mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	1999-12-30 Geoffrey Keating <geoffk@cygnus.com> * sysdeps/powerpc/dl-machine.c: Many minor formatting changes. (OPCODE_LWZU): New macro. (OPCODE_ADDIS_HI): New macro. (OPCODE_LIS_HI): New macro. (__elf_machine_runtime_setup): Change PLT code-generation scheme for thread safety even with very large PLTs, better efficiency, and to fix a cache-flushing bug. Also support the Motorola 8xx processors which have a different cache line size than all the others. (__elf_machine_fixup_plt): Likewise. (__process_machine_rela): Don't use elf_machine_fixup_plt.
		
			
				
	
	
		
			512 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			512 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Machine-dependent ELF dynamic relocation functions.  PowerPC version.
 | |
|    Copyright (C) 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Library General Public License as
 | |
|    published by the Free Software Foundation; either version 2 of the
 | |
|    License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Library General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Library General Public
 | |
|    License along with the GNU C Library; see the file COPYING.LIB.  If not,
 | |
|    write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|    Boston, MA 02111-1307, USA.  */
 | |
| 
 | |
| #include <unistd.h>
 | |
| #include <string.h>
 | |
| #include <sys/param.h>
 | |
| #include <link.h>
 | |
| #include <dl-machine.h>
 | |
| #include <elf/ldsodefs.h>
 | |
| #include <elf/dynamic-link.h>
 | |
| 
 | |
| /* Because ld.so is now versioned, these functions can be in their own file;
 | |
|    no relocations need to be done to call them.
 | |
|    Of course, if ld.so is not versioned...  */
 | |
| #if !(DO_VERSIONING - 0)
 | |
| #error This will not work with versioning turned off, sorry.
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Stuff for the PLT.  */
 | |
| #define PLT_INITIAL_ENTRY_WORDS 18
 | |
| #define PLT_LONGBRANCH_ENTRY_WORDS 0
 | |
| #define PLT_TRAMPOLINE_ENTRY_WORDS 6
 | |
| #define PLT_DOUBLE_SIZE (1<<13)
 | |
| #define PLT_ENTRY_START_WORDS(entry_number) \
 | |
|   (PLT_INITIAL_ENTRY_WORDS + (entry_number)*2				\
 | |
|    + ((entry_number) > PLT_DOUBLE_SIZE					\
 | |
|       ? ((entry_number) - PLT_DOUBLE_SIZE)*2				\
 | |
|       : 0))
 | |
| #define PLT_DATA_START_WORDS(num_entries) PLT_ENTRY_START_WORDS(num_entries)
 | |
| 
 | |
| /* Macros to build PowerPC opcode words.  */
 | |
| #define OPCODE_ADDI(rd,ra,simm) \
 | |
|   (0x38000000 | (rd) << 21 | (ra) << 16 | ((simm) & 0xffff))
 | |
| #define OPCODE_ADDIS(rd,ra,simm) \
 | |
|   (0x3c000000 | (rd) << 21 | (ra) << 16 | ((simm) & 0xffff))
 | |
| #define OPCODE_ADD(rd,ra,rb) \
 | |
|   (0x7c000214 | (rd) << 21 | (ra) << 16 | (rb) << 11)
 | |
| #define OPCODE_B(target) (0x48000000 | ((target) & 0x03fffffc))
 | |
| #define OPCODE_BA(target) (0x48000002 | ((target) & 0x03fffffc))
 | |
| #define OPCODE_BCTR() 0x4e800420
 | |
| #define OPCODE_LWZ(rd,d,ra) \
 | |
|   (0x80000000 | (rd) << 21 | (ra) << 16 | ((d) & 0xffff))
 | |
| #define OPCODE_LWZU(rd,d,ra) \
 | |
|   (0x84000000 | (rd) << 21 | (ra) << 16 | ((d) & 0xffff))
 | |
| #define OPCODE_MTCTR(rd) (0x7C0903A6 | (rd) << 21)
 | |
| #define OPCODE_RLWINM(ra,rs,sh,mb,me) \
 | |
|   (0x54000000 | (rs) << 21 | (ra) << 16 | (sh) << 11 | (mb) << 6 | (me) << 1)
 | |
| 
 | |
| #define OPCODE_LI(rd,simm)    OPCODE_ADDI(rd,0,simm)
