mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-24 13:33:08 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			361 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			361 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* mpn_mul_n -- Multiply two natural numbers of length n.
 | |
| 
 | |
| Copyright (C) 1991-2016 Free Software Foundation, Inc.
 | |
| 
 | |
| This file is part of the GNU MP Library.
 | |
| 
 | |
| The GNU MP Library is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU Lesser General Public License as published by
 | |
| the Free Software Foundation; either version 2.1 of the License, or (at your
 | |
| option) any later version.
 | |
| 
 | |
| The GNU MP Library is distributed in the hope that it will be useful, but
 | |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 | |
| or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 | |
| License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU Lesser General Public License
 | |
| along with the GNU MP Library; see the file COPYING.LIB.  If not, see
 | |
| <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include <gmp.h>
 | |
| #include "gmp-impl.h"
 | |
| 
 | |
| /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
 | |
|    both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are
 | |
|    always stored.  Return the most significant limb.
 | |
| 
 | |
|    Argument constraints:
 | |
|    1. PRODP != UP and PRODP != VP, i.e. the destination
 | |
|       must be distinct from the multiplier and the multiplicand.  */
 | |
| 
 | |
| /* If KARATSUBA_THRESHOLD is not already defined, define it to a
 | |
|    value which is good on most machines.  */
 | |
| #ifndef KARATSUBA_THRESHOLD
 | |
| #define KARATSUBA_THRESHOLD 32
 | |
| #endif
 | |
| 
 | |
| /* The code can't handle KARATSUBA_THRESHOLD smaller than 2.  */
 | |
| #if KARATSUBA_THRESHOLD < 2
 | |
| #undef KARATSUBA_THRESHOLD
 | |
| #define KARATSUBA_THRESHOLD 2
 | |
| #endif
 | |
| 
 | |
| /* Handle simple cases with traditional multiplication.
 | |
| 
 | |
|    This is the most critical code of multiplication.  All multiplies rely
 | |
|    on this, both small and huge.  Small ones arrive here immediately.  Huge
 | |
|    ones arrive here as this is the base case for Karatsuba's recursive
 | |
|    algorithm below.  */
 | |
| 
 | |
| void
 | |
| impn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
 | |
| {
 | |
|   mp_size_t i;
 | |
|   mp_limb_t cy_limb;
 | |
|   mp_limb_t v_limb;
 | |
| 
 | |
|   /* Multiply by the first limb in V separately, as the result can be
 | |
|      stored (not added) to PROD.  We also avoid a loop for zeroing.  */
 | |
|   v_limb = vp[0];
 | |
|   if (v_limb <= 1)
 | |
|     {
 | |
|       if (v_limb == 1)
 | |
| 	MPN_COPY (prodp, up, size);
 | |
|       else
 | |
| 	MPN_ZERO (prodp, size);
 | |
|       cy_limb = 0;
 | |
|     }
 | |
|   else
 | |
|     cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
 | |
| 
 | |
|   prodp[size] = cy_limb;
 | |
|   prodp++;
 | |
| 
 | |
|   /* For each iteration in the outer loop, multiply one limb from
 | |
|      U with one limb from V, and add it to PROD.  */
 | |
|   for (i = 1; i < size; i++)
 | |
|     {
 | |
|       v_limb = vp[i];
 | |
|       if (v_limb <= 1)
 | |
| 	{
 | |
| 	  cy_limb = 0;
 | |
| 	  if (v_limb == 1)
 | |
| 	    cy_limb = mpn_add_n (prodp, prodp, up, size);
 | |
| 	}
 | |
|       else
 | |
| 	cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
 | |
| 
 | |
|       prodp[size] = cy_limb;
 | |
|       prodp++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| impn_mul_n (mp_ptr prodp,
 | |
| 	     mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace)
 | |
| {
 | |
|   if ((size & 1) != 0)
 | |
|     {
 | |
|       /* The size is odd, the code code below doesn't handle that.
 | |
| 	 Multiply the least significant (size - 1) limbs with a recursive
 | |
| 	 call, and handle the most significant limb of S1 and S2
 | |
| 	 separately.  */
 | |
|       /* A slightly faster way to do this would be to make the Karatsuba
 | |
| 	 code below behave as if the size were even, and let it check for
 | |
| 	 odd size in the end.  I.e., in essence move this code to the end.
 | |
| 	 Doing so would save us a recursive call, and potentially make the
 | |
| 	 stack grow a lot less.  */
 | |
| 
 | |
|       mp_size_t esize = size - 1;	/* even size */
 | |
|       mp_limb_t cy_limb;
 | |
| 
 | |
|       MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace);
 | |
|       cy_limb = mpn_addmul_1 (prodp + esize, up, esize, vp[esize]);
 | |
|       prodp[esize + esize] = cy_limb;
 | |
|       cy_limb = mpn_addmul_1 (prodp + esize, vp, size, up[esize]);
 | |
| 
 | |
|       prodp[esize + size] = cy_limb;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
 | |
| 
 | |
| 	 Split U in two pieces, U1 and U0, such that
 | |
| 	 U = U0 + U1*(B**n),
 | |
| 	 and V in V1 and V0, such that
 | |
| 	 V = V0 + V1*(B**n).
