mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	This patch continues the math_private.h cleanup by stopping math_private.h from including math-barriers.h and making the users of the barrier macros include the latter header directly. No attempt is made to remove any math_private.h includes that are now unused, except in strtod_l.c where that is done to avoid line number changes in assertions, so that installed stripped shared libraries can be compared before and after the patch. (I think the floating-point environment support in math_private.h should also move out - some architectures already have fenv_private.h as an architecture-internal header included from their math_private.h - and after moving that out might be a better time to identify unused math_private.h includes.) Tested for x86_64 and x86, and tested with build-many-glibcs.py that installed stripped shared libraries are unchanged by the patch. * sysdeps/generic/math_private.h: Do not include <math-barriers.h>. * stdlib/strtod_l.c: Include <math-barriers.h> instead of <math_private.h>. * math/fromfp.h: Include <math-barriers.h>. * math/math-narrow.h: Likewise. * math/s_nextafter.c: Likewise. * math/s_nexttowardf.c: Likewise. * sysdeps/aarch64/fpu/s_llrint.c: Likewise. * sysdeps/aarch64/fpu/s_llrintf.c: Likewise. * sysdeps/aarch64/fpu/s_lrint.c: Likewise. * sysdeps/aarch64/fpu/s_lrintf.c: Likewise. * sysdeps/i386/fpu/s_nextafterl.c: Likewise. * sysdeps/i386/fpu/s_nexttoward.c: Likewise. * sysdeps/i386/fpu/s_nexttowardf.c: Likewise. * sysdeps/ieee754/dbl-64/e_atan2.c: Likewise. * sysdeps/ieee754/dbl-64/e_atanh.c: Likewise. * sysdeps/ieee754/dbl-64/e_exp.c: Likewise. * sysdeps/ieee754/dbl-64/e_exp2.c: Likewise. * sysdeps/ieee754/dbl-64/e_j0.c: Likewise. * sysdeps/ieee754/dbl-64/e_sqrt.c: Likewise. * sysdeps/ieee754/dbl-64/s_expm1.c: Likewise. * sysdeps/ieee754/dbl-64/s_fma.c: Likewise. * sysdeps/ieee754/dbl-64/s_fmaf.c: Likewise. * sysdeps/ieee754/dbl-64/s_log1p.c: Likewise. * sysdeps/ieee754/dbl-64/s_nearbyint.c: Likewise. * sysdeps/ieee754/dbl-64/wordsize-64/s_nearbyint.c: Likewise. * sysdeps/ieee754/flt-32/e_atanhf.c: Likewise. * sysdeps/ieee754/flt-32/e_j0f.c: Likewise. * sysdeps/ieee754/flt-32/s_expm1f.c: Likewise. * sysdeps/ieee754/flt-32/s_log1pf.c: Likewise. * sysdeps/ieee754/flt-32/s_nearbyintf.c: Likewise. * sysdeps/ieee754/flt-32/s_nextafterf.c: Likewise. * sysdeps/ieee754/k_standardl.c: Likewise. * sysdeps/ieee754/ldbl-128/e_asinl.c: Likewise. * sysdeps/ieee754/ldbl-128/e_expl.c: Likewise. * sysdeps/ieee754/ldbl-128/e_powl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_fmal.c: Likewise. * sysdeps/ieee754/ldbl-128/s_nearbyintl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_nextafterl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_nexttoward.c: Likewise. * sysdeps/ieee754/ldbl-128/s_nexttowardf.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/e_asinl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_rintl.c: Likewise. * sysdeps/ieee754/ldbl-96/e_atanhl.c: Likewise. * sysdeps/ieee754/ldbl-96/e_j0l.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fma.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise. * sysdeps/ieee754/ldbl-96/s_nexttoward.c: Likewise. * sysdeps/ieee754/ldbl-96/s_nexttowardf.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c: Likewise. * sysdeps/m68k/m680x0/fpu/s_nextafterl.c: Likewise.
