mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	I used these shell commands: ../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright (cd ../glibc && git commit -am"[this commit message]") and then ignored the output, which consisted lines saying "FOO: warning: copyright statement not found" for each of 6694 files FOO. I then removed trailing white space from benchtests/bench-pthread-locks.c and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this diagnostic from Savannah: remote: *** pre-commit check failed ... remote: *** error: lines with trailing whitespace found remote: error: hook declined to update refs/heads/master
		
			
				
	
	
		
			261 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			261 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Compute x * y + z as ternary operation.
 | |
|    Copyright (C) 2011-2021 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
|    Contributed by David Flaherty <flaherty@linux.vnet.ibm.com>.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <https://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include <fenv.h>
 | |
| #include <float.h>
 | |
| #include <math.h>
 | |
| #include <math-barriers.h>
 | |
| #include <math_private.h>
 | |
| #include <fenv_private.h>
 | |
| #include <math-underflow.h>
 | |
| #include <math_ldbl_opt.h>
 | |
| #include <mul_split.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| /* Calculate X + Y exactly and store the result in *HI + *LO.  It is
 | |
|    given that |X| >= |Y| and the values are small enough that no
 | |
|    overflow occurs.  */
 | |
| 
 | |
| static void
 | |
| add_split (double *hi, double *lo, double x, double y)
 | |
| {
 | |
|   /* Apply Dekker's algorithm.  */
 | |
|   *hi = x + y;
 | |
|   *lo = (x - *hi) + y;
 | |
| }
 | |
| 
 | |
| /* Value with extended range, used in intermediate computations.  */
 | |
| typedef struct
 | |
| {
 | |
|   /* Value in [0.5, 1), as from frexp, or 0.  */
 | |
|   double val;
 | |
|   /* Exponent of power of 2 it is multiplied by, or 0 for zero.  */
 | |
|   int exp;
 | |
| } ext_val;
 | |
| 
 | |
| /* Store D as an ext_val value.  */
 | |
| 
 | |
| static void
 | |
| store_ext_val (ext_val *v, double d)
 | |
| {
 | |
|   v->val = __frexp (d, &v->exp);
 | |
| }
 | |
| 
 | |
| /* Store X * Y as ext_val values *V0 and *V1.  */
 | |
| 
 | |
| static void
 | |
| mul_ext_val (ext_val *v0, ext_val *v1, double x, double y)
 | |
| {
 | |
|   int xexp, yexp;
 | |
|   x = __frexp (x, &xexp);
 | |
|   y = __frexp (y, &yexp);
 | |
|   double hi, lo;
 | |
|   mul_split (&hi, &lo, x, y);
 | |
|   store_ext_val (v0, hi);
 | |
|   if (hi != 0)
 | |
|     v0->exp += xexp + yexp;
 | |
|   store_ext_val (v1, lo);
 | |
|   if (lo != 0)
 | |
|     v1->exp += xexp + yexp;
 | |
| }
 | |
| 
 | |
| /* Compare absolute values of ext_val values pointed to by P and Q for
 | |
|    qsort.  */
 | |
| 
 | |
| static int
 | |
| compare (const void *p, const void *q)
 | |
| {
 | |
|   const ext_val *pe = p;
 | |
|   const ext_val *qe = q;
 | |
|   if (pe->val == 0)