 | |
| #define OPCODE_ADDIS_HI(rd,ra,value) \
 | |
|   OPCODE_ADDIS(rd,ra,((value) + 0x8000) >> 16)
 | |
| #define OPCODE_LIS_HI(rd,value) OPCODE_ADDIS_HI(rd,0,value)
 | |
| #define OPCODE_SLWI(ra,rs,sh) OPCODE_RLWINM(ra,rs,sh,0,31-sh)
 | |
| 
 | |
| 
 | |
| #define PPC_DCBST(where) asm ("dcbst 0,%0" : : "r"(where) : "memory")
 | |
| #define PPC_SYNC asm ("sync" : : : "memory")
 | |
| #define PPC_ISYNC asm volatile ("sync; isync" : : : "memory")
 | |
| #define PPC_ICBI(where) asm ("icbi 0,%0" : : "r"(where) : "memory")
 | |
| #define PPC_DIE asm volatile ("tweq 0,0")
 | |
| 
 | |
| /* Use this when you've modified some code, but it won't be in the
 | |
|    instruction fetch queue (or when it doesn't matter if it is). */
 | |
| #define MODIFIED_CODE_NOQUEUE(where) \
 | |
|      do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); } while (0)
 | |
| /* Use this when it might be in the instruction queue. */
 | |
| #define MODIFIED_CODE(where) \
 | |
|      do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); PPC_ISYNC; } while (0)
 | |
| 
 | |
| 
 | |
| /* The idea here is that to conform to the ABI, we are supposed to try
 | |
|    to load dynamic objects between 0x10000 (we actually use 0x40000 as
 | |
|    the lower bound, to increase the chance of a memory reference from
 | |
|    a null pointer giving a segfault) and the program's load address;
 | |
|    this may allow us to use a branch instruction in the PLT rather
 | |
|    than a computed jump.  The address is only used as a preference for
 | |
|    mmap, so if we get it wrong the worst that happens is that it gets
 | |
|    mapped somewhere else.  */
 | |
| 
 | |
| ElfW(Addr)
 | |
| __elf_preferred_address(struct link_map *loader, size_t maplength,
 | |
| 			ElfW(Addr) mapstartpref)
 | |
| {
 | |
|   ElfW(Addr) low, high;
 | |
|   struct link_map *l;
 | |
| 
 | |
|   /* If the object has a preference, load it there!  */
 | |
|   if (mapstartpref != 0)
 | |
|     return mapstartpref;
 | |
| 
 | |
|   /* Otherwise, quickly look for a suitable gap between 0x3FFFF and
 | |
|      0x70000000.  0x3FFFF is so that references off NULL pointers will
 | |
|      cause a segfault, 0x70000000 is just paranoia (it should always
 | |
|      be superceded by the program's load address).  */
 | |
|   low =  0x0003FFFF;
 | |
|   high = 0x70000000;
 | |
|   for (l = _dl_loaded; l; l = l->l_next)
 | |
|     {
 | |
|       ElfW(Addr) mapstart, mapend;
 | |
|       mapstart = l->l_map_start & ~(_dl_pagesize - 1);
 | |
|       mapend = l->l_map_end | (_dl_pagesize - 1);
 | |
|       assert (mapend > mapstart);
 | |
| 
 | |
|       if (mapend >= high && high >= mapstart)
 | |
| 	high = mapstart;
 | |
|       else if (mapend >= low && low >= mapstart)
 | |
| 	low = mapend;
 | |
|       else if (high >= mapend && mapstart >= low)
 | |
| 	{
 | |
| 	  if (high - mapend >= mapstart - low)
 | |
| 	    low = mapend;
 | |
| 	  else
 | |
| 	    high = mapstart;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   high -= 0x10000; /* Allow some room between objects.  */
 | |
|   maplength = (maplength | (_dl_pagesize-1)) + 1;
 | |
|   if (high <= low || high - low < maplength )
 | |
|     return 0;
 | |
|   return high - maplength;  /* Both high and maplength are page-aligned.  */
 | |
| }
 | |
| 
 | |
| /* Set up the loaded object described by L so its unrelocated PLT
 | |
|    entries will jump to the on-demand fixup code in dl-runtime.c.
