mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-11-03 20:53:13 +03:00 
			
		
		
		
	Continuing the preparation for additional _FloatN / _FloatNx function aliases, this patch makes ia64 libm function implementations use libm_alias_double to define function aliases. The same approach is followed as with the corresponding long double patch: the ia64-specific macros are left unchanged, with calls to libm_alias_double_other being added in most cases and libm_alias_double itself being used in only a few places. Tested with build-many-glibcs.py for ia64-linux-gnu that installed stripped shared libraries are unchanged by the patch. * sysdeps/ia64/fpu/libm-symbols.h: Include <libm-alias-double.h>. * sysdeps/ia64/fpu/e_acos.S (acos): Use libm_alias_double_other. * sysdeps/ia64/fpu/e_acosh.S (acosh): Likewise. * sysdeps/ia64/fpu/e_asin.S (asin): Likewise. * sysdeps/ia64/fpu/e_atan2.S (atan2): Likewise. * sysdeps/ia64/fpu/e_atanh.S (atanh): Likewise. * sysdeps/ia64/fpu/e_cosh.S (cosh): Likewise. * sysdeps/ia64/fpu/e_exp.S (exp): Likewise. * sysdeps/ia64/fpu/e_exp10.S (exp10): Likewise. * sysdeps/ia64/fpu/e_exp2.S (exp2): Likewise. * sysdeps/ia64/fpu/e_fmod.S (fmod): Likewise. * sysdeps/ia64/fpu/e_hypot.S (hypot): Likewise. * sysdeps/ia64/fpu/e_lgamma_r.c (lgamma_r): Define using libm_alias_double_r. * sysdeps/ia64/fpu/e_log.S (log10): Use libm_alias_double_other. (log): Likewise. * sysdeps/ia64/fpu/e_log2.S (log2): Likewise. * sysdeps/ia64/fpu/e_pow.S (pow): Likewise. * sysdeps/ia64/fpu/e_remainder.S (remainder): Likewise. * sysdeps/ia64/fpu/e_sinh.S (sinh): Likewise. * sysdeps/ia64/fpu/e_sqrt.S (sqrt): Likewise. * sysdeps/ia64/fpu/libm_sincos.S (sincos): Likewise. * sysdeps/ia64/fpu/s_asinh.S (asinh): Likewise. * sysdeps/ia64/fpu/s_atan.S (atan): Likewise. * sysdeps/ia64/fpu/s_cbrt.S (cbrt): Likewise. * sysdeps/ia64/fpu/s_ceil.S (ceil): Likewise. * sysdeps/ia64/fpu/s_copysign.S (copysign): Define using libm_alias_double. * sysdeps/ia64/fpu/s_cos.S (sin): Use libm_alias_double_other. (cos): Likewise. * sysdeps/ia64/fpu/s_erf.S (erf): Likewise. * sysdeps/ia64/fpu/s_erfc.S (erfc): Likewise. * sysdeps/ia64/fpu/s_expm1.S (expm1): Likewise. * sysdeps/ia64/fpu/s_fabs.S (fabs): Likewise. * sysdeps/ia64/fpu/s_fdim.S (fdim): Likewise. * sysdeps/ia64/fpu/s_floor.S (floor): Likewise. * sysdeps/ia64/fpu/s_fma.S (fma): Likewise. * sysdeps/ia64/fpu/s_fmax.S (fmax): Likewise. * sysdeps/ia64/fpu/s_frexp.c (frexp): Likewise. * sysdeps/ia64/fpu/s_ldexp.c (ldexp): Likewise. * sysdeps/ia64/fpu/s_log1p.S (log1p): Likewise. * sysdeps/ia64/fpu/s_logb.S (logb): Likewise. * sysdeps/ia64/fpu/s_modf.S (modf): Likewise. * sysdeps/ia64/fpu/s_nearbyint.S (nearbyint): Likewise. * sysdeps/ia64/fpu/s_nextafter.S (nextafter): Likewise. * sysdeps/ia64/fpu/s_rint.S (rint): Likewise. * sysdeps/ia64/fpu/s_round.S (round): Likewise. * sysdeps/ia64/fpu/s_scalbn.c (scalbn): Define using libm_alias_double. * sysdeps/ia64/fpu/s_tan.S (tan): Use libm_alias_double_other. * sysdeps/ia64/fpu/s_tanh.S (tanh): Likewise. * sysdeps/ia64/fpu/s_trunc.S (trunc): Likewise. * sysdeps/ia64/fpu/w_lgamma_main.c [BUILD_LGAMMA && !USE_AS_COMPAT] (lgamma): Likewise. * sysdeps/ia64/fpu/w_tgamma_compat.S (tgamma): Likewise.
