compute at least some of the fractional digits.  */
 | ||
|   {
 | ||
|     /* We construct a fraction and the result of the division gives us
 | ||
|        the needed digits.  The denominator is 1.0 multiplied by the
 | ||
|        exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
 | ||
|        123e-6 gives 123 / 1000000.  */
 | ||
| 
 | ||
|     int expbit;
 | ||
|     int neg_exp;
 | ||
|     int more_bits;
 | ||
|     int need_frac_digits;
 | ||
|     mp_limb_t cy;
 | ||
|     mp_limb_t *psrc = den;
 | ||
|     mp_limb_t *pdest = num;
 | ||
|     const struct mp_power *ttab = &_fpioconst_pow10[0];
 | ||
| 
 | ||
|     assert (dig_no > int_no
 | ||
| 	    && exponent <= 0
 | ||
| 	    && exponent >= MIN_10_EXP - (DIG + 2));
 | ||
| 
 | ||
|     /* We need to compute MANT_DIG - BITS fractional bits that lie
 | ||
|        within the mantissa of the result, the following bit for
 | ||
|        rounding, and to know whether any subsequent bit is 0.
 | ||
|        Computing a bit with value 2^-n means looking at n digits after
 | ||
|        the decimal point.  */
 | ||
|     if (bits > 0)
 | ||
|       {
 | ||
| 	/* The bits required are those immediately after the point.  */
 | ||
| 	assert (int_no > 0 && exponent == 0);
 | ||
| 	need_frac_digits = 1 + MANT_DIG - bits;
 | ||
|       }
 | ||
|     else
 | ||
|       {
 | ||
| 	/* The number is in the form .123eEXPONENT.  */
 | ||
| 	assert (int_no == 0 && *startp != L_('0'));
 | ||
| 	/* The number is at least 10^(EXPONENT-1), and 10^3 <
 | ||
| 	   2^10.  */
 | ||
| 	int neg_exp_2 = ((1 - exponent) * 10) / 3 + 1;
 | ||
| 	/* The number is at least 2^-NEG_EXP_2.  We need up to
 | ||
| 	   MANT_DIG bits following that bit.  */
 | ||
| 	need_frac_digits = neg_exp_2 + MANT_DIG;
 | ||
| 	/* However, we never need bits beyond 1/4 ulp of the smallest
 | ||
| 	   representable value.  (That 1/4 ulp bit is only needed to
 | ||
| 	   determine tinyness on machines where tinyness is determined
 | ||
| 	   after rounding.)  */
 | ||
| 	if (need_frac_digits > MANT_DIG - MIN_EXP + 2)
 | ||
| 	  need_frac_digits = MANT_DIG - MIN_EXP + 2;
 | ||
| 	/* At this point, NEED_FRAC_DIGITS is the total number of
 | ||
| 	   digits needed after the point, but some of those may be
 | ||
| 	   leading 0s.  */
 | ||
| 	need_frac_digits += exponent;
 | ||
| 	/* Any cases underflowing enough that none of the fractional
 | ||
| 	   digits are needed should have been caught earlier (such
 | ||
| 	   cases are on the order of 10^-n or smaller where 2^-n is
 | ||
| 	   the least subnormal).  */
 | ||
| 	assert (need_frac_digits > 0);
 | ||
|       }
 | ||
| 
 | ||
|     if (need_frac_digits > (intmax_t) dig_no - (intmax_t) int_no)
 | ||
|       need_frac_digits = (intmax_t) dig_no - (intmax_t) int_no;
 | ||
| 
 | ||
|     if ((intmax_t) dig_no > (intmax_t) int_no + need_frac_digits)
 | ||
|       {
 | ||
| 	dig_no = int_no + need_frac_digits;
 | ||
| 	more_bits = 1;
 | ||
|       }
 | ||
|     else
 | ||
|       more_bits = 0;
 | ||
| 
 | ||
|     neg_exp = (intmax_t) dig_no - (intmax_t) int_no - exponent;
 | ||
| 
 | ||
|     /* Construct the denominator.  */
 | ||
|     densize = 0;
 | ||
|     expbit = 1;
 | ||
|     do
 | ||
|       {
 | ||