 | |
|     return qe->val == 0 ? 0 : -1;
 | |
|   else if (qe->val == 0)
 | |
|     return 1;
 | |
|   else if (pe->exp < qe->exp)
 | |
|     return -1;
 | |
|   else if (pe->exp > qe->exp)
 | |
|     return 1;
 | |
|   else
 | |
|     {
 | |
|       double pd = fabs (pe->val);
 | |
|       double qd = fabs (qe->val);
 | |
|       if (pd < qd)
 | |
| 	return -1;
 | |
|       else if (pd == qd)
 | |
| 	return 0;
 | |
|       else
 | |
| 	return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Calculate *X + *Y exactly, storing the high part in *X (rounded to
 | |
|    nearest) and the low part in *Y.  It is given that |X| >= |Y|.  */
 | |
| 
 | |
| static void
 | |
| add_split_ext (ext_val *x, ext_val *y)
 | |
| {
 | |
|   int xexp = x->exp, yexp = y->exp;
 | |
|   if (y->val == 0 || xexp - yexp > 53)
 | |
|     return;
 | |
|   double hi = x->val;
 | |
|   double lo = __scalbn (y->val, yexp - xexp);
 | |
|   add_split (&hi, &lo, hi, lo);
 | |
|   store_ext_val (x, hi);
 | |
|   if (hi != 0)
 | |
|     x->exp += xexp;
 | |
|   store_ext_val (y, lo);
 | |
|   if (lo != 0)
 | |
|     y->exp += xexp;
 | |
| }
 | |
| 
 | |
| long double
 | |
| __fmal (long double x, long double y, long double z)
 | |
| {
 | |
|   double xhi, xlo, yhi, ylo, zhi, zlo;
 | |
|   int64_t hx, hy, hz;
 | |
|   int xexp, yexp, zexp;
 | |
|   double scale_val;
 | |
|   int scale_exp;
 | |
|   ldbl_unpack (x, &xhi, &xlo);
 | |
|   EXTRACT_WORDS64 (hx, xhi);
 | |
|   xexp = (hx & 0x7ff0000000000000LL) >> 52;
 | |
|   ldbl_unpack (y, &yhi, &ylo);
 | |
|   EXTRACT_WORDS64 (hy, yhi);
 | |
|   yexp = (hy & 0x7ff0000000000000LL) >> 52;
 | |
|   ldbl_unpack (z, &zhi, &zlo);
 | |
|   EXTRACT_WORDS64 (hz, zhi);
 | |
|   zexp = (hz & 0x7ff0000000000000LL) >> 52;
 | |
| 
 | |
|   /* If z is Inf or NaN, but x and y are finite, avoid any exceptions
 | |
|      from computing x * y.  */
 | |
|   if (zexp == 0x7ff && xexp != 0x7ff && yexp != 0x7ff)
 | |
|     return (z + x) + y;
 | |
| 
 | |
|   /* If z is zero and x are y are nonzero, compute the result as x * y
 | |
|      to avoid the wrong sign of a zero result if x * y underflows to
 | |
|      0.  */
 | |
|   if (z == 0 && x != 0 && y != 0)
 | |
|     return x * y;
 | |
| 
 | |
|   /* If x or y or z is Inf/NaN, or if x * y is zero, compute as x * y
 | |
|      + z.  */
 | |
|   if (xexp == 0x7ff || yexp == 0x7ff || zexp == 0x7ff
 | |
|       || x == 0 || y == 0)
 | |
|     return (x * y) + z;
 | |
| 
 | |
|   {
 | |
|     SET_RESTORE_ROUND (FE_TONEAREST);
 | |
| 
 | |
|     ext_val vals[10];
 | |
|     store_ext_val (&vals[0], zhi);
 | |
|     store_ext_val (&vals[1], zlo);
 | |
|     mul_ext_val (&vals[2], &vals[3], xhi, yhi);
 | |
|     mul_ext_val (&vals[4], &vals[5], xhi, ylo);
 | |
|     mul_ext_val (&vals[6], &vals[7], xlo, yhi);
 | |
|     mul_ext_val (&vals[8], &vals[9], xlo, ylo);
 | |
|     qsort (vals, 10, sizeof (ext_val), compare);
 | |
|     /* Add up the values so that each element of VALS has absolute
 | |
|        value at most equal to the last set bit of the next nonzero