		
			
				
	
	
		
			888 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
			
		
		
	
	
			888 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
.file "exp_m1.s"
 | 
						|
 | 
						|
 | 
						|
// Copyright (c) 2000 - 2005, Intel Corporation
 | 
						|
// All rights reserved.
 | 
						|
//
 | 
						|
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
//
 | 
						|
// * Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
// * Redistributions in binary form must reproduce the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer in the
 | 
						|
// documentation and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
// * The name of Intel Corporation may not be used to endorse or promote
 | 
						|
// products derived from this software without specific prior written
 | 
						|
// permission.
 | 
						|
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
 | 
						|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | 
						|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | 
						|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | 
						|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 | 
						|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
 | 
						|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | 
						|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
//
 | 
						|
// Intel Corporation is the author of this code, and requests that all
 | 
						|
// problem reports or change requests be submitted to it directly at
 | 
						|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
 | 
						|
//
 | 
						|
// History
 | 
						|
//==============================================================
 | 
						|
// 02/02/00 Initial Version
 | 
						|
// 04/04/00 Unwind support added
 | 
						|
// 08/15/00 Bundle added after call to __libm_error_support to properly
 | 
						|
//          set [the previously overwritten] GR_Parameter_RESULT.
 | 
						|
// 07/07/01 Improved speed of all paths
 | 
						|
// 05/20/02 Cleaned up namespace and sf0 syntax
 | 
						|
// 11/20/02 Improved speed, algorithm based on exp
 | 
						|
// 03/31/05 Reformatted delimiters between data tables
 | 
						|
 | 
						|
// API
 | 
						|
//==============================================================
 | 
						|
// double expm1(double)
 | 
						|
 | 
						|
// Overview of operation
 | 
						|
//==============================================================
 | 
						|
// 1. Inputs of Nan, Inf, Zero, NatVal handled with special paths
 | 
						|
//
 | 
						|
// 2. |x| < 2^-60
 | 
						|
//    Result = x, computed by x + x*x to handle appropriate flags and rounding
 | 
						|
//
 | 
						|
// 3. 2^-60 <= |x| < 2^-2
 | 
						|
//    Result determined by 13th order Taylor series polynomial
 | 
						|
//    expm1f(x) = x + Q2*x^2 + ... + Q13*x^13
 | 
						|
//
 | 
						|
// 4. x < -48.0
 | 
						|
//    Here we know result is essentially -1 + eps, where eps only affects
 | 
						|
//    rounded result.  Set I.
 | 
						|
//
 | 
						|
// 5. x >= 709.7827
 | 
						|
//    Result overflows.  Set I, O, and call error support
 | 
						|
//
 | 
						|
// 6. 2^-2 <= x < 709.7827  or  -48.0 <= x < -2^-2
 | 
						|
//    This is the main path.  The algorithm is described below:
 | 
						|
 | 
						|
// Take the input x. w is "how many log2/128 in x?"
 | 
						|
//  w = x * 128/log2
 | 
						|
//  n = int(w)
 | 
						|
//  x = n log2/128 + r + delta
 | 
						|
 | 
						|
//  n = 128M + index_1 + 2^4 index_2
 | 
						|
//  x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
 | 
						|
 | 
						|
//  exp(x) = 2^M  2^(index_1/128)  2^(index_2/8) exp(r) exp(delta)
 | 
						|
//       Construct 2^M
 | 
						|
//       Get 2^(index_1/128) from table_1;
 | 
						|
//       Get 2^(index_2/8)   from table_2;
 | 
						|
//       Calculate exp(r) by series by 5th order polynomial
 | 
						|
//          r = x - n (log2/128)_high
 | 
						|
//          delta = - n (log2/128)_low
 | 
						|
//       Calculate exp(delta) as 1 + delta
 | 
						|
 | 
						|
 | 
						|
// Special values
 | 
						|
//==============================================================
 | 
						|
// expm1(+0)    = +0.0
 | 
						|
// expm1(-0)    = -0.0
 | 
						|
 | 
						|
// expm1(+qnan) = +qnan
 | 
						|
// expm1(-qnan) = -qnan
 | 
						|
// expm1(+snan) = +qnan
 | 
						|
// expm1(-snan) = -qnan
 | 
						|
 | 
						|
// expm1(-inf)  = -1.0
 | 
						|
// expm1(+inf)  = +inf
 | 
						|
 | 
						|
// Overflow and Underflow
 | 
						|
//=======================
 | 
						|
// expm1(x) = largest double normal when
 | 
						|
//     x = 709.7827 = 40862e42fefa39ef
 | 
						|
//
 | 
						|
// Underflow is handled as described in case 2 above.
