mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-11-03 20:53:13 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			208 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			208 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* mpn_divmod_1(quot_ptr, dividend_ptr, dividend_size, divisor_limb) --
 | 
						|
   Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
 | 
						|
   Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
 | 
						|
   Return the single-limb remainder.
 | 
						|
   There are no constraints on the value of the divisor.
 | 
						|
 | 
						|
   QUOT_PTR and DIVIDEND_PTR might point to the same limb.
 | 
						|
 | 
						|
Copyright (C) 1991-2012 Free Software Foundation, Inc.
 | 
						|
 | 
						|
This file is part of the GNU MP Library.
 | 
						|
 | 
						|
The GNU MP Library is free software; you can redistribute it and/or modify
 | 
						|
it under the terms of the GNU Lesser General Public License as published by
 | 
						|
the Free Software Foundation; either version 2.1 of the License, or (at your
 | 
						|
option) any later version.
 | 
						|
 | 
						|
The GNU MP Library is distributed in the hope that it will be useful, but
 | 
						|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 | 
						|
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 | 
						|
License for more details.
 | 
						|
 | 
						|
You should have received a copy of the GNU Lesser General Public License
 | 
						|
along with the GNU MP Library; see the file COPYING.LIB.  If not, see
 | 
						|
<http://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
#include <gmp.h>
 | 
						|
#include "gmp-impl.h"
 | 
						|
#include "longlong.h"
 | 
						|
 | 
						|
#ifndef UMUL_TIME
 | 
						|
#define UMUL_TIME 1
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef UDIV_TIME
 | 
						|
#define UDIV_TIME UMUL_TIME
 | 
						|
#endif
 | 
						|
 | 
						|
/* FIXME: We should be using invert_limb (or invert_normalized_limb)
 | 
						|
   here (not udiv_qrnnd).  */
 | 
						|
 | 
						|
mp_limb_t
 | 
						|
#if __STDC__
 | 
						|
mpn_divmod_1 (mp_ptr quot_ptr,
 | 
						|
	      mp_srcptr dividend_ptr, mp_size_t dividend_size,
 | 
						|
	      mp_limb_t divisor_limb)
 | 
						|
#else
 | 
						|
mpn_divmod_1 (quot_ptr, dividend_ptr, dividend_size, divisor_limb)
 | 
						|
     mp_ptr quot_ptr;
 | 
						|
     mp_srcptr dividend_ptr;
 | 
						|
     mp_size_t dividend_size;
 | 
						|
     mp_limb_t divisor_limb;
 | 
						|
#endif
 | 
						|
{
 | 
						|
  mp_size_t i;
 | 
						|
  mp_limb_t n1, n0, r;
 | 
						|
  mp_limb_t dummy __attribute__ ((unused));
 | 
						|
 | 
						|
  /* ??? Should this be handled at all?  Rely on callers?  */
 | 
						|
  if (dividend_size == 0)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  /* If multiplication is much faster than division, and the
 | 
						|
     dividend is large, pre-invert the divisor, and use
 | 
						|
     only multiplications in the inner loop.  */
 | 
						|
 | 
						|
  /* This test should be read:
 | 
						|
       Does it ever help to use udiv_qrnnd_preinv?
 | 
						|
	 && Does what we save compensate for the inversion overhead?  */
 | 
						|
  if (UDIV_TIME > (2 * UMUL_TIME + 6)
 | 
						|
      && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME)
 | 
						|
    {
 | 
						|
      int normalization_steps;
 | 
						|
 | 
						|
      count_leading_zeros (normalization_steps, divisor_limb);
 | 
						|
      if (normalization_steps != 0)
 | 
						|
	{
 | 
						|
	  mp_limb_t divisor_limb_inverted;
 | 
						|
 | 
						|
	  divisor_limb <<= normalization_steps;
 | 
						|
 | 
						|
	  /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
 | 
						|
	     result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
 | 
						|
	     most significant bit (with weight 2**N) implicit.  */
 | 
						|
 | 
						|
	  /* Special case for DIVISOR_LIMB == 100...000.  */
 | 
						|
	  if (divisor_limb << 1 == 0)
 | 
						|
	    divisor_limb_inverted = ~(mp_limb_t) 0;
 | 
						|
	  else
 | 
						|
	    udiv_qrnnd (divisor_limb_inverted, dummy,
 | 
						|
			-divisor_limb, 0, divisor_limb);
 | 
						|
 | 
						|
	  n1 = dividend_ptr[dividend_size - 1];
 | 
						|
	  r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);
 | 
						|
 | 
						|
	  /* Possible optimization:
 | 
						|
	     if (r == 0
 | 
						|
	     && divisor_limb > ((n1 << normalization_steps)
 | 
						|
			     | (dividend_ptr[dividend_size - 2] >> ...)))