| 	if ((neg_exp & expbit) != 0)
 | ||
| 	  {
 | ||
| 	    mp_limb_t cy;
 | ||
| 	    neg_exp ^= expbit;
 | ||
| 
 | ||
| 	    if (densize == 0)
 | ||
| 	      {
 | ||
| 		densize = ttab->arraysize - _FPIO_CONST_OFFSET;
 | ||
| 		memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET],
 | ||
| 			densize * sizeof (mp_limb_t));
 | ||
| 	      }
 | ||
| 	    else
 | ||
| 	      {
 | ||
| 		cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
 | ||
| 					      + _FPIO_CONST_OFFSET],
 | ||
| 				ttab->arraysize - _FPIO_CONST_OFFSET,
 | ||
| 				psrc, densize);
 | ||
| 		densize += ttab->arraysize - _FPIO_CONST_OFFSET;
 | ||
| 		if (cy == 0)
 | ||
| 		  --densize;
 | ||
| 		(void) SWAP (psrc, pdest);
 | ||
| 	      }
 | ||
| 	  }
 | ||
| 	expbit <<= 1;
 | ||
| 	++ttab;
 | ||
|       }
 | ||
|     while (neg_exp != 0);
 | ||
| 
 | ||
|     if (psrc == num)
 | ||
|       memcpy (den, num, densize * sizeof (mp_limb_t));
 | ||
| 
 | ||
|     /* Read the fractional digits from the string.  */
 | ||
|     (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent
 | ||
| #ifndef USE_WIDE_CHAR
 | ||
| 		       , decimal, decimal_len, thousands
 | ||
| #endif
 | ||
| 		       );
 | ||
| 
 | ||
|     /* We now have to shift both numbers so that the highest bit in the
 | ||
|        denominator is set.  In the same process we copy the numerator to
 | ||
|        a high place in the array so that the division constructs the wanted
 | ||
|        digits.  This is done by a "quasi fix point" number representation.
 | ||
| 
 | ||
|        num:   ddddddddddd . 0000000000000000000000
 | ||
| 	      |--- m ---|
 | ||
|        den:                            ddddddddddd      n >= m
 | ||
| 				       |--- n ---|
 | ||
|      */
 | ||
| 
 | ||
|     count_leading_zeros (cnt, den[densize - 1]);
 | ||
| 
 | ||
|     if (cnt > 0)
 | ||
|       {
 | ||
| 	/* Don't call `mpn_shift' with a count of zero since the specification
 | ||
| 	   does not allow this.  */
 | ||
| 	(void) __mpn_lshift (den, den, densize, cnt);
 | ||
| 	cy = __mpn_lshift (num, num, numsize, cnt);
 | ||
| 	if (cy != 0)
 | ||
| 	  num[numsize++] = cy;
 | ||
|       }
 | ||
| 
 | ||
|     /* Now we are ready for the division.  But it is not necessary to
 | ||
|        do a full multi-precision division because we only need a small
 | ||
|        number of bits for the result.  So we do not use __mpn_divmod
 | ||
|        here but instead do the division here by hand and stop whenever
 | ||
|        the needed number of bits is reached.  The code itself comes
 | ||
|        from the GNU MP Library by Torbj\"orn Granlund.  */
 | ||
| 
 | ||
|     exponent = bits;
 | ||
| 
 | ||
|     switch (densize)
 | ||
|       {
 | ||
|       case 1:
 | ||
| 	{
 | ||
| 	  mp_limb_t d, n, quot;
 | ||
| 	  int used = 0;
 | ||
| 
 | ||
| 	  n = num[0];
 | ||
| 	  d = den[0];
 | ||
| 	  assert (numsize == 1 && n < d);
 | ||
| 
 | ||
| 	  do
 | ||
| 	    {
 | ||
| 	      udiv_qrnnd (quot, n, n, 0, d);
 | ||
| 
 | ||
| #define got_limb							      \
 | ||
| 	      if (bits == 0)						      \
 | ||
| 		{							      \
 | ||
| 		  int cnt;						      \
 | ||
| 		  if (quot == 0)					      \
 | ||
| 		    cnt = BITS_PER_MP_LIMB;				      \
 | ||
| 		  else							      \