 | |
| 
 | |
| 	 UV is then computed recursively using the identity
 | |
| 
 | |
| 		2n   n          n                     n
 | |
| 	 UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V
 | |
| 			1 1        1  0   0  1              0 0
 | |
| 
 | |
| 	 Where B = 2**BITS_PER_MP_LIMB.  */
 | |
| 
 | |
|       mp_size_t hsize = size >> 1;
 | |
|       mp_limb_t cy;
 | |
|       int negflg;
 | |
| 
 | |
|       /*** Product H.	 ________________  ________________
 | |
| 			|_____U1 x V1____||____U0 x V0_____|  */
 | |
|       /* Put result in upper part of PROD and pass low part of TSPACE
 | |
| 	 as new TSPACE.  */
 | |
|       MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace);
 | |
| 
 | |
|       /*** Product M.	 ________________
 | |
| 			|_(U1-U0)(V0-V1)_|  */
 | |
|       if (mpn_cmp (up + hsize, up, hsize) >= 0)
 | |
| 	{
 | |
| 	  mpn_sub_n (prodp, up + hsize, up, hsize);
 | |
| 	  negflg = 0;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  mpn_sub_n (prodp, up, up + hsize, hsize);
 | |
| 	  negflg = 1;
 | |
| 	}
 | |
|       if (mpn_cmp (vp + hsize, vp, hsize) >= 0)
 | |
| 	{
 | |
| 	  mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize);
 | |
| 	  negflg ^= 1;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize);
 | |
| 	  /* No change of NEGFLG.  */
 | |
| 	}
 | |
|       /* Read temporary operands from low part of PROD.
 | |
| 	 Put result in low part of TSPACE using upper part of TSPACE
 | |
| 	 as new TSPACE.  */
 | |
|       MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size);
 | |
| 
 | |
|       /*** Add/copy product H.  */
 | |
|       MPN_COPY (prodp + hsize, prodp + size, hsize);
 | |
|       cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
 | |
| 
 | |
|       /*** Add product M (if NEGFLG M is a negative number).  */
 | |
|       if (negflg)
 | |
| 	cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
 | |
|       else
 | |
| 	cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
 | |
| 
 | |
|       /*** Product L.	 ________________  ________________
 | |
| 			|________________||____U0 x V0_____|  */
 | |
|       /* Read temporary operands from low part of PROD.
 | |
| 	 Put result in low part of TSPACE using upper part of TSPACE
 | |
| 	 as new TSPACE.  */
 | |
|       MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size);
 | |
| 
 | |
|       /*** Add/copy Product L (twice).  */
 | |
| 
 | |
|       cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
 | |
|       if (cy)
 | |
| 	mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
 | |
| 
 | |
|       MPN_COPY (prodp, tspace, hsize);
 | |
|       cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
 | |
|       if (cy)
 | |
| 	mpn_add_1 (prodp + size, prodp + size, size, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| impn_sqr_n_basecase (mp_ptr prodp, mp_srcptr up, mp_size_t size)
 | |
| {
 | |
|   mp_size_t i;
 | |
|   mp_limb_t cy_limb;
 | |
|   mp_limb_t v_limb;
 | |
| 
 | |
|   /* Multiply by the first limb in V separately, as the result can be
 | |
|      stored (not added) to PROD.  We also avoid a loop for zeroing.  */
 | |
|   v_limb = up[0];
 | |
|   if (v_limb <= 1)
 | |
|     {
 | |
|       if (v_limb == 1)
 | |
| 	MPN_COPY (prodp, up, size);
 | |
|       else
 | |
| 	MPN_ZERO (prodp, size);
 | |
|       cy_limb = 0;
 | |
|     }
 | |
|   else
 | |
|     cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
 | |
| 
 | |
|   prodp[size] = cy_limb;
 | |
|   prodp++;
 | |
| 
 | |
|   /* For each iteration in the outer loop, multiply one limb from
 | |
|      U with one limb from V, and add it to PROD.  */
 | |
|   for (i = 1; i < size; i++)
 | |
|     {
 | |
|       v_limb = up[i];
 | |
|       if (v_limb <= 1)
 | |
| 	{
 | |
| 	  cy_limb = 0;
 | |
| 	  if (v_limb == 1)
 | |
| 	    cy_limb = mpn_add_n (prodp, prodp, up, size);
 | |
| 	}
 | |
|       else
 | |
| 	cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
 | |
| 
 | |
|       prodp[size] = cy_limb;
 | |
|       prodp++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| impn_sqr_n (mp_ptr prodp,
 | |
| 	     mp_srcptr up, mp_size_t size, mp_ptr tspace)
 | |
| {
 | |
|   if ((size & 1) != 0)
 | |
|     {
 | |
|       /* The size is odd, the code code below doesn't handle that.