 | 
						|
 | 
						|
 | 
						|
// Registers used
 | 
						|
//==============================================================
 | 
						|
// Floating Point registers used:
 | 
						|
// f8, input
 | 
						|
// f9 -> f15,  f32 -> f75
 | 
						|
 | 
						|
// General registers used:
 | 
						|
// r14 -> r40
 | 
						|
 | 
						|
// Predicate registers used:
 | 
						|
// p6 -> p15
 | 
						|
 | 
						|
// Assembly macros
 | 
						|
//==============================================================
 | 
						|
 | 
						|
rRshf                  = r14
 | 
						|
rAD_TB1                = r15
 | 
						|
rAD_T1                 = r15
 | 
						|
rAD_TB2                = r16
 | 
						|
rAD_T2                 = r16
 | 
						|
rAD_Ln2_lo             = r17
 | 
						|
rAD_P                  = r17
 | 
						|
 | 
						|
rN                     = r18
 | 
						|
rIndex_1               = r19
 | 
						|
rIndex_2_16            = r20
 | 
						|
 | 
						|
rM                     = r21
 | 
						|
rBiased_M              = r21
 | 
						|
rIndex_1_16            = r22
 | 
						|
rSignexp_x             = r23
 | 
						|
rExp_x                 = r24
 | 
						|
rSig_inv_ln2           = r25
 | 
						|
 | 
						|
rAD_Q1                 = r26
 | 
						|
rAD_Q2                 = r27
 | 
						|
rTmp                   = r27
 | 
						|
rExp_bias              = r28
 | 
						|
rExp_mask              = r29
 | 
						|
rRshf_2to56            = r30
 | 
						|
 | 
						|
rGt_ln                 = r31
 | 
						|
rExp_2tom56            = r31
 | 
						|
 | 
						|
 | 
						|
GR_SAVE_B0             = r33
 | 
						|
GR_SAVE_PFS            = r34
 | 
						|
GR_SAVE_GP             = r35
 | 
						|
GR_SAVE_SP             = r36
 | 
						|
 | 
						|
GR_Parameter_X         = r37
 | 
						|
GR_Parameter_Y         = r38
 | 
						|
GR_Parameter_RESULT    = r39
 | 
						|
GR_Parameter_TAG       = r40
 | 
						|
 | 
						|
 | 
						|
FR_X                   = f10
 | 
						|
FR_Y                   = f1
 | 
						|
FR_RESULT              = f8
 | 
						|
 | 
						|
fRSHF_2TO56            = f6
 | 
						|
fINV_LN2_2TO63         = f7
 | 
						|
fW_2TO56_RSH           = f9
 | 
						|
f2TOM56                = f11
 | 
						|
fP5                    = f12
 | 
						|
fP54                   = f50
 | 
						|
fP5432                 = f50
 | 
						|
fP4                    = f13
 | 
						|
fP3                    = f14
 | 
						|
fP32                   = f14
 | 
						|
fP2                    = f15
 | 
						|
 | 
						|
fLn2_by_128_hi         = f33
 | 
						|
fLn2_by_128_lo         = f34
 | 
						|
 | 
						|
fRSHF                  = f35
 | 
						|
fNfloat                = f36
 | 
						|
fW                     = f37
 | 
						|
fR                     = f38
 | 
						|
fF                     = f39
 | 
						|
 | 
						|
fRsq                   = f40
 | 
						|
fRcube                 = f41
 | 
						|
 | 
						|
f2M                    = f42
 | 
						|
fS1                    = f43
 | 
						|
fT1                    = f44
 | 
						|
 | 
						|
fMIN_DBL_OFLOW_ARG     = f45
 | 
						|
fMAX_DBL_MINUS_1_ARG   = f46
 | 
						|
fMAX_DBL_NORM_ARG      = f47
 | 
						|
fP_lo                  = f51
 | 
						|
fP_hi                  = f52
 | 
						|
fP                     = f53
 | 
						|
fS                     = f54
 | 
						|
 | 
						|
fNormX                 = f56
 | 
						|
 | 
						|
fWre_urm_f8            = f57
 | 
						|
 | 
						|
fGt_pln                = f58
 | 
						|
fTmp                   = f58
 | 
						|
 | 
						|
fS2                    = f59
 | 
						|
fT2                    = f60
 | 
						|
fSm1                   = f61
 | 
						|
 | 
						|
fXsq                   = f62
 | 
						|
fX6                    = f63
 | 
						|
fX4                    = f63
 | 
						|
fQ7                    = f64
 | 
						|
fQ76                   = f64
 | 
						|
fQ7654                 = f64
 | 
						|
fQ765432               = f64
 | 
						|
fQ6                    = f65
 | 
						|
fQ5                    = f66
 | 
						|
fQ54                   = f66
 | 
						|
fQ4                    = f67
 | 
						|
fQ3                    = f68
 | 
						|
fQ32                   = f68
 | 
						|
fQ2                    = f69
 | 
						|
fQD                    = f70
 | 
						|
fQDC                   = f70
 | 
						|
fQDCBA                 = f70
 | 
						|
fQDCBA98               = f70
 | 
						|
fQDCBA98765432         = f70
 | 
						|
fQC                    = f71
 | 
						|
fQB                    = f72
 | 
						|
fQBA                   = f72
 | 
						|
fQA                    = f73
 | 
						|
fQ9                    = f74
 | 
						|
fQ98                   = f74
 | 
						|
fQ8                    = f75
 | 
						|
 | 
						|
// Data tables
 | 
						|
//==============================================================
 | 
						|
 | 
						|
RODATA
 | 
						|
.align 16
 | 
						|
 | 
						|
// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
 | 
						|
 | 
						|
// double-extended 1/ln(2)
 | 
						|
// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
 | 
						|
// 3fff b8aa 3b29 5c17 f0bc
 | 
						|
// For speed the significand will be loaded directly with a movl and setf.sig
 | 
						|
//   and the exponent will be bias+63 instead of bias+0.  Thus subsequent
 | 
						|
//   computations need to scale appropriately.