 | 
						|
	     ...one division less... */
 | 
						|
 | 
						|
	  for (i = dividend_size - 2; i >= 0; i--)
 | 
						|
	    {
 | 
						|
	      n0 = dividend_ptr[i];
 | 
						|
	      udiv_qrnnd_preinv (quot_ptr[i + 1], r, r,
 | 
						|
				 ((n1 << normalization_steps)
 | 
						|
				  | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
 | 
						|
				 divisor_limb, divisor_limb_inverted);
 | 
						|
	      n1 = n0;
 | 
						|
	    }
 | 
						|
	  udiv_qrnnd_preinv (quot_ptr[0], r, r,
 | 
						|
			     n1 << normalization_steps,
 | 
						|
			     divisor_limb, divisor_limb_inverted);
 | 
						|
	  return r >> normalization_steps;
 | 
						|
	}
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  mp_limb_t divisor_limb_inverted;
 | 
						|
 | 
						|
	  /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
 | 
						|
	     result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
 | 
						|
	     most significant bit (with weight 2**N) implicit.  */
 | 
						|
 | 
						|
	  /* Special case for DIVISOR_LIMB == 100...000.  */
 | 
						|
	  if (divisor_limb << 1 == 0)
 | 
						|
	    divisor_limb_inverted = ~(mp_limb_t) 0;
 | 
						|
	  else
 | 
						|
	    udiv_qrnnd (divisor_limb_inverted, dummy,
 | 
						|
			-divisor_limb, 0, divisor_limb);
 | 
						|
 | 
						|
	  i = dividend_size - 1;
 | 
						|
	  r = dividend_ptr[i];
 | 
						|
 | 
						|
	  if (r >= divisor_limb)
 | 
						|
	    r = 0;
 | 
						|
	  else
 | 
						|
	    {
 | 
						|
	      quot_ptr[i] = 0;
 | 
						|
	      i--;
 | 
						|
	    }
 | 
						|
 | 
						|
	  for (; i >= 0; i--)
 | 
						|
	    {
 | 
						|
	      n0 = dividend_ptr[i];
 | 
						|
	      udiv_qrnnd_preinv (quot_ptr[i], r, r,
 | 
						|
				 n0, divisor_limb, divisor_limb_inverted);
 | 
						|
	    }
 | 
						|
	  return r;
 | 
						|
	}
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      if (UDIV_NEEDS_NORMALIZATION)
 | 
						|
	{
 | 
						|
	  int normalization_steps;
 | 
						|
 | 
						|
	  count_leading_zeros (normalization_steps, divisor_limb);
 | 
						|
	  if (normalization_steps != 0)
 | 
						|
	    {
 | 
						|
	      divisor_limb <<= normalization_steps;
 | 
						|
 | 
						|
	      n1 = dividend_ptr[dividend_size - 1];
 | 
						|
	      r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);
 | 
						|
 | 
						|
	      /* Possible optimization:
 | 
						|
		 if (r == 0
 | 
						|
		 && divisor_limb > ((n1 << normalization_steps)
 | 
						|
				 | (dividend_ptr[dividend_size - 2] >> ...)))
 | 
						|
		 ...one division less... */
 | 
						|
 | 
						|
	      for (i = dividend_size - 2; i >= 0; i--)
 | 
						|
		{
 | 
						|
		  n0 = dividend_ptr[i];
 | 
						|
		  udiv_qrnnd (quot_ptr[i + 1], r, r,
 | 
						|
			      ((n1 << normalization_steps)
 | 
						|
			       | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
 | 
						|
			      divisor_limb);
 | 
						|
		  n1 = n0;
 | 
						|
		}
 | 
						|
	      udiv_qrnnd (quot_ptr[0], r, r,
 | 
						|
			  n1 << normalization_steps,
 | 
						|
			  divisor_limb);
 | 
						|
	      return r >> normalization_steps;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      /* No normalization needed, either because udiv_qrnnd doesn't require
 | 
						|
	 it, or because DIVISOR_LIMB is already normalized.  */
 | 
						|
 | 
						|
      i = dividend_size - 1;
 | 
						|
      r = dividend_ptr[i];
 | 
						|
 | 
						|
      if (r >= divisor_limb)
 | 
						|
	r = 0;
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  quot_ptr[i] = 0;
 | 
						|
	  i--;
 | 
						|
	}
 | 
						|
 | 
						|
      for (; i >= 0; i--)
 | 
						|
	{
 | 
						|
	  n0 = dividend_ptr[i];
 | 
						|
	  udiv_qrnnd (quot_ptr[i], r, r, n0, divisor_limb);
 | 
						|
	}
 | 
						|
      return r;
 | 
						|
    }
 | 
						|
}
 |