 | |
|    Also install a small trampoline to be used by entries that have
 | |
|    been relocated to an address too far away for a single branch.  */
 | |
| 
 | |
| /* There are many kinds of PLT entries:
 | |
| 
 | |
|    (1)	A direct jump to the actual routine, either a relative or
 | |
| 	absolute branch.  These are set up in __elf_machine_fixup_plt.
 | |
| 
 | |
|    (2)	Short lazy entries.  These cover the first 8192 slots in
 | |
|         the PLT, and look like (where 'index' goes from 0 to 8191):
 | |
| 
 | |
| 	li %r11, index*4
 | |
| 	b  &plt[PLT_TRAMPOLINE_ENTRY_WORDS+1]
 | |
| 
 | |
|    (3)	Short indirect jumps.  These replace (2) when a direct jump
 | |
| 	wouldn't reach.  They look the same except that the branch
 | |
| 	is 'b &plt[PLT_LONGBRANCH_ENTRY_WORDS]'.
 | |
| 
 | |
|    (4)  Long lazy entries.  These cover the slots when a short entry
 | |
| 	won't fit ('index*4' overflows its field), and look like:
 | |
| 
 | |
| 	lis %r11, %hi(index*4 + &plt[PLT_DATA_START_WORDS])
 | |
| 	lwzu %r12, %r11, %lo(index*4 + &plt[PLT_DATA_START_WORDS])
 | |
| 	b  &plt[PLT_TRAMPOLINE_ENTRY_WORDS]
 | |
| 	bctr
 | |
| 
 | |
|    (5)	Long indirect jumps.  These replace (4) when a direct jump
 | |
| 	wouldn't reach.  They look like:
 | |
| 
 | |
| 	lis %r11, %hi(index*4 + &plt[PLT_DATA_START_WORDS])
 | |
| 	lwz %r12, %r11, %lo(index*4 + &plt[PLT_DATA_START_WORDS])
 | |
| 	mtctr %r12
 | |
| 	bctr
 | |
| 
 | |
|    (6) Long direct jumps.  These are used when thread-safety is not
 | |
|        required.  They look like:
 | |
| 
 | |
|        lis %r12, %hi(finaladdr)
 | |
|        addi %r12, %r12, %lo(finaladdr)
 | |
|        mtctr %r12
 | |
|        bctr
 | |
| 
 | |
| 
 | |
|    The lazy entries, (2) and (4), are set up here in
 | |
|    __elf_machine_runtime_setup.  (1), (3), and (5) are set up in
 | |
|    __elf_machine_fixup_plt.  (1), (3), and (6) can also be constructed
 | |
|    in __process_machine_rela.
 | |
| 
 | |
|    The reason for the somewhat strange construction of the long
 | |
|    entries, (4) and (5), is that we need to ensure thread-safety.  For
 | |
|    (1) and (3), this is obvious because only one instruction is
 | |
|    changed and the PPC architecture guarantees that aligned stores are
 | |
|    atomic.  For (5), this is more tricky.  When changing (4) to (5),
 | |
|    the `b' instruction is first changed to to `mtctr'; this is safe
 | |
|    and is why the `lwzu' instruction is not just a simple `addi'.