 | 
						|
// The constant 128/ln(2) is needed for the computation of w.  This is also
 | 
						|
//   obtained by scaling the computations.
 | 
						|
//
 | 
						|
// Two shifting constants are loaded directly with movl and setf.d.
 | 
						|
//   1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
 | 
						|
//        This constant is added to x*1/ln2 to shift the integer part of
 | 
						|
//        x*128/ln2 into the rightmost bits of the significand.
 | 
						|
//        The result of this fma is fW_2TO56_RSH.
 | 
						|
//   2. fRSHF       = 1.1000..00 * 2^(63)
 | 
						|
//        This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
 | 
						|
//        the integer part of w, n, as a floating-point number.
 | 
						|
//        The result of this fms is fNfloat.
 | 
						|
 | 
						|
 | 
						|
LOCAL_OBJECT_START(exp_Table_1)
 | 
						|
data8 0x40862e42fefa39f0 // smallest dbl overflow arg
 | 
						|
data8 0xc048000000000000 // approx largest arg for minus one result
 | 
						|
data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result
 | 
						|
data8 0x0                // pad
 | 
						|
data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
 | 
						|
data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
 | 
						|
//
 | 
						|
// Table 1 is 2^(index_1/128) where
 | 
						|
// index_1 goes from 0 to 15
 | 
						|
//
 | 
						|
data8 0x8000000000000000 , 0x00003FFF
 | 
						|
data8 0x80B1ED4FD999AB6C , 0x00003FFF
 | 
						|
data8 0x8164D1F3BC030773 , 0x00003FFF
 | 
						|
data8 0x8218AF4373FC25EC , 0x00003FFF
 | 
						|
data8 0x82CD8698AC2BA1D7 , 0x00003FFF
 | 
						|
data8 0x8383594EEFB6EE37 , 0x00003FFF
 | 
						|
data8 0x843A28C3ACDE4046 , 0x00003FFF
 | 
						|
data8 0x84F1F656379C1A29 , 0x00003FFF
 | 
						|
data8 0x85AAC367CC487B15 , 0x00003FFF
 | 
						|
data8 0x8664915B923FBA04 , 0x00003FFF
 | 
						|
data8 0x871F61969E8D1010 , 0x00003FFF
 | 
						|
data8 0x87DB357FF698D792 , 0x00003FFF
 | 
						|
data8 0x88980E8092DA8527 , 0x00003FFF
 | 
						|
data8 0x8955EE03618E5FDD , 0x00003FFF
 | 
						|
data8 0x8A14D575496EFD9A , 0x00003FFF
 | 
						|
data8 0x8AD4C6452C728924 , 0x00003FFF
 | 
						|
LOCAL_OBJECT_END(exp_Table_1)
 | 
						|
 | 
						|
// Table 2 is 2^(index_1/8) where
 | 
						|
// index_2 goes from 0 to 7
 | 
						|
LOCAL_OBJECT_START(exp_Table_2)
 | 
						|
data8 0x8000000000000000 , 0x00003FFF
 | 
						|
data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
 | 
						|
data8 0x9837F0518DB8A96F , 0x00003FFF
 | 
						|
data8 0xA5FED6A9B15138EA , 0x00003FFF
 | 
						|
data8 0xB504F333F9DE6484 , 0x00003FFF
 | 
						|
data8 0xC5672A115506DADD , 0x00003FFF
 | 
						|
data8 0xD744FCCAD69D6AF4 , 0x00003FFF
 | 
						|
data8 0xEAC0C6E7DD24392F , 0x00003FFF
 | 
						|
LOCAL_OBJECT_END(exp_Table_2)
 | 
						|
 | 
						|
 | 
						|
LOCAL_OBJECT_START(exp_p_table)
 | 
						|
data8 0x3f8111116da21757 //P5
 | 
						|
data8 0x3fa55555d787761c //P4
 | 
						|
data8 0x3fc5555555555414 //P3
 | 
						|
data8 0x3fdffffffffffd6a //P2
 | 
						|
LOCAL_OBJECT_END(exp_p_table)
 | 
						|
 | 
						|
LOCAL_OBJECT_START(exp_Q1_table)
 | 
						|
data8 0x3de6124613a86d09 // QD = 1/13!