 | ||
| 		    count_leading_zeros (cnt, quot);			      \
 | ||
| 		  exponent -= cnt;					      \
 | ||
| 		  if (BITS_PER_MP_LIMB - cnt > MANT_DIG)		      \
 | ||
| 		    {							      \
 | ||
| 		      used = MANT_DIG + cnt;				      \
 | ||
| 		      retval[0] = quot >> (BITS_PER_MP_LIMB - used);	      \
 | ||
| 		      bits = MANT_DIG + 1;				      \
 | ||
| 		    }							      \
 | ||
| 		  else							      \
 | ||
| 		    {							      \
 | ||
| 		      /* Note that we only clear the second element.  */      \
 | ||
| 		      /* The conditional is determined at compile time.  */   \
 | ||
| 		      if (RETURN_LIMB_SIZE > 1)				      \
 | ||
| 			retval[1] = 0;					      \
 | ||
| 		      retval[0] = quot;					      \
 | ||
| 		      bits = -cnt;					      \
 | ||
| 		    }							      \
 | ||
| 		}							      \
 | ||
| 	      else if (bits + BITS_PER_MP_LIMB <= MANT_DIG)		      \
 | ||
| 		__mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB,   \
 | ||
| 				quot);					      \
 | ||
| 	      else							      \
 | ||
| 		{							      \
 | ||
| 		  used = MANT_DIG - bits;				      \
 | ||
| 		  if (used > 0)						      \
 | ||
| 		    __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot);    \
 | ||
| 		}							      \
 | ||
| 	      bits += BITS_PER_MP_LIMB
 | ||
| 
 | ||
| 	      got_limb;
 | ||
| 	    }
 | ||
| 	  while (bits <= MANT_DIG);
 | ||
| 
 | ||
| 	  return round_and_return (retval, exponent - 1, negative,
 | ||
| 				   quot, BITS_PER_MP_LIMB - 1 - used,
 | ||
| 				   more_bits || n != 0);
 | ||
| 	}
 | ||
|       case 2:
 | ||
| 	{
 | ||
| 	  mp_limb_t d0, d1, n0, n1;
 | ||
| 	  mp_limb_t quot = 0;
 | ||
| 	  int used = 0;
 | ||
| 
 | ||
| 	  d0 = den[0];
 | ||
| 	  d1 = den[1];
 | ||
| 
 | ||
| 	  if (numsize < densize)
 | ||
| 	    {
 | ||
| 	      if (num[0] >= d1)
 | ||
| 		{
 | ||
| 		  /* The numerator of the number occupies fewer bits than
 | ||
| 		     the denominator but the one limb is bigger than the
 | ||
| 		     high limb of the numerator.  */
 | ||
| 		  n1 = 0;
 | ||
| 		  n0 = num[0];
 | ||
| 		}
 | ||
| 	      else
 | ||
| 		{
 | ||
| 		  if (bits <= 0)
 | ||
| 		    exponent -= BITS_PER_MP_LIMB;
 | ||
| 		  else
 | ||
| 		    {
 | ||
| 		      if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
 | ||
| 			__mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
 | ||
| 					BITS_PER_MP_LIMB, 0);
 | ||
| 		      else
 | ||
| 			{
 | ||
| 			  used = MANT_DIG - bits;
 | ||
| 			  if (used > 0)
 | ||
| 			    __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
 | ||
| 			}
 | ||
| 		      bits += BITS_PER_MP_LIMB;
 | ||
| 		    }
 | ||
| 		  n1 = num[0];
 | ||
| 		  n0 = 0;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      n1 = num[1];
 | ||
| 	      n0 = num[0];
 | ||
| 	    }
 | ||
| 
 | ||
| 	  while (bits <= MANT_DIG)
 | ||
| 	    {
 | ||
| 	      mp_limb_t r;
 | ||
| 
 | ||
| 	      if (n1 == d1)
 | ||
| 		{
 | ||
| 		  /* QUOT should be either 111..111 or 111..110.  We need
 | ||
| 		     special treatment of this rare case as normal division
 | ||
| 		     would give overflow.  */
 | ||
| 		  quot = ~(mp_limb_t) 0;
 | ||
| 
 | ||
| 		  r = n0 + d1;
 | ||
| 		  if (r < d1)	/* Carry in the addition?  */
 | ||