 | |
|    Once this is done, and is visible to all processors, the `lwzu' can
 | |
|    safely be changed to a `lwz'.  */
 | |
| int
 | |
| __elf_machine_runtime_setup (struct link_map *map, int lazy, int profile)
 | |
| {
 | |
|   if (map->l_info[DT_JMPREL])
 | |
|     {
 | |
|       Elf32_Word i;
 | |
|       Elf32_Word *plt = (Elf32_Word *) map->l_info[DT_PLTGOT]->d_un.d_val;
 | |
|       Elf32_Word num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
 | |
| 				    / sizeof (Elf32_Rela));
 | |
|       Elf32_Word rel_offset_words = PLT_DATA_START_WORDS (num_plt_entries);
 | |
|       Elf32_Word data_words = (Elf32_Word) (plt + rel_offset_words);
 | |
|       Elf32_Word size_modified;
 | |
| 
 | |
|       extern void _dl_runtime_resolve (void);
 | |
|       extern void _dl_prof_resolve (void);
 | |
| 
 | |
|       /* Convert the index in r11 into an actual address, and get the
 | |
| 	 word at that address.  */
 | |
|       plt[PLT_LONGBRANCH_ENTRY_WORDS] = OPCODE_ADDIS_HI (11, 11, data_words);
 | |
|       plt[PLT_LONGBRANCH_ENTRY_WORDS + 1] = OPCODE_LWZ (11, data_words, 11);
 | |
| 
 | |
|       /* Call the procedure at that address.  */
 | |
|       plt[PLT_LONGBRANCH_ENTRY_WORDS + 2] = OPCODE_MTCTR (11);
 | |
|       plt[PLT_LONGBRANCH_ENTRY_WORDS + 3] = OPCODE_BCTR ();
 | |
| 
 | |
|       if (lazy)
 | |
| 	{
 | |
| 	  Elf32_Word *tramp = plt + PLT_TRAMPOLINE_ENTRY_WORDS;
 | |
| 	  Elf32_Word dlrr = (Elf32_Word)(profile
 | |
| 					 ? _dl_prof_resolve
 | |
| 					 : _dl_runtime_resolve);
 | |
| 	  Elf32_Word offset;
 | |
| 
 | |
| 	  if (profile && _dl_name_match_p (_dl_profile, map))
 | |
| 	    /* This is the object we are looking for.  Say that we really
 | |
| 	       want profiling and the timers are started.  */
 | |
| 	    _dl_profile_map = map;
 | |
| 	  
 | |
| 	  /* For the long entries, subtract off data_words.  */
 | |
| 	  tramp[0] = OPCODE_ADDIS_HI (11, 11, -data_words);
 | |
| 	  tramp[1] = OPCODE_ADDI (11, 11, -data_words);
 | |
| 	  
 | |
| 	  /* Multiply index of entry by 3 (in r11).  */
 | |
| 	  tramp[2] = OPCODE_SLWI (12, 11, 1);
 | |
| 	  tramp[3] = OPCODE_ADD (11, 12, 11);
 | |
| 	  if (dlrr <= 0x01fffffc || dlrr >= 0xfe000000)
 | |
| 	    {
 | |
| 	      /* Load address of link map in r12.  */
 | |
| 	      tramp[4] = OPCODE_LI (12, (Elf32_Word) map);
 | |
| 	      tramp[5] = OPCODE_ADDIS_HI (12, 12, (Elf32_Word) map);
 | |
| 	      
 | |
| 	      /* Call _dl_runtime_resolve.  */
 | |
| 	      tramp[6] = OPCODE_BA (dlrr);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      /* Get address of _dl_runtime_resolve in CTR.  */
 | |
| 	      tramp[4] = OPCODE_LI (12, dlrr);
 | |
| 	      tramp[5] = OPCODE_ADDIS_HI (12, 12, dlrr);
 | |
| 	      tramp[6] = OPCODE_MTCTR (12);
 | |
| 	      
 | |
| 	      /* Load address of link map in r12.  */
 | |
| 	      tramp[7] = OPCODE_LI (12, (Elf32_Word) map);
 | |
| 	      tramp[8] = OPCODE_ADDIS_HI (12, 12, (Elf32_Word) map);