		
			
				
	
	
		
			162 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			162 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* s_nextafterl.c -- long double version of s_nextafter.c.
 | |
|  * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| #if defined(LIBM_SCCS) && !defined(lint)
 | |
| static char rcsid[] = "$NetBSD: $";
 | |
| #endif
 | |
| 
 | |
| /* IEEE functions
 | |
|  *	nextafterl(x,y)
 | |
|  *	return the next machine floating-point number of x in the
 | |
|  *	direction toward y.
 | |
|  *   Special cases:
 | |
|  */
 | |
| 
 | |
| #include <errno.h>
 | |
| #include <float.h>
 | |
| #include <math.h>
 | |
| #include <math-barriers.h>
 | |
| #include <math_private.h>
 | |
| #include <math_ldbl_opt.h>
 | |
| 
 | |
| long double __nextafterl(long double x, long double y)
 | |
| {
 | |
| 	int64_t hx, hy, ihx, ihy, lx;
 | |
| 	double xhi, xlo, yhi;
 | |
| 
 | |
| 	ldbl_unpack (x, &xhi, &xlo);
 | |
| 	EXTRACT_WORDS64 (hx, xhi);
 | |
| 	EXTRACT_WORDS64 (lx, xlo);
 | |
| 	yhi = ldbl_high (y);
 | |
| 	EXTRACT_WORDS64 (hy, yhi);
 | |
| 	ihx = hx&0x7fffffffffffffffLL;		/* |hx| */
 | |
| 	ihy = hy&0x7fffffffffffffffLL;		/* |hy| */
 | |
| 
 | |
| 	if((ihx>0x7ff0000000000000LL) ||	/* x is nan */
 | |
| 	   (ihy>0x7ff0000000000000LL))		/* y is nan */
 | |
| 	    return x+y; /* signal the nan */
 | |
| 	if(x==y)
 | |
| 	    return y;		/* x=y, return y */
 | |
| 	if(ihx == 0) {				/* x == 0 */
 | |
| 	    long double u;			/* return +-minsubnormal */
 | |
| 	    hy = (hy & 0x8000000000000000ULL) | 1;
 | |
| 	    INSERT_WORDS64 (yhi, hy);
 | |
| 	    x = yhi;
 | |
| 	    u = math_opt_barrier (x);
 | |
| 	    u = u * u;
 | |
| 	    math_force_eval (u);		/* raise underflow flag */
 | |
| 	    return x;
 | |
| 	}
 | |
| 
 | |
| 	long double u;
 | |
| 	if(x > y) {	/* x > y, x -= ulp */
 | |
| 	    /* This isn't the largest magnitude correctly rounded
 | |
| 	       long double as you can see from the lowest mantissa
 | |
| 	       bit being zero.  It is however the largest magnitude
 | |
| 	       long double with a 106 bit mantissa, and nextafterl
 | |
| 	       is insane with variable precision.  So to make
 | |
| 	       nextafterl sane we assume 106 bit precision.  */
 | |
| 	    if((hx==0xffefffffffffffffLL)&&(lx==0xfc8ffffffffffffeLL)) {
 | |
| 	      u = x+x;	/* overflow, return -inf */
 | |
| 	      math_force_eval (u);
 | |
| 	      __set_errno (ERANGE);
 | |
| 	      return y;
 | |
| 	    }
 | |
| 	    if (hx >= 0x7ff0000000000000LL) {
 | |
| 	      u = 0x1.fffffffffffff7ffffffffffff8p+1023L;
 | |
| 	      return u;
 | |
| 	    }
 | |
| 	    if(ihx <= 0x0360000000000000LL) {  /* x <= LDBL_MIN */
 | |
| 	      u = math_opt_barrier (x);
 | |
| 	      x -= LDBL_TRUE_MIN;
 | |
| 	      if (ihx < 0x0360000000000000LL
 | |
| 		  || (hx > 0 && lx <= 0)
 | |
| 		  || (hx < 0 && lx > 1)) {
 | |
| 		u = u * u;
 | |
| 		math_force_eval (u);		/* raise underflow flag */
 | |
| 		__set_errno (ERANGE);
 | |
| 	      }
 | |
| 	      /* Avoid returning -0 in FE_DOWNWARD mode.  */
