mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	I used these shell commands: ../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright (cd ../glibc && git commit -am"[this commit message]") and then ignored the output, which consisted lines saying "FOO: warning: copyright statement not found" for each of 6694 files FOO. I then removed trailing white space from benchtests/bench-pthread-locks.c and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this diagnostic from Savannah: remote: *** pre-commit check failed ... remote: *** error: lines with trailing whitespace found remote: error: hook declined to update refs/heads/master
		
			
				
	
	
		
			222 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Implementation of gamma function according to ISO C.
 | |
|    Copyright (C) 1997-2021 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
|    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
 | |
| 		  Jakub Jelinek <jj@ultra.linux.cz, 1999.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <https://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <math_private.h>
 | |
| #include <fenv_private.h>
 | |
| #include <math-underflow.h>
 | |
| #include <float.h>
 | |
| #include <libm-alias-finite.h>
 | |
| 
 | |
| /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
 | |
|    approximation to gamma function.  */
 | |
| 
 | |
| static const long double gamma_coeff[] =
 | |
|   {
 | |
|     0x1.555555555555555555555555558p-4L,
 | |
|     -0xb.60b60b60b60b60b60b60b60b6p-12L,
 | |
|     0x3.4034034034034034034034034p-12L,
 | |
|     -0x2.7027027027027027027027027p-12L,
 | |
|     0x3.72a3c5631fe46ae1d4e700dca9p-12L,
 | |
|     -0x7.daac36664f1f207daac36664f2p-12L,
 | |
|     0x1.a41a41a41a41a41a41a41a41a4p-8L,
 | |
|     -0x7.90a1b2c3d4e5f708192a3b4c5ep-8L,
 | |
|     0x2.dfd2c703c0cfff430edfd2c704p-4L,
 | |
|     -0x1.6476701181f39edbdb9ce625988p+0L,
 | |
|     0xd.672219167002d3a7a9c886459cp+0L,
 | |
|     -0x9.cd9292e6660d55b3f712eb9e08p+4L,
 | |
|     0x8.911a740da740da740da740da74p+8L,
 | |
|   };
 | |
| 
 | |
| #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
 | |
| 
 | |
| /* Return gamma (X), for positive X less than 191, in the form R *
 | |
|    2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
 | |
|    avoid overflow or underflow in intermediate calculations.  */
 | |
| 
 | |
| static long double
 | |
| gammal_positive (long double x, int *exp2_adj)
 | |
| {
 | |
|   int local_signgam;
 | |
|   if (x < 0.5L)
 | |
|     {
 | |
|       *exp2_adj = 0;
 | |
|       return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x;
 | |
|     }
 | |
|   else if (x <= 1.5L)
 | |
|     {
 | |
|       *exp2_adj = 0;
 | |
|       return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam));
 | |
|     }
 | |
|   else if (x < 11.5L)
 | |
|     {
 | |
|       /* Adjust into the range for using exp (lgamma).  */
 | |
|       *exp2_adj = 0;
 | |
|       long double n = ceill (x - 1.5L);
 | |
|       long double x_adj = x - n;
 | |
|       long double eps;
 | |
|       long double prod = __gamma_productl (x_adj, 0, n, &eps);
 | |
|       return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam))
 | |
| 	      * prod * (1.0L + eps));
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       long double eps = 0;
 | |
|       long double x_eps = 0;
 | |
|       long double x_adj = x;
 | |
|       long double prod = 1;
 | |
|       if (x < 23.0L)
 | |
| 	{
 | |
| 	  /* Adjust into the range for applying Stirling's
 | |
| 	     approximation.  */
 | |
| 	  long double n = ceill (23.0L - x);
 | |
| 	  x_adj = x + n;
 | |
| 	  x_eps = (x - (x_adj - n));
 | |
| 	  prod = __gamma_productl (x_adj - n, x_eps, n, &eps);
 | |
| 	}
 | |
|       /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
 | |
| 	 Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
 | |
| 	 starting by computing pow (X_ADJ, X_ADJ) with a power of 2
 | |
| 	 factored out.  */
 | |
|       long double exp_adj = -eps;