 | |
| 	      
 | |
| 	      /* Call _dl_runtime_resolve.  */
 | |
| 	      tramp[9] = OPCODE_BCTR ();
 | |
| 	    }
 | |
| 	  
 | |
| 	  /* Set up the lazy PLT entries.  */
 | |
| 	  offset = PLT_INITIAL_ENTRY_WORDS;
 | |
| 	  i = 0;
 | |
| 	  while (i < num_plt_entries && i < PLT_DOUBLE_SIZE)
 | |
| 	    {
 | |
| 	      plt[offset  ] = OPCODE_LI (11, i * 4);
 | |
| 	      plt[offset+1] = OPCODE_B ((PLT_TRAMPOLINE_ENTRY_WORDS + 2
 | |
| 					 - (offset+1))
 | |
| 					* 4);
 | |
| 	      i++;
 | |
| 	      offset += 2;
 | |
| 	    }
 | |
| 	  while (i < num_plt_entries)
 | |
| 	    {
 | |
| 	      plt[offset  ] = OPCODE_LIS_HI (11, i * 4 + data_words);
 | |
| 	      plt[offset+1] = OPCODE_LWZU (12, i * 4 + data_words, 11);
 | |
| 	      plt[offset+2] = OPCODE_B ((PLT_TRAMPOLINE_ENTRY_WORDS
 | |
| 					 - (offset+2))
 | |
| 					* 4);
 | |
| 	      plt[offset+3] = OPCODE_BCTR ();
 | |
| 	      i++;
 | |
| 	      offset += 4;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|       /* Now, we've modified code.  We need to write the changes from
 | |
| 	 the data cache to a second-level unified cache, then make
 | |
| 	 sure that stale data in the instruction cache is removed.
 | |
| 	 (In a multiprocessor system, the effect is more complex.)
 | |
| 	 Most of the PLT shouldn't be in the instruction cache, but
 | |
| 	 there may be a little overlap at the start and the end.
 | |
| 
 | |
| 	 Assumes that dcbst and icbi apply to lines of 16 bytes or
 | |
| 	 more.  At present, all PowerPC processors have line sizes of
 | |
| 	 16 or 32 bytes.  */
 | |
| 
 | |
|       size_modified = lazy ? rel_offset_words : 6;
 | |
|       for (i = 0; i < size_modified; i += 4)
 | |
| 	PPC_DCBST (plt + i);
 | |
|       PPC_DCBST (plt + size_modified - 1);
 | |
|       PPC_SYNC;
 | |
|       PPC_ICBI (plt);
 | |
|       PPC_ICBI (plt + size_modified - 1);
 | |
|       PPC_ISYNC;
 | |
|     }
 | |
| 
 | |
|   return lazy;
 | |
| }
 | |
| 
 | |
| void
 | |
| __elf_machine_fixup_plt(struct link_map *map, const Elf32_Rela *reloc,
 | |
| 			Elf32_Addr *reloc_addr, Elf32_Addr finaladdr)
 | |
| {
 | |
|   Elf32_Sword delta = finaladdr - (Elf32_Word) reloc_addr;
 | |
|   if (delta << 6 >> 6 == delta)
 | |
|     *reloc_addr = OPCODE_B (delta);
 | |
|   else if (finaladdr <= 0x01fffffc || finaladdr >= 0xfe000000)
 | |
|     *reloc_addr = OPCODE_BA (finaladdr);
 | |
|   else
 | |
|     {
 | |
|       Elf32_Word *plt, *data_words;
 | |
|       Elf32_Word index, offset, num_plt_entries;
 | |
|       
 | |
|       num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
 | |
| 			 / sizeof(Elf32_Rela));
 | |
|       plt = (Elf32_Word *) map->l_info[DT_PLTGOT]->d_un.d_val;
 | |
|       offset = reloc_addr - plt;
 | |
|       index = (offset - PLT_INITIAL_ENTRY_WORDS)/2;
 | |
|       data_words = plt + PLT_DATA_START_WORDS (num_plt_entries);
 | |
| 
 | |
|       reloc_addr += 1;
 | |
| 
 | |