 | 
						|
data8 0x3e21eed8eff8d898 // QC = 1/12!
 | 
						|
data8 0x3ec71de3a556c734 // Q9 = 1/9!
 | 
						|
data8 0x3efa01a01a01a01a // Q8 = 1/8!
 | 
						|
data8 0x8888888888888889,0x3ff8 // Q5 = 1/5!
 | 
						|
data8 0xaaaaaaaaaaaaaaab,0x3ffc // Q3 = 1/3!
 | 
						|
data8 0x0,0x0            // Pad to avoid bank conflicts
 | 
						|
LOCAL_OBJECT_END(exp_Q1_table)
 | 
						|
 | 
						|
LOCAL_OBJECT_START(exp_Q2_table)
 | 
						|
data8 0x3e5ae64567f544e4 // QB = 1/11!
 | 
						|
data8 0x3e927e4fb7789f5c // QA = 1/10!
 | 
						|
data8 0x3f2a01a01a01a01a // Q7 = 1/7!
 | 
						|
data8 0x3f56c16c16c16c17 // Q6 = 1/6!
 | 
						|
data8 0xaaaaaaaaaaaaaaab,0x3ffa // Q4 = 1/4!
 | 
						|
data8 0x8000000000000000,0x3ffe // Q2 = 1/2!
 | 
						|
LOCAL_OBJECT_END(exp_Q2_table)
 | 
						|
 | 
						|
 | 
						|
.section .text
 | 
						|
GLOBAL_IEEE754_ENTRY(expm1)
 | 
						|
 | 
						|
{ .mlx
 | 
						|
      getf.exp        rSignexp_x = f8  // Must recompute if x unorm
 | 
						|
      movl            rSig_inv_ln2 = 0xb8aa3b295c17f0bc  // signif of 1/ln2
 | 
						|
}
 | 
						|
{ .mlx
 | 
						|
      addl            rAD_TB1    = @ltoff(exp_Table_1), gp
 | 
						|
      movl            rRshf_2to56 = 0x4768000000000000   // 1.10000 2^(63+56)
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
// We do this fnorm right at the beginning to normalize
 | 
						|
// any input unnormals so that SWA is not taken.
 | 
						|
{ .mfi
 | 
						|
      ld8             rAD_TB1    = [rAD_TB1]
 | 
						|
      fclass.m        p6,p0 = f8,0x0b  // Test for x=unorm
 | 
						|
      mov             rExp_mask = 0x1ffff
 | 
						|
}
 | 
						|
{ .mfi
 | 
						|
      mov             rExp_bias = 0xffff
 | 
						|
      fnorm.s1        fNormX   = f8
 | 
						|
      mov             rExp_2tom56 = 0xffff-56
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
// Form two constants we need
 | 
						|
//  1/ln2 * 2^63  to compute  w = x * 1/ln2 * 128
 | 
						|
//  1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      setf.sig        fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
 | 
						|
      fclass.m        p8,p0 = f8,0x07  // Test for x=0
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
{ .mlx
 | 
						|
      setf.d          fRSHF_2TO56 = rRshf_2to56 // Form 1.100 * 2^(63+56)
 | 
						|
      movl            rRshf = 0x43e8000000000000   // 1.10000 2^63 for rshift
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      setf.exp        f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
 | 
						|
      fclass.m        p9,p0 = f8,0x22  // Test for x=-inf
 | 
						|
      add             rAD_TB2 = 0x140, rAD_TB1 // Point to Table 2
 | 
						|
}
 | 
						|
{ .mib
 | 
						|
      add             rAD_Q1 = 0x1e0, rAD_TB1 // Point to Q table for small path
 | 
						|
      add             rAD_Ln2_lo = 0x30, rAD_TB1 // Point to ln2_by_128_lo
 | 
						|
(p6)  br.cond.spnt    EXPM1_UNORM // Branch if x unorm
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
EXPM1_COMMON:
 | 
						|
{ .mfi
 | 
						|
      ldfpd           fMIN_DBL_OFLOW_ARG, fMAX_DBL_MINUS_1_ARG = [rAD_TB1],16
 | 
						|
      fclass.m        p10,p0 = f8,0x1e1  // Test for x=+inf, NaN, NaT
 | 
						|
      add             rAD_Q2 = 0x50, rAD_Q1   // Point to Q table for small path
 | 
						|
}
 | 
						|
{ .mfb
 | 
						|
      nop.m           0
 | 
						|
      nop.f           0
 | 
						|
(p8)  br.ret.spnt     b0                        // Exit for x=0, return x
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      ldfd            fMAX_DBL_NORM_ARG = [rAD_TB1],16
 | 
						|
      nop.f           0
 | 
						|
      and             rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