| 		    {
 | ||
| 		      add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
 | ||
| 		      goto have_quot;
 | ||
| 		    }
 | ||
| 		  n1 = d0 - (d0 != 0);
 | ||
| 		  n0 = -d0;
 | ||
| 		}
 | ||
| 	      else
 | ||
| 		{
 | ||
| 		  udiv_qrnnd (quot, r, n1, n0, d1);
 | ||
| 		  umul_ppmm (n1, n0, d0, quot);
 | ||
| 		}
 | ||
| 
 | ||
| 	    q_test:
 | ||
| 	      if (n1 > r || (n1 == r && n0 > 0))
 | ||
| 		{
 | ||
| 		  /* The estimated QUOT was too large.  */
 | ||
| 		  --quot;
 | ||
| 
 | ||
| 		  sub_ddmmss (n1, n0, n1, n0, 0, d0);
 | ||
| 		  r += d1;
 | ||
| 		  if (r >= d1)	/* If not carry, test QUOT again.  */
 | ||
| 		    goto q_test;
 | ||
| 		}
 | ||
| 	      sub_ddmmss (n1, n0, r, 0, n1, n0);
 | ||
| 
 | ||
| 	    have_quot:
 | ||
| 	      got_limb;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  return round_and_return (retval, exponent - 1, negative,
 | ||
| 				   quot, BITS_PER_MP_LIMB - 1 - used,
 | ||
| 				   more_bits || n1 != 0 || n0 != 0);
 | ||
| 	}
 | ||
|       default:
 | ||
| 	{
 | ||
| 	  int i;
 | ||
| 	  mp_limb_t cy, dX, d1, n0, n1;
 | ||
| 	  mp_limb_t quot = 0;
 | ||
| 	  int used = 0;
 | ||
| 
 | ||
| 	  dX = den[densize - 1];
 | ||
| 	  d1 = den[densize - 2];
 | ||
| 
 | ||
| 	  /* The division does not work if the upper limb of the two-limb
 | ||
| 	     numerator is greater than the denominator.  */
 | ||
| 	  if (__mpn_cmp (num, &den[densize - numsize], numsize) > 0)
 | ||
| 	    num[numsize++] = 0;
 | ||
| 
 | ||
| 	  if (numsize < densize)
 | ||
| 	    {
 | ||
| 	      mp_size_t empty = densize - numsize;
 | ||
| 	      int i;
 | ||
| 
 | ||
| 	      if (bits <= 0)
 | ||
| 		exponent -= empty * BITS_PER_MP_LIMB;
 | ||
| 	      else
 | ||
| 		{
 | ||
| 		  if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
 | ||
| 		    {
 | ||
| 		      /* We make a difference here because the compiler
 | ||
| 			 cannot optimize the `else' case that good and
 | ||
| 			 this reflects all currently used FLOAT types
 | ||
| 			 and GMP implementations.  */
 | ||
| #if RETURN_LIMB_SIZE <= 2
 | ||
| 		      assert (empty == 1);
 | ||
| 		      __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
 | ||
| 				      BITS_PER_MP_LIMB, 0);
 | ||
| #else
 | ||
| 		      for (i = RETURN_LIMB_SIZE - 1; i >= empty; --i)
 | ||
| 			retval[i] = retval[i - empty];
 | ||
| 		      while (i >= 0)
 | ||
| 			retval[i--] = 0;
 | ||
| #endif
 | ||
| 		    }
 | ||
| 		  else
 | ||
| 		    {
 | ||
| 		      used = MANT_DIG - bits;
 | ||
| 		      if (used >= BITS_PER_MP_LIMB)
 | ||
| 			{
 | ||
| 			  int i;
 | ||
| 			  (void) __mpn_lshift (&retval[used
 | ||
| 						       / BITS_PER_MP_LIMB],
 | ||
| 					       retval,
 | ||
| 					       (RETURN_LIMB_SIZE
 | ||
| 						- used / BITS_PER_MP_LIMB),
 | ||
| 					       used % BITS_PER_MP_LIMB);
 | ||
| 			  for (i = used / BITS_PER_MP_LIMB - 1; i >= 0; --i)
 | ||
| 			    retval[i] = 0;
 | ||
| 			}
 | ||
| 		      else if (used > 0)
 | ||
| 			__mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
 | ||
| 		    }
 | ||
| 		  bits += empty * BITS_PER_MP_LIMB;
 | ||
| 		}
 | ||
| 	      for (i = numsize; i > 0; --i)
 | ||
| 		num[i + empty] = num[i - 1];
 | ||
| 	      MPN_ZERO (num, empty + 1);