 | |
| 	      if (x == 0.0L)
 | |
| 		return 0.0L;
 | |
| 	      return x;
 | |
| 	    }
 | |
| 	    /* If the high double is an exact power of two and the low
 | |
| 	       double is the opposite sign, then 1ulp is one less than
 | |
| 	       what we might determine from the high double.  Similarly
 | |
| 	       if X is an exact power of two, and positive, because
 | |
| 	       making it a little smaller will result in the exponent
 | |
| 	       decreasing by one and normalisation of the mantissa.   */
 | |
| 	    if ((hx & 0x000fffffffffffffLL) == 0
 | |
| 		&& ((lx != 0 && (hx ^ lx) < 0)
 | |
| 		    || (lx == 0 && hx >= 0)))
 | |
| 	      ihx -= 1LL << 52;
 | |
| 	    if (ihx < (106LL << 52)) { /* ulp will denormal */
 | |
| 	      INSERT_WORDS64 (yhi, ihx & (0x7ffLL<<52));
 | |
| 	      u = yhi * 0x1p-105;
 | |
| 	    } else {
 | |
| 	      INSERT_WORDS64 (yhi, (ihx & (0x7ffLL<<52))-(105LL<<52));
 | |
| 	      u = yhi;
 | |
| 	    }
 | |
| 	    return x - u;
 | |
| 	} else {				/* x < y, x += ulp */
 | |
| 	    if((hx==0x7fefffffffffffffLL)&&(lx==0x7c8ffffffffffffeLL)) {
 | |
| 	      u = x+x;	/* overflow, return +inf */
 | |
| 	      math_force_eval (u);
 | |
| 	      __set_errno (ERANGE);
 | |
| 	      return y;
 | |
| 	    }
 | |
| 	    if ((uint64_t) hx >= 0xfff0000000000000ULL) {
 | |
| 	      u = -0x1.fffffffffffff7ffffffffffff8p+1023L;
 | |
| 	      return u;
 | |
| 	    }
 | |
| 	    if(ihx <= 0x0360000000000000LL) {  /* x <= LDBL_MIN */
 | |
| 	      u = math_opt_barrier (x);
 | |
| 	      x += LDBL_TRUE_MIN;
 | |
| 	      if (ihx < 0x0360000000000000LL
 | |
| 		  || (hx > 0 && lx < 0 && lx != 0x8000000000000001LL)
 | |
| 		  || (hx < 0 && lx >= 0)) {
 | |
| 		u = u * u;
 | |
| 		math_force_eval (u);		/* raise underflow flag */
 | |
| 		__set_errno (ERANGE);
 | |
| 	      }
 | |
| 	      if (x == 0.0L)	/* handle negative LDBL_TRUE_MIN case */
 | |
| 		x = -0.0L;
 | |
| 	      return x;
 | |
| 	    }
 | |
| 	    /* If the high double is an exact power of two and the low
 | |
| 	       double is the opposite sign, then 1ulp is one less than
 | |
| 	       what we might determine from the high double.  Similarly
 | |
| 	       if X is an exact power of two, and negative, because
 | |
| 	       making it a little larger will result in the exponent
 | |
| 	       decreasing by one and normalisation of the mantissa.   */
 | |
| 	    if ((hx & 0x000fffffffffffffLL) == 0
 | |
| 		&& ((lx != 0 && (hx ^ lx) < 0)
 | |
| 		    || (lx == 0 && hx < 0)))
 | |
| 	      ihx -= 1LL << 52;
 | |
| 	    if (ihx < (106LL << 52)) { /* ulp will denormal */
 | |
| 	      INSERT_WORDS64 (yhi, ihx & (0x7ffLL<<52));
 | |
| 	      u = yhi * 0x1p-105;
 | |
| 	    } else {
 | |
| 	      INSERT_WORDS64 (yhi, (ihx & (0x7ffLL<<52))-(105LL<<52));
 | |
| 	      u = yhi;
 | |
| 	    }
 | |
| 	    return x + u;
 | |
| 	}
 | |
| }
 | |
| strong_alias (__nextafterl, __nexttowardl)
 | |
| long_double_symbol (libm, __nextafterl, nextafterl);
 | |
| long_double_symbol (libm, __nexttowardl, nexttowardl);
 |