 | 
						|
}
 | 
						|
{ .mfb
 | 
						|
      setf.d          fRSHF = rRshf // Form right shift const 1.100 * 2^63
 | 
						|
(p9)  fms.d.s0        f8 = f0,f0,f1            // quick exit for x=-inf
 | 
						|
(p9)  br.ret.spnt     b0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      ldfpd           fQD, fQC = [rAD_Q1], 16  // Load coeff for small path
 | 
						|
      nop.f           0
 | 
						|
      sub             rExp_x = rExp_x, rExp_bias // True exponent of x
 | 
						|
}
 | 
						|
{ .mfb
 | 
						|
      ldfpd           fQB, fQA = [rAD_Q2], 16  // Load coeff for small path
 | 
						|
(p10) fma.d.s0        f8 = f8, f1, f0          // For x=+inf, NaN, NaT
 | 
						|
(p10) br.ret.spnt     b0                       // Exit for x=+inf, NaN, NaT
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      ldfpd           fQ9, fQ8 = [rAD_Q1], 16  // Load coeff for small path
 | 
						|
      fma.s1          fXsq = fNormX, fNormX, f0  // x*x for small path
 | 
						|
      cmp.gt          p7, p8 = -2, rExp_x      // Test |x| < 2^(-2)
 | 
						|
}
 | 
						|
{ .mfi
 | 
						|
      ldfpd           fQ7, fQ6 = [rAD_Q2], 16  // Load coeff for small path
 | 
						|
      nop.f           0
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      ldfe            fQ5 = [rAD_Q1], 16       // Load coeff for small path
 | 
						|
      nop.f           0
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
{ .mib
 | 
						|
      ldfe            fQ4 = [rAD_Q2], 16       // Load coeff for small path
 | 
						|
(p7)  cmp.gt.unc      p6, p7 = -60, rExp_x     // Test |x| < 2^(-60)
 | 
						|
(p7)  br.cond.spnt    EXPM1_SMALL              // Branch if 2^-60 <= |x| < 2^-2
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
// W = X * Inv_log2_by_128
 | 
						|
// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
 | 
						|
// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      ldfe            fLn2_by_128_hi  = [rAD_TB1],32
 | 
						|
      fma.s1          fW_2TO56_RSH  = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
{ .mfb
 | 
						|
      ldfe            fLn2_by_128_lo  = [rAD_Ln2_lo]
 | 
						|
(p6)  fma.d.s0        f8 = f8, f8, f8 // If x < 2^-60, result=x+x*x
 | 
						|
(p6)  br.ret.spnt     b0              // Exit if x < 2^-60
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
// Divide arguments into the following categories:
 | 
						|
//  Certain minus one       p11 - -inf < x <= MAX_DBL_MINUS_1_ARG
 | 
						|
//  Possible Overflow       p14 - MAX_DBL_NORM_ARG < x < MIN_DBL_OFLOW_ARG
 | 
						|
//  Certain Overflow        p15 - MIN_DBL_OFLOW_ARG <= x < +inf
 | 
						|
//
 | 
						|
// If the input is really a double arg, then there will never be "Possible
 | 
						|
// Overflow" arguments.
 | 
						|
//
 | 
						|
 | 
						|
// After that last load, rAD_TB1 points to the beginning of table 1
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fcmp.ge.s1      p15,p14 = fNormX,fMIN_DBL_OFLOW_ARG
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      add             rAD_P = 0x80, rAD_TB2
 | 
						|
      fcmp.le.s1      p11,p0 = fNormX,fMAX_DBL_MINUS_1_ARG
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfb
 | 
						|
      ldfpd           fP5, fP4  = [rAD_P] ,16
 | 
						|
(p14) fcmp.gt.unc.s1  p14,p0 = fNormX,fMAX_DBL_NORM_ARG
 | 
						|
(p15) br.cond.spnt    EXPM1_CERTAIN_OVERFLOW
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
// Nfloat = round_int(W)
 | 
						|
// The signficand of fW_2TO56_RSH contains the rounded integer part of W,
 | 
						|
// as a twos complement number in the lower bits (that is, it may be negative).
 | 
						|
// That twos complement number (called N) is put into rN.