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      int i;
 | ||
| 	      assert (numsize == densize);
 | ||
| 	      for (i = numsize; i > 0; --i)
 | ||
| 		num[i] = num[i - 1];
 | ||
| 	      num[0] = 0;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  den[densize] = 0;
 | ||
| 	  n0 = num[densize];
 | ||
| 
 | ||
| 	  while (bits <= MANT_DIG)
 | ||
| 	    {
 | ||
| 	      if (n0 == dX)
 | ||
| 		/* This might over-estimate QUOT, but it's probably not
 | ||
| 		   worth the extra code here to find out.  */
 | ||
| 		quot = ~(mp_limb_t) 0;
 | ||
| 	      else
 | ||
| 		{
 | ||
| 		  mp_limb_t r;
 | ||
| 
 | ||
| 		  udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
 | ||
| 		  umul_ppmm (n1, n0, d1, quot);
 | ||
| 
 | ||
| 		  while (n1 > r || (n1 == r && n0 > num[densize - 2]))
 | ||
| 		    {
 | ||
| 		      --quot;
 | ||
| 		      r += dX;
 | ||
| 		      if (r < dX) /* I.e. "carry in previous addition?" */
 | ||
| 			break;
 | ||
| 		      n1 -= n0 < d1;
 | ||
| 		      n0 -= d1;
 | ||
| 		    }
 | ||
| 		}
 | ||
| 
 | ||
| 	      /* Possible optimization: We already have (q * n0) and (1 * n1)
 | ||
| 		 after the calculation of QUOT.  Taking advantage of this, we
 | ||
| 		 could make this loop make two iterations less.  */
 | ||
| 
 | ||
| 	      cy = __mpn_submul_1 (num, den, densize + 1, quot);
 | ||
| 
 | ||
| 	      if (num[densize] != cy)
 | ||
| 		{
 | ||
| 		  cy = __mpn_add_n (num, num, den, densize);
 | ||
| 		  assert (cy != 0);
 | ||
| 		  --quot;
 | ||
| 		}
 | ||
| 	      n0 = num[densize] = num[densize - 1];
 | ||
| 	      for (i = densize - 1; i > 0; --i)
 | ||
| 		num[i] = num[i - 1];
 | ||
| 	      num[0] = 0;
 | ||
| 
 | ||
| 	      got_limb;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  for (i = densize; i >= 0 && num[i] == 0; --i)
 | ||
| 	    ;
 | ||
| 	  return round_and_return (retval, exponent - 1, negative,
 | ||
| 				   quot, BITS_PER_MP_LIMB - 1 - used,
 | ||
| 				   more_bits || i >= 0);
 | ||
| 	}
 | ||
|       }
 | ||
|   }
 | ||
| 
 | ||
|   /* NOTREACHED */
 | ||
| }
 | ||
| #if defined _LIBC && !defined USE_WIDE_CHAR
 | ||
| libc_hidden_def (____STRTOF_INTERNAL)
 | ||
| #endif
 | ||
| 
 | ||
| /* External user entry point.  */
 | ||
| 
 | ||
| FLOAT
 | ||
| #ifdef weak_function
 | ||
| weak_function
 | ||
| #endif
 | ||
| __STRTOF (const STRING_TYPE *nptr, STRING_TYPE **endptr, __locale_t loc)
 | ||
| {
 | ||
|   return ____STRTOF_INTERNAL (nptr, endptr, 0, loc);
 | ||
| }
 | ||
| #if defined _LIBC
 | ||
| libc_hidden_def (__STRTOF)
 | ||
| libc_hidden_ver (__STRTOF, STRTOF)
 | ||
| #endif
 | ||
| weak_alias (__STRTOF, STRTOF)
 | ||
| 
 | ||
| #ifdef LONG_DOUBLE_COMPAT
 | ||
| # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1)
 | ||
| #  ifdef USE_WIDE_CHAR
 | ||
| compat_symbol (libc, __wcstod_l, __wcstold_l, GLIBC_2_1);
 | ||
| #  else
 | ||
| compat_symbol (libc, __strtod_l, __strtold_l, GLIBC_2_1);
 | ||
| #  endif
 | ||
| # endif
 | ||
| # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3)
 | ||
| #  ifdef USE_WIDE_CHAR
 | ||
| compat_symbol (libc, wcstod_l, wcstold_l, GLIBC_2_3);
 | ||
| #  else
 | ||
| compat_symbol (libc, strtod_l, strtold_l, GLIBC_2_3);
 | ||
| #  endif
 | ||
| # endif
 | ||
| #endif
 |