|       if (index < PLT_DOUBLE_SIZE)
 | |
| 	{
 | |
| 	  data_words[index] = finaladdr;
 | |
| 	  PPC_SYNC;
 | |
| 	  *reloc_addr = OPCODE_B ((PLT_LONGBRANCH_ENTRY_WORDS - (offset+1)) 
 | |
| 				  * 4);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  index -= (index - PLT_DOUBLE_SIZE)/2;
 | |
| 
 | |
| 	  data_words[index] = finaladdr;
 | |
| 	  PPC_SYNC;
 | |
| 
 | |
| 	  reloc_addr[1] = OPCODE_MTCTR (12);
 | |
| 	  MODIFIED_CODE_NOQUEUE (reloc_addr + 1);
 | |
| 	  PPC_SYNC;
 | |
| 
 | |
| 	  reloc_addr[0] = OPCODE_LWZ (12,
 | |
| 				      (Elf32_Word) (data_words + index), 11);
 | |
| 	}
 | |
|     }
 | |
|   MODIFIED_CODE (reloc_addr);
 | |
| }
 | |
| 
 | |
| void
 | |
| __process_machine_rela (struct link_map *map,
 | |
| 			const Elf32_Rela *reloc,
 | |
| 			const Elf32_Sym *sym,
 | |
| 			const Elf32_Sym *refsym,
 | |
| 			Elf32_Addr *const reloc_addr,
 | |
| 			Elf32_Addr const finaladdr,
 | |
| 			int rinfo)
 | |
| {
 | |
|   switch (rinfo)
 | |
|     {
 | |
|     case R_PPC_NONE:
 | |
|       return;
 | |
| 
 | |
|     case R_PPC_ADDR32:
 | |
|     case R_PPC_UADDR32:
 | |
|     case R_PPC_GLOB_DAT:
 | |
|     case R_PPC_RELATIVE:
 | |
|       *reloc_addr = finaladdr;
 | |
|       return;
 | |
| 
 | |
|     case R_PPC_ADDR24:
 | |
|       if (finaladdr > 0x01fffffc && finaladdr < 0xfe000000)
 | |
| 	_dl_signal_error (0, map->l_name,
 | |
| 			  "R_PPC_ADDR24 relocation out of range");
 | |
|       *reloc_addr = (*reloc_addr & 0xfc000003) | (finaladdr & 0x3fffffc);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC_ADDR16:
 | |
|     case R_PPC_UADDR16:
 | |
|       if (finaladdr > 0x7fff && finaladdr < 0x8000)
 | |
| 	_dl_signal_error (0, map->l_name,
 | |
| 			  "R_PPC_ADDR16 relocation out of range");
 | |
|       *(Elf32_Half*) reloc_addr = finaladdr;
 | |
|       break;
 | |
| 
 | |
|     case R_PPC_ADDR16_LO:
 | |
|       *(Elf32_Half*) reloc_addr = finaladdr;
 | |
|       break;
 | |
| 
 | |
|     case R_PPC_ADDR16_HI:
 | |
|       *(Elf32_Half*) reloc_addr = finaladdr >> 16;
 | |
|       break;
 | |
| 
 | |
|     case R_PPC_ADDR16_HA:
 | |
|       *(Elf32_Half*) reloc_addr = (finaladdr + 0x8000) >> 16;
 | |
|       break;
 | |
| 
 | |
|     case R_PPC_ADDR14:
 | |
|     case R_PPC_ADDR14_BRTAKEN:
 | |
|     case R_PPC_ADDR14_BRNTAKEN:
 | |
|       if (finaladdr > 0x7fff && finaladdr < 0x8000)
 | |
| 	_dl_signal_error (0, map->l_name,
 | |
| 			  "R_PPC_ADDR14 relocation out of range");
 | |
|       *reloc_addr = (*reloc_addr & 0xffff0003) | (finaladdr & 0xfffc);
 | |
|       if (rinfo != R_PPC_ADDR14)
 | |
| 	*reloc_addr = ((*reloc_addr & 0xffdfffff)
 | |
| 		       | ((rinfo == R_PPC_ADDR14_BRTAKEN)
 | |
| 			  ^ (finaladdr >> 31)) << 21);
 | |
|       break;
 | |
| 
 | |
|     case R_PPC_REL24:
 | |
|       {
 | |
| 	Elf32_Sword delta = finaladdr - (Elf32_Word) reloc_addr;
 | |
| 	if (delta << 6 >> 6 != delta)
 | |
| 	  _dl_signal_error (0, map->l_name,
 | |