 | 
						|
 | 
						|
// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
 | 
						|
// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
 | 
						|
// Thus, fNfloat contains the floating point version of N
 | 
						|
 | 
						|
{ .mfb
 | 
						|
      ldfpd           fP3, fP2  = [rAD_P]
 | 
						|
      fms.s1          fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
 | 
						|
(p11) br.cond.spnt    EXPM1_CERTAIN_MINUS_ONE
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      getf.sig        rN = fW_2TO56_RSH
 | 
						|
      nop.f           0
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
// rIndex_1 has index_1
 | 
						|
// rIndex_2_16 has index_2 * 16
 | 
						|
// rBiased_M has M
 | 
						|
// rIndex_1_16 has index_1 * 16
 | 
						|
 | 
						|
// r = x - Nfloat * ln2_by_128_hi
 | 
						|
// f = 1 - Nfloat * ln2_by_128_lo
 | 
						|
{ .mfi
 | 
						|
      and             rIndex_1 = 0x0f, rN
 | 
						|
      fnma.s1         fR   = fNfloat, fLn2_by_128_hi, fNormX
 | 
						|
      shr             rM = rN,  0x7
 | 
						|
}
 | 
						|
{ .mfi
 | 
						|
      and             rIndex_2_16 = 0x70, rN
 | 
						|
      fnma.s1         fF   = fNfloat, fLn2_by_128_lo, f1
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
// rAD_T1 has address of T1
 | 
						|
// rAD_T2 has address if T2
 | 
						|
 | 
						|
{ .mmi
 | 
						|
      add             rBiased_M = rExp_bias, rM
 | 
						|
      add             rAD_T2 = rAD_TB2, rIndex_2_16
 | 
						|
      shladd          rAD_T1 = rIndex_1, 4, rAD_TB1
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
// Create Scale = 2^M
 | 
						|
// Load T1 and T2
 | 
						|
{ .mmi
 | 
						|
      setf.exp        f2M = rBiased_M
 | 
						|
      ldfe            fT2  = [rAD_T2]
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      ldfe            fT1  = [rAD_T1]
 | 
						|
      fmpy.s0         fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fP54 = fR, fP5, fP4
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fP32 = fR, fP3, fP2
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fRsq = fR, fR, f0
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fP5432  = fRsq, fP54, fP32
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fS2  = fF,fT2,f0
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fS1  = f2M,fT1,f0
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fP = fRsq, fP5432, fR
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fms.s1          fSm1 = fS1,fS2,f1    // S - 1.0
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
{ .mfb
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fS   = fS1,fS2,f0
 | 
						|
(p14) br.cond.spnt    EXPM1_POSSIBLE_OVERFLOW
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfb
 | 
						|
      nop.m           0
 | 
						|
      fma.d.s0        f8 = fS, fP, fSm1
 | 
						|
      br.ret.sptk     b0                // Normal path exit
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
// Here if 2^-60 <= |x| <2^-2
 | 
						|
// Compute 13th order polynomial
 | 
						|
EXPM1_SMALL:
 | 
						|
{ .mmf
 | 
						|
      ldfe            fQ3 = [rAD_Q1], 16
 | 
						|
      ldfe            fQ2 = [rAD_Q2], 16
 | 
						|
      fma.s1          fX4 = fXsq, fXsq, f0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fQDC = fQD, fNormX, fQC
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fQBA = fQB, fNormX, fQA
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fQ98 = fQ9, fNormX, fQ8
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fQ76= fQ7, fNormX, fQ6
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fQ54 = fQ5, fNormX, fQ4
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fX6 = fX4, fXsq, f0
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fQ32= fQ3, fNormX, fQ2
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fQDCBA = fQDC, fXsq, fQBA
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fQ7654 = fQ76, fXsq, fQ54
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fQDCBA98 = fQDCBA, fXsq, fQ98
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fQ765432 = fQ7654, fXsq, fQ32
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fma.s1          fQDCBA98765432 = fQDCBA98, fX6, fQ765432
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfb
 | 
						|
      nop.m           0
 | 
						|
      fma.d.s0        f8 = fQDCBA98765432, fXsq, fNormX
 | 
						|
      br.ret.sptk     b0                   // Exit small branch
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
 | 
						|
EXPM1_POSSIBLE_OVERFLOW:
 | 
						|
 | 
						|
// Here if fMAX_DBL_NORM_ARG < x < fMIN_DBL_OFLOW_ARG
 | 
						|
// This cannot happen if input is a double, only if input higher precision.
 | 
						|
// Overflow is a possibility, not a certainty.