 | |
|        element.  */
 | |
|     for (size_t i = 0; i <= 8; i++)
 | |
|       {
 | |
| 	add_split_ext (&vals[i + 1], &vals[i]);
 | |
| 	qsort (vals + i + 1, 9 - i, sizeof (ext_val), compare);
 | |
|       }
 | |
|     /* Add up the values in the other direction, so that each element
 | |
|        of VALS has absolute value less than 5ulp of the next
 | |
|        value.  */
 | |
|     size_t dstpos = 9;
 | |
|     for (size_t i = 1; i <= 9; i++)
 | |
|       {
 | |
| 	if (vals[dstpos].val == 0)
 | |
| 	  {
 | |
| 	    vals[dstpos] = vals[9 - i];
 | |
| 	    vals[9 - i].val = 0;
 | |
| 	    vals[9 - i].exp = 0;
 | |
| 	  }
 | |
| 	else
 | |
| 	  {
 | |
| 	    add_split_ext (&vals[dstpos], &vals[9 - i]);
 | |
| 	    if (vals[9 - i].val != 0)
 | |
| 	      {
 | |
| 		if (9 - i < dstpos - 1)
 | |
| 		  {
 | |
| 		    vals[dstpos - 1] = vals[9 - i];
 | |
| 		    vals[9 - i].val = 0;
 | |
| 		    vals[9 - i].exp = 0;
 | |
| 		  }
 | |
| 		dstpos--;
 | |
| 	      }
 | |
| 	  }
 | |
|       }
 | |
|     /* If the result is an exact zero, it results from adding two
 | |
|        values with opposite signs; recompute in the original rounding
 | |
|        mode.  */
 | |
|     if (vals[9].val == 0)
 | |
|       goto zero_out;
 | |
|     /* Adding the top three values will now give a result as accurate
 | |
|        as the underlying long double arithmetic.  */
 | |
|     add_split_ext (&vals[9], &vals[8]);
 | |
|     if (compare (&vals[8], &vals[7]) < 0)
 | |
|       {
 | |
| 	ext_val tmp = vals[7];
 | |
| 	vals[7] = vals[8];
 | |
| 	vals[8] = tmp;
 | |
|       }
 | |
|     add_split_ext (&vals[8], &vals[7]);
 | |
|     add_split_ext (&vals[9], &vals[8]);
 | |
|     if (vals[9].exp > DBL_MAX_EXP || vals[9].exp < DBL_MIN_EXP)
 | |
|       {
 | |
| 	/* Overflow or underflow, with the result depending on the
 | |
| 	   original rounding mode, but not on the low part computed
 | |
| 	   here.  */
 | |
| 	scale_val = vals[9].val;
 | |
| 	scale_exp = vals[9].exp;
 | |
| 	goto scale_out;
 | |
|       }
 | |
|     double hi = __scalbn (vals[9].val, vals[9].exp);
 | |
|     double lo = __scalbn (vals[8].val, vals[8].exp);
 | |
|     /* It is possible that the low part became subnormal and was
 | |
|        rounded so that the result is no longer canonical.  */
 | |
|     ldbl_canonicalize (&hi, &lo);
 | |
|     long double ret = ldbl_pack (hi, lo);
 | |
|     math_check_force_underflow (ret);
 | |
|     return ret;
 | |
|   }
 | |
| 
 | |
|  scale_out:
 | |
|   scale_val = math_opt_barrier (scale_val);
 | |
|   scale_val = __scalbn (scale_val, scale_exp);
 | |
|   if (fabs (scale_val) == DBL_MAX)
 | |
|     return copysignl (LDBL_MAX, scale_val);
 | |
|   math_check_force_underflow (scale_val);
 | |
|   return scale_val;
 | |
| 
 | |
|  zero_out:;
 | |
|   double zero = 0.0;
 | |
|   zero = math_opt_barrier (zero);
 | |
|   return zero - zero;
 | |
| }
 | |
| #if IS_IN (libm)
 | |
| long_double_symbol (libm, __fmal, fmal);
 | |
| #else
 | |
| long_double_symbol (libc, __fmal, fmal);
 | |
| #endif
 |