| 			    "R_PPC_REL24 relocation out of range");
 | |
| 	*reloc_addr = (*reloc_addr & 0xfc000003) | (delta & 0x3fffffc);
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case R_PPC_COPY:
 | |
|       if (sym == NULL)
 | |
| 	/* This can happen in trace mode when an object could not be
 | |
| 	   found.  */
 | |
| 	return;
 | |
|       if (sym->st_size > refsym->st_size
 | |
| 	  || (_dl_verbose && sym->st_size < refsym->st_size))
 | |
| 	{
 | |
| 	  const char *strtab;
 | |
| 
 | |
| 	  strtab = (const void *) map->l_info[DT_STRTAB]->d_un.d_ptr;
 | |
| 	  _dl_sysdep_error (_dl_argv[0] ?: "<program name unknown>",
 | |
| 			    ": Symbol `", strtab + refsym->st_name,
 | |
| 			    "' has different size in shared object, "
 | |
| 			    "consider re-linking\n", NULL);
 | |
| 	}
 | |
|       memcpy (reloc_addr, (char *) finaladdr, MIN (sym->st_size,
 | |
| 						   refsym->st_size));
 | |
|       return;
 | |
| 
 | |
|     case R_PPC_REL32:
 | |
|       *reloc_addr = finaladdr - (Elf32_Word) reloc_addr;
 | |
|       return;
 | |
| 
 | |
|     case R_PPC_JMP_SLOT:
 | |
|       /* It used to be that elf_machine_fixup_plt was used here,
 | |
| 	 but that doesn't work when ld.so relocates itself
 | |
| 	 for the second time.  On the bright side, there's
 | |
|          no need to worry about thread-safety here.  */
 | |
|       {
 | |
| 	Elf32_Sword delta = finaladdr - (Elf32_Word) reloc_addr;
 | |
| 	if (delta << 6 >> 6 == delta)
 | |
| 	  *reloc_addr = OPCODE_B (delta);
 | |
| 	else if (finaladdr <= 0x01fffffc || finaladdr >= 0xfe000000)
 | |
| 	  *reloc_addr = OPCODE_BA (finaladdr);
 | |
| 	else
 | |
| 	  {
 | |
| 	    Elf32_Word *plt, *data_words;
 | |
| 	    Elf32_Word index, offset, num_plt_entries;
 | |
| 	    
 | |
| 	    plt = (Elf32_Word *) map->l_info[DT_PLTGOT]->d_un.d_val;
 | |
| 	    offset = reloc_addr - plt;
 | |
| 
 | |
| 	    if (offset < PLT_DOUBLE_SIZE*2 + PLT_INITIAL_ENTRY_WORDS)
 | |
| 	      {
 | |
| 		index = (offset - PLT_INITIAL_ENTRY_WORDS)/2;
 | |
| 		num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
 | |
| 				   / sizeof(Elf32_Rela));
 | |
| 		data_words = plt + PLT_DATA_START_WORDS (num_plt_entries);
 | |
| 		data_words[index] = finaladdr;
 | |
| 		reloc_addr[0] = OPCODE_LI (11, index * 4);
 | |
| 		reloc_addr[1] = OPCODE_B ((PLT_LONGBRANCH_ENTRY_WORDS 
 | |
| 					   - (offset+1)) 
 | |
| 					  * 4);
 | |
| 		MODIFIED_CODE_NOQUEUE (reloc_addr + 1);
 | |
| 	      }
 | |
| 	    else
 | |
| 	      {
 | |
| 		reloc_addr[0] = OPCODE_LIS_HI (12, finaladdr);
 | |
| 		reloc_addr[1] = OPCODE_ADDI (12, 12, finaladdr);
 | |
| 		reloc_addr[2] = OPCODE_MTCTR (12);
 | |
| 		reloc_addr[3] = OPCODE_BCTR ();
 | |
| 		MODIFIED_CODE_NOQUEUE (reloc_addr + 3);
 | |
| 	      }
 | |
| 	  }
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       _dl_reloc_bad_type (map, rinfo, 0);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   MODIFIED_CODE_NOQUEUE (reloc_addr);
 | |
| }
 |