mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-31 22:10:34 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			215 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			215 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Return arc hyperbole sine for double value, with the imaginary part
 | |
|    of the result possibly adjusted for use in computing other
 | |
|    functions.
 | |
|    Copyright