 | 
						|
 | 
						|
// Recompute result using status field 2 with user's rounding mode,
 | 
						|
// and wre set.  If result is larger than largest double, then we have
 | 
						|
// overflow
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      mov             rGt_ln  = 0x103ff // Exponent for largest dbl + 1 ulp
 | 
						|
      fsetc.s2        0x7F,0x42         // Get user's round mode, set wre
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      setf.exp        fGt_pln = rGt_ln  // Create largest double + 1 ulp
 | 
						|
      fma.d.s2        fWre_urm_f8 = fS, fP, fSm1  // Result with wre set
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fsetc.s2        0x7F,0x40                   // Turn off wre in sf2
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      nop.m           0
 | 
						|
      fcmp.ge.s1      p6, p0 =  fWre_urm_f8, fGt_pln // Test for overflow
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfb
 | 
						|
      nop.m           0
 | 
						|
      nop.f           0
 | 
						|
(p6)  br.cond.spnt    EXPM1_CERTAIN_OVERFLOW // Branch if overflow
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfb
 | 
						|
      nop.m           0
 | 
						|
      fma.d.s0        f8 = fS, fP, fSm1
 | 
						|
      br.ret.sptk     b0                     // Exit if really no overflow
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
EXPM1_CERTAIN_OVERFLOW:
 | 
						|
{ .mmi
 | 
						|
      sub             rTmp = rExp_mask, r0, 1
 | 
						|
;;
 | 
						|
      setf.exp        fTmp = rTmp
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfi
 | 
						|
      alloc           r32=ar.pfs,1,4,4,0
 | 
						|
      fmerge.s        FR_X = f8,f8
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
{ .mfb
 | 
						|
      mov             GR_Parameter_TAG = 41
 | 
						|
      fma.d.s0        FR_RESULT = fTmp, fTmp, f0    // Set I,O and +INF result
 | 
						|
      br.cond.sptk    __libm_error_region
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
// Here if x unorm
 | 
						|
EXPM1_UNORM:
 | 
						|
{ .mfb
 | 
						|
      getf.exp        rSignexp_x = fNormX    // Must recompute if x unorm
 | 
						|
      fcmp.eq.s0      p6, p0 = f8, f0        // Set D flag
 | 
						|
      br.cond.sptk    EXPM1_COMMON
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
// here if result will be -1 and inexact, x <= -48.0
 | 
						|
EXPM1_CERTAIN_MINUS_ONE:
 | 
						|
{ .mmi
 | 
						|
      mov             rTmp = 1
 | 
						|
;;
 | 
						|
      setf.exp        fTmp = rTmp
 | 
						|
      nop.i           0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
{ .mfb
 | 
						|
      nop.m           0
 | 
						|
      fms.d.s0        FR_RESULT = fTmp, fTmp, f1 // Set I, rounded -1+eps result
 | 
						|
      br.ret.sptk     b0
 | 
						|
}
 | 
						|
;;
 | 
						|
 | 
						|
GLOBAL_IEEE754_END(expm1)
 | 
						|
libm_alias_double_other (__expm1, expm1)
 | 
						|
 | 
						|
 | 
						|
LOCAL_LIBM_ENTRY(__libm_error_region)
 | 
						|
.prologue
 | 
						|
{ .mfi
 | 
						|
        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
 | 
						|
        nop.f 0
 | 
						|
.save   ar.pfs,GR_SAVE_PFS
 | 
						|
        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
 | 
						|
}
 | 
						|
{ .mfi
 | 
						|
.fframe 64
 | 
						|
        add sp=-64,sp                           // Create new stack
 | 
						|
        nop.f 0
 | 
						|
        mov GR_SAVE_GP=gp                       // Save gp
 | 
						|
};;
 | 
						|
{ .mmi
 | 
						|
        stfd [GR_Parameter_Y] = FR_Y,16         // STORE Parameter 2 on stack
 | 
						|
        add GR_Parameter_X = 16,sp              // Parameter 1 address
 | 
						|
.save   b0, GR_SAVE_B0
 | 
						|
        mov GR_SAVE_B0=b0                       // Save b0
 | 
						|
};;
 | 
						|
.body
 | 
						|
{ .mib
 | 
						|
        stfd [GR_Parameter_X] = FR_X            // STORE Parameter 1 on stack
 | 
						|
        add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
 | 
						|
	nop.b 0
 | 
						|
}
 | 
						|
{ .mib
 | 
						|
        stfd [GR_Parameter_Y] = FR_RESULT       // STORE Parameter 3 on stack
 | 
						|
        add   GR_Parameter_Y = -16,GR_Parameter_Y
 | 
						|
        br.call.sptk b0=__libm_error_support#   // Call error handling function
 | 
						|
};;
 | 
						|
{ .mmi
 | 
						|
        add   GR_Parameter_RESULT = 48,sp
 | 
						|
        nop.m 0
 | 
						|
        nop.i 0
 | 
						|
};;
 | 
						|
{ .mmi
 | 
						|
        ldfd  f8 = [GR_Parameter_RESULT]       // Get return result off stack
 | 
						|
.restore sp
 | 
						|
        add   sp = 64,sp                       // Restore stack pointer
 | 
						|
        mov   b0 = GR_SAVE_B0                  // Restore return address
 | 
						|
};;
 | 
						|
{ .mib
 | 
						|
        mov   gp = GR_SAVE_GP                  // Restore gp
 | 
						|
        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
 | 
						|
        br.ret.sptk     b0                     // Return
 | 
						|
};;
 | 
						|
 | 
						|
LOCAL_LIBM_END(__libm_error_region)
 | 
						|
.type   __libm_error_support#,@function
 | 
						|
.global __libm_error_support#
 |