 | |
|       long double x_adj_int = roundl (x_adj);
 | |
|       long double x_adj_frac = x_adj - x_adj_int;
 | |
|       int x_adj_log2;
 | |
|       long double x_adj_mant = __frexpl (x_adj, &x_adj_log2);
 | |
|       if (x_adj_mant < M_SQRT1_2l)
 | |
| 	{
 | |
| 	  x_adj_log2--;
 | |
| 	  x_adj_mant *= 2.0L;
 | |
| 	}
 | |
|       *exp2_adj = x_adj_log2 * (int) x_adj_int;
 | |
|       long double ret = (__ieee754_powl (x_adj_mant, x_adj)
 | |
| 			 * __ieee754_exp2l (x_adj_log2 * x_adj_frac)
 | |
| 			 * __ieee754_expl (-x_adj)
 | |
| 			 * sqrtl (2 * M_PIl / x_adj)
 | |
| 			 / prod);
 | |
|       exp_adj += x_eps * __ieee754_logl (x_adj);
 | |
|       long double bsum = gamma_coeff[NCOEFF - 1];
 | |
|       long double x_adj2 = x_adj * x_adj;
 | |
|       for (size_t i = 1; i <= NCOEFF - 1; i++)
 | |
| 	bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
 | |
|       exp_adj += bsum / x_adj;
 | |
|       return ret + ret * __expm1l (exp_adj);
 | |
|     }
 | |
| }
 | |
| 
 | |
| long double
 | |
| __ieee754_gammal_r (long double x, int *signgamp)
 | |
| {
 | |
|   int64_t hx;
 | |
|   double xhi;
 | |
|   long double ret;
 | |
| 
 | |
|   xhi = ldbl_high (x);
 | |
|   EXTRACT_WORDS64 (hx, xhi);
 | |
| 
 | |
|   if ((hx & 0x7fffffffffffffffLL) == 0)
 | |
|     {
 | |
|       /* Return value for x == 0 is Inf with divide by zero exception.  */
 | |
|       *signgamp = 0;
 | |
|       return 1.0 / x;
 | |
|     }
 | |
|   if (hx < 0 && (uint64_t) hx < 0xfff0000000000000ULL && rintl (x) == x)
 | |
|     {
 | |
|       /* Return value for integer x < 0 is NaN with invalid exception.  */
 | |
|       *signgamp = 0;
 | |
|       return (x - x) / (x - x);
 | |
|     }
 | |
|   if (hx == 0xfff0000000000000ULL)
 | |
|     {
 | |
|       /* x == -Inf.  According to ISO this is NaN.  */
 | |
|       *signgamp = 0;
 | |
|       return x - x;
 | |
|     }
 | |
|   if ((hx & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL)
 | |
|     {
 | |
|       /* Positive infinity (return positive infinity) or NaN (return
 | |
| 	 NaN).  */
 | |
|       *signgamp = 0;
 | |
|       return x + x;
 | |
|     }
 | |
| 
 | |
|   if (x >= 172.0L)
 | |
|     {
 | |
|       /* Overflow.  */
 | |
|       *signgamp = 0;
 | |
|       return LDBL_MAX * LDBL_MAX;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       SET_RESTORE_ROUNDL (FE_TONEAREST);
 | |
|       if (x > 0.0L)
 | |
| 	{
 | |
| 	  *signgamp = 0;
 | |
| 	  int exp2_adj;
 | |
| 	  ret = gammal_positive (x, &exp2_adj);
 | |
| 	  ret = __scalbnl (ret, exp2_adj);
 | |
| 	}
 | |
|       else if (x >= -0x1p-110L)
 | |
| 	{
 | |
| 	  *signgamp = 0;
 | |
| 	  ret = 1.0L / x;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  long double tx = truncl (x);
 | |
| 	  *signgamp = (tx == 2.0L * truncl (tx / 2.0L)) ? -1 : 1;
 | |
| 	  if (x <= -191.0L)
 | |
| 	    /* Underflow.  */
 | |
| 	    ret = LDBL_MIN * LDBL_MIN;
 | |
| 	  else
 | |
| 	    {
 | |
| 	      long double frac = tx - x;
 | |
| 	      if (frac > 0.5L)
 | |
| 		frac = 1.0L - frac;
 | |
| 	      long double sinpix = (frac <= 0.25L
 | |
| 				    ? __sinl (M_PIl * frac)
 | |
| 				    : __cosl (M_PIl * (0.5L - frac)));
 | |
| 	      int exp2_adj;
 | |
| 	      ret = M_PIl / (-x * sinpix
 | |
| 			     * gammal_positive (-x, &exp2_adj));
 | |
| 	      ret = __scalbnl (ret, -exp2_adj);
 | |
| 	      math_check_force_underflow_nonneg (ret);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   if (isinf (ret) && x != 0)
 | |
|     {
 | |
|       if (*signgamp < 0)
 | |
| 	return -(-copysignl (LDBL_MAX, ret) * LDBL_MAX);
 | |
|       else
 | |
| 	return copysignl (LDBL_MAX, ret) * LDBL_MAX;
 | |
|     }
 | |
|   else if (ret == 0)
 | |
|     {
 | |
|       if (*signgamp < 0)
 | |
| 	return -(-copysignl (LDBL_MIN, ret) * LDBL_MIN);
 | |
|       else
 | |
| 	return copysignl (LDBL_MIN, ret) * LDBL_MIN;
 | |
|     }
 | |
|   else
 | |
|     return ret;
 | |
| }
 | |
| libm_alias_finite (__ieee754_gammal_r, __gammal_r)
 |