1
0
mirror of https://sourceware.org/git/glibc.git synced 2025-08-08 17:42:12 +03:00
Files
glibc/math/test-tgmath.c
Joseph Myers 409668f6e8 Implement C23 powr
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the powr functions, which are like pow, but with simpler
handling of special cases (based on exp(y*log(x)), so negative x and
0^0 are domain errors, powers of -0 are always +0 or +Inf never -0 or
-Inf, and 1^+-Inf and Inf^0 are also domain errors, while NaN^0 and
1^NaN are NaN).  The test inputs are taken from those for pow, with
appropriate adjustments (including removing all tests that would be
domain errors from those in auto-libm-test-in and adding some more
such tests in libm-test-powr.inc).

The underlying implementation uses __ieee754_pow functions after
dealing with all special cases that need to be handled differently.
It might be a little faster (avoiding a wrapper and redundant checks
for special cases) to have an underlying implementation built
separately for both pow and powr with compile-time conditionals for
special-case handling, but I expect the benefit of that would be
limited given that both functions will end up needing to use the same
logic for computing pow outside of special cases.

My understanding is that powr(negative, qNaN) should raise "invalid":
that the rule on "invalid" for an argument outside the domain of the
function takes precedence over a quiet NaN argument producing a quiet
NaN result with no exceptions raised (for rootn it's explicit that the
0th root of qNaN raises "invalid").  I've raised this on the WG14
reflector to confirm the intent.

Tested for x86_64 and x86, and with build-many-glibcs.py.
2025-03-14 15:58:11 +00:00

1366 lines
20 KiB
C

/* Test compilation of tgmath macros.
Copyright (C) 2001-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef HAVE_MAIN
#include <float.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <tgmath.h>
//#define DEBUG
static void compile_test (void);
static void compile_testf (void);
#if LDBL_MANT_DIG > DBL_MANT_DIG
static void compile_testl (void);
#endif
float fx;
double dx;
long double lx;
const float fy = 1.25;
const double dy = 1.25;
const long double ly = 1.25;
complex float fz;
complex double dz;
complex long double lz;
volatile int count_double;
volatile int count_float;
volatile int count_ldouble;
volatile int count_cdouble;
volatile int count_cfloat;
volatile int count_cldouble;
#define NCALLS 188
#define NCALLS_INT 4
#define NCCALLS 47
static int
do_test (void)
{
int result = 0;
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_test ();
if (count_float != 0 || count_cfloat != 0)
{
puts ("float function called for double test");
result = 1;
}
if (count_ldouble != 0 || count_cldouble != 0)
{
puts ("long double function called for double test");
result = 1;
}
if (count_double < NCALLS + NCALLS_INT)
{
printf ("double functions not called often enough (%d)\n",
count_double);
result = 1;
}
else if (count_double > NCALLS + NCALLS_INT)
{
printf ("double functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cdouble < NCCALLS)
{
printf ("double complex functions not called often enough (%d)\n",
count_cdouble);
result = 1;
}
else if (count_cdouble > NCCALLS)
{
printf ("double complex functions called too often (%d)\n",
count_cdouble);
result = 1;
}
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_testf ();
if (count_double != 0 || count_cdouble != 0)
{
puts ("double function called for float test");
result = 1;
}
if (count_ldouble != 0 || count_cldouble != 0)
{
puts ("long double function called for float test");
result = 1;
}
if (count_float < NCALLS)
{
printf ("float functions not called often enough (%d)\n", count_float);
result = 1;
}
else if (count_float > NCALLS)
{
printf ("float functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cfloat < NCCALLS)
{
printf ("float complex functions not called often enough (%d)\n",
count_cfloat);
result = 1;
}
else if (count_cfloat > NCCALLS)
{
printf ("float complex functions called too often (%d)\n",
count_cfloat);
result = 1;
}
#if LDBL_MANT_DIG > DBL_MANT_DIG
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_testl ();
if (count_float != 0 || count_cfloat != 0)
{
puts ("float function called for long double test");
result = 1;
}
if (count_double != 0 || count_cdouble != 0)
{
puts ("double function called for long double test");
result = 1;
}
if (count_ldouble < NCALLS)
{
printf ("long double functions not called often enough (%d)\n",
count_ldouble);
result = 1;
}
else if (count_ldouble > NCALLS)
{
printf ("long double functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cldouble < NCCALLS)