 | |
| 	 Multiply the least significant (size - 1) limbs with a recursive
 | |
| 	 call, and handle the most significant limb of S1 and S2
 | |
| 	 separately.  */
 | |
|       /* A slightly faster way to do this would be to make the Karatsuba
 | |
| 	 code below behave as if the size were even, and let it check for
 | |
| 	 odd size in the end.  I.e., in essence move this code to the end.
 | |
| 	 Doing so would save us a recursive call, and potentially make the
 | |
| 	 stack grow a lot less.  */
 | |
| 
 | |
|       mp_size_t esize = size - 1;	/* even size */
 | |
|       mp_limb_t cy_limb;
 | |
| 
 | |
|       MPN_SQR_N_RECURSE (prodp, up, esize, tspace);
 | |
|       cy_limb = mpn_addmul_1 (prodp + esize, up, esize, up[esize]);
 | |
|       prodp[esize + esize] = cy_limb;
 | |
|       cy_limb = mpn_addmul_1 (prodp + esize, up, size, up[esize]);
 | |
| 
 | |
|       prodp[esize + size] = cy_limb;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       mp_size_t hsize = size >> 1;
 | |
|       mp_limb_t cy;
 | |
| 
 | |
|       /*** Product H.	 ________________  ________________
 | |
| 			|_____U1 x U1____||____U0 x U0_____|  */
 | |
|       /* Put result in upper part of PROD and pass low part of TSPACE
 | |
| 	 as new TSPACE.  */
 | |
|       MPN_SQR_N_RECURSE (prodp + size, up + hsize, hsize, tspace);
 | |
| 
 | |
|       /*** Product M.	 ________________
 | |
| 			|_(U1-U0)(U0-U1)_|  */
 | |
|       if (mpn_cmp (up + hsize, up, hsize) >= 0)
 | |
| 	{
 | |
| 	  mpn_sub_n (prodp, up + hsize, up, hsize);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  mpn_sub_n (prodp, up, up + hsize, hsize);
 | |
| 	}
 | |
| 
 | |
|       /* Read temporary operands from low part of PROD.
 | |
| 	 Put result in low part of TSPACE using upper part of TSPACE
 | |
| 	 as new TSPACE.  */
 | |
|       MPN_SQR_N_RECURSE (tspace, prodp, hsize, tspace + size);
 | |
| 
 | |
|       /*** Add/copy product H.  */
 | |
|       MPN_COPY (prodp + hsize, prodp + size, hsize);
 | |
|       cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
 | |
| 
 | |
|       /*** Add product M (if NEGFLG M is a negative number).  */
 | |
|       cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
 | |
| 
 | |
|       /*** Product L.	 ________________  ________________
 | |
| 			|________________||____U0 x U0_____|  */
 | |
|       /* Read temporary operands from low part of PROD.
 | |
| 	 Put result in low part of TSPACE using upper part of TSPACE
 | |
| 	 as new TSPACE.  */
 | |
|       MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size);
 | |
| 
 | |
|       /*** Add/copy Product L (twice).  */
 | |
| 
 | |
|       cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
 | |
|       if (cy)
 | |
| 	mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
 | |
| 
 | |
|       MPN_COPY (prodp, tspace, hsize);
 | |
|       cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
 | |
|       if (cy)
 | |
| 	mpn_add_1 (prodp + size, prodp + size, size, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* This should be made into an inline function in gmp.h.  */
 | |
| void
 | |
| mpn_mul_n (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
 | |
| {
 | |
|   TMP_DECL (marker);
 | |
|   TMP_MARK (marker);
 | |
|   if (up == vp)
 | |
|     {
 | |
|       if (size < KARATSUBA_THRESHOLD)
 | |
| 	{
 | |
| 	  impn_sqr_n_basecase (prodp, up, size);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  mp_ptr tspace;
 | |
| 	  tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB);
 | |
| 	  impn_sqr_n (prodp, up, size, tspace);
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (size < KARATSUBA_THRESHOLD)
 | |
| 	{
 | |
| 	  impn_mul_n_basecase (prodp, up, vp, size);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  mp_ptr tspace;
 | |
| 	  tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB);
 | |
| 	  impn_mul_n (prodp, up, vp, size, tspace);
 | |
| 	}
 | |
|     }
 | |
|   TMP_FREE (marker);
 | |
| }
 |