{
printf ("long double complex functions not called often enough (%d)\n",
count_cldouble);
result = 1;
}
else if (count_cldouble > NCCALLS)
{
printf ("long double complex functions called too often (%d)\n",
count_cldouble);
result = 1;
}
#endif
return result;
}
/* Now generate the three functions. */
#define HAVE_MAIN
#define F(name) name
#define TYPE double
#define TEST_INT 1
#define x dx
#define y dy
#define z dz
#define count count_double
#define ccount count_cdouble
#include "test-tgmath.c"
#define F(name) name##f
#define TYPE float
#define x fx
#define y fy
#define z fz
#define count count_float
#define ccount count_cfloat
#include "test-tgmath.c"
#if LDBL_MANT_DIG > DBL_MANT_DIG
#define F(name) name##l
#define TYPE long double
#define x lx
#define y ly
#define z lz
#define count count_ldouble
#define ccount count_cldouble
#include "test-tgmath.c"
#endif
#define TEST_FUNCTION do_test ()
#include "../test-skeleton.c"
#else
#ifdef DEBUG
#define P() puts (__FUNCTION__)
#else
#define P()
#endif
static void
F(compile_test) (void)
{
TYPE a, b, c = 1.0;
complex TYPE d;
int i = 2;
int saved_count;
long int j;
long long int k;
intmax_t m;
uintmax_t um;
a = cos (cos (x));
a = cospi (cospi (x));
b = acospi (acospi (a));
b = acos (acos (a));
a = sin (sin (x));
b = sinpi (sinpi (x));
b = asinpi (asinpi (a));
b = asin (asin (a));
a = tan (tan (x));
b = tanpi (tanpi (x));
b = atanpi (atanpi (a));
b = atan (atan (a));
c = atan2 (atan2 (a, c), atan2 (b, x));
b = atan2pi (atan2pi (a, c), atan2pi (b, x));
a = cosh (cosh (x));
b = acosh (acosh (a));
a = sinh (sinh (x));
b = asinh (asinh (a));
a = tanh (tanh (x));
b = atanh (atanh (a));
a = exp (exp (x));
b = log (log (a));
a = log10 (log10 (x));
b = ldexp (ldexp (a, 1), 5);
a = frexp (frexp (x, &i), &i);
b = expm1 (expm1 (a));
a = exp2m1 (exp2m1 (b));
b = exp10m1 (exp10m1 (a));
a = log1p (log1p (x));
b = logb (logb (a));
a = exp2 (exp2 (x));
a = exp10 (exp10 (x));
b = log2 (log2 (a));
a = log2p1 (log2p1 (x));
a = log10p1 (log10p1 (x));
a = logp1 (logp1 (x));
a = pow (pow (x, a), pow (c, b));
a = powr (powr (x, a), powr (c, b));
b = sqrt (sqrt (a));
a = rsqrt (rsqrt (b));
a = hypot (hypot (x, b), hypot (c, a));
b = cbrt (cbrt (a));
a = ceil (ceil (x));
b = fabs (fabs (a));
a = floor (floor (x));
b = fmod (fmod (a, b), fmod (c, x));
a = nearbyint (nearbyint (x));
b = round (round (a));
c = roundeven (roundeven (a));
a = trunc (trunc (x));
b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i);
j = lrint (x) + lround (a);
k = llrint (b) + llround (c);
m = fromfp (a, FP_INT_UPWARD, 2) + fromfpx (b, FP_INT_DOWNWARD, 3);
um = ufromfp (c, FP_INT_TONEAREST, 4) + ufromfpx (a, FP_INT_TOWARDZERO, 5);
a = erf (erf (x));
b = erfc (erfc (a));
a = tgamma (tgamma (x));
b = lgamma (lgamma (a));
a = rint (rint (x));
b = nextafter (nextafter (a, b), nextafter (c, x));
a = nextdown (nextdown (a));
b = nexttoward (nexttoward (x, a), c);
a = nextup (nextup (a));
b = remainder (remainder (a, b), remainder (c, x));
a = scalb (scalb (x, a), (TYPE) (6));
k = scalbn (a, 7) + scalbln (c, 10l);
i = ilogb (x);
j = llogb (x);
a = fdim (fdim (x, a), fdim (c, b));
b = fmax (fmax (a, x), fmax (c, b));
a = fmin (fmin (x, a), fmin (c, b));
b = fmaxmag (fmaxmag (a, x), fmaxmag (c, b));
a = fminmag (fminmag (x, a), fminmag (c, b));
b = fmaximum (fmaximum (a, x), fmaximum (c, b));
a = fminimum (fminimum (x, a), fminimum (c, b));
b = fmaximum_num (fmaximum_num (a, x), fmaximum_num (c, b));
a = fminimum_num (fminimum_num (x, a), fminimum_num (c, b));
b = fmaximum_mag (fmaximum_mag (a, x), fmaximum_mag (c, b));
a = fminimum_mag (fminimum_mag (x, a), fminimum_mag (c, b));
b = fmaximum_mag_num (fmaximum_mag_num (a, x), fmaximum_mag_num (c, b));
a = fminimum_mag_num (fminimum_mag_num (x, a), fminimum_mag_num (c, b));
b = fma (sin (a), sin (x), sin (c));
#ifdef TEST_INT
a = atan2 (i, b);
b = remquo (i, a, &i);
c = fma (i, b, i);
a = pow (i, c);
#endif
x = a + b + c + i + j + k + m + um;
saved_count = count;
if (ccount != 0)
ccount = -10000;
d = cos (cos (z));
z = acos (acos (d));
d = sin (sin (z));
z = asin (asin (d));
d = tan (tan (z));
z = atan (atan (d));
d = cosh (cosh (z));
z = acosh (acosh (d));
d = sinh (sinh (z));
z = asinh (asinh (d));
d = tanh (tanh (z));
z = atanh (atanh (d));
d = exp (exp (z));
z = log (log (d));
d = sqrt (sqrt (z));
z = conj (conj (d));
d = fabs (conj (a));
z = pow (pow (a, d), pow (b, z));
d = cproj (cproj (z));
z += fabs (cproj (a));
a = carg (carg (z));
b = creal (creal (d));
c = cimag (cimag (z));
x += a + b + c + i + j + k;
z += d;
if (saved_count != count)
count = -10000;
if (0)
{
a = cos (y);
a = cospi (y);
a = acos (y);
a = acospi (y);
a = sin (y);
a = sinpi (y);
a = asin (y);
a = asinpi (y);
a = tan (y);
a = tanpi (y);
a = atan (y);
a = atanpi (y);
a = atan2 (y, y);
a = atan2pi (y, y);
a = cosh (y);
a = acosh (y);
a = sinh (y);
a = asinh (y);
a = tanh (y);
a = atanh (y);
a = exp (y);
a = log (y);
a = log10 (y);
a = ldexp (y, 5);
a = frexp (y, &i);
a = expm1 (y);
a = exp2m1 (y);
a = exp10m1 (y);
a = log1p (y);
a = logb (y);
a = exp2 (y);
a = exp10 (y);
a = log2 (y);
a = log2p1 (y);
a = log10p1 (y);
a = logp1 (y);
a = pow (y, y);
a = powr (y, y);
a = sqrt (y);
a = rsqrt (y);
a = hypot (y, y);
a = cbrt (y);
a = ceil (y);
a = fabs (y);
a = floor (y);
a = fmod (y, y);
a = nearbyint (y);
a = round (y);
a = roundeven (y);
a = trunc (y);
a = remquo (y, y, &i);
j = lrint (y) + lround (y);
k = llrint (y) + llround (y);
m = fromfp (y, FP_INT_UPWARD, 6) + fromfpx (y, FP_INT_DOWNWARD, 7);
um = (ufromfp (y, FP_INT_TONEAREST, 8)
+ ufromfpx (y, FP_INT_TOWARDZERO, 9));
a = erf (y);
a = erfc (y);
a = tgamma (y);
a = lgamma (y);
a = rint (y);
a = nextafter (y, y);
a = nexttoward (y, y);
a = remainder (y, y);
a = scalb (y, (const TYPE) (6));
k = scalbn (y, 7) + scalbln (y, 10l);
i = ilogb (y);
j = llogb (y);
a = fdim (y, y);
a = fmax (y, y);
a = fmin (y, y);
a = fmaxmag (y, y);
a = fminmag (y, y);
a = fmaximum (y, y);
a = fminimum (y, y);
a = fmaximum_num (y, y);
a = fminimum_num (y, y);
a = fmaximum_mag (y, y);
a = fminimum_mag (y, y);
a = fmaximum_mag_num (y, y);
a = fminimum_mag_num (y, y);
a = fma (y, y, y);
#ifdef TEST_INT
a = atan2 (i, y);
a = remquo (i, y, &i);
a = fma (i, y, i);
a = pow (i, y);
#endif
d = cos ((const complex TYPE) z);
d = acos ((const complex TYPE) z);
d = sin ((const complex TYPE) z);
d = asin ((const complex TYPE) z);
d = tan ((const complex TYPE) z);
d = atan ((const complex TYPE) z);
d = cosh ((const complex TYPE) z);
d = acosh ((const complex TYPE) z);
d = sinh ((const complex TYPE) z);
d = asinh ((const complex TYPE) z);
d = tanh ((const complex TYPE) z);
d = atanh ((const complex TYPE) z);
d = exp ((const complex TYPE) z);
d = log ((const complex TYPE) z);
d = sqrt ((const complex TYPE) z);
d = pow ((const complex TYPE) z, (const complex TYPE) z);
d = fabs ((const complex TYPE) z);
d = carg ((const complex TYPE) z);
d = creal ((const complex TYPE) z);
d = cimag ((const complex TYPE) z);
d = conj ((const complex TYPE) z);
d = cproj ((const complex TYPE) z);
}
}
#undef x
#undef y
#undef z
TYPE
(F(cos)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(cospi)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(acos)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(acospi)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(sin)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(sinpi)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(asin)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(asinpi)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tan)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tanpi)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atan)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atan2)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(atanpi)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atan2pi)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(cosh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(acosh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(sinh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(asinh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tanh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atanh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log10)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(ldexp)) (TYPE x, int y)
{
++count;
P ();
return x + y;
}
TYPE
(F(frexp)) (TYPE x, int *y)
{
++count;
P ();
return x + *y;
}
TYPE
(F(expm1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp2m1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp10m1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log1p)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(logb)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp10)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp2)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log2)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log2p1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log10p1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(logp1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(pow)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(powr)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(sqrt)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(rsqrt)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(hypot)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(cbrt)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(ceil)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fabs)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(floor)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fmod)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nearbyint)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(round)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(roundeven)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(trunc)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(remquo)) (TYPE x, TYPE y, int *i)
{
++count;
P ();
return x + y + *i;
}
long int
(F(lrint)) (TYPE x)
{
++count;
P ();
return x;
}
long int
(F(lround)) (TYPE x)
{
++count;
P ();
return x;
}
long long int
(F(llrint)) (TYPE x)
{
++count;
P ();
return x;
}
long long int
(F(llround)) (TYPE x)
{
++count;
P ();
return x;
}
intmax_t
(F(fromfp)) (TYPE x, int round, unsigned int width)
{
++count;
P ();
return x;
}
intmax_t
(F(fromfpx)) (TYPE x, int round, unsigned int width)
{
++count;
P ();
return x;
}
uintmax_t
(F(ufromfp)) (TYPE x, int round, unsigned int width)
{
++count;
P ();
return x;
}
uintmax_t
(F(ufromfpx)) (TYPE x, int round, unsigned int width)
{
++count;
P ();
return x;
}
TYPE
(F(erf)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(erfc)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tgamma)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(lgamma)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(rint)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(nextafter)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nextdown)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(nexttoward)) (TYPE x, long double y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nextup)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(remainder)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalb)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalbn)) (TYPE x, int y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalbln)) (TYPE x, long int y)
{
++count;
P ();
return x + y;
}
int
(F(ilogb)) (TYPE x)
{
++count;
P ();
return x;
}
long int
(F(llogb)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fdim)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmin)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmax)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminmag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaxmag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminimum)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaximum)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminimum_num)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaximum_num)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminimum_mag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaximum_mag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminimum_mag_num)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaximum_mag_num)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fma)) (TYPE x, TYPE y, TYPE z)
{
++count;
P ();
return x + y + z;
}
complex TYPE
(F(cacos)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(casin)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(catan)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ccos)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csin)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ctan)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cacosh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(casinh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(catanh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ccosh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csinh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ctanh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cexp)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(clog)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csqrt)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cpow)) (complex TYPE x, complex TYPE y)
{
++ccount;
P ();
return x + y;
}
TYPE
(F(cabs)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
TYPE
(F(carg)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
TYPE
(F(creal)) (complex TYPE x)
{
++ccount;
P ();
return __real__ x;
}
TYPE
(F(cimag)) (complex TYPE x)
{
++ccount;
P ();
return __imag__ x;
}
complex TYPE
(F(conj)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cproj)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
#undef F
#undef TYPE
#undef count
#undef ccount
#undef TEST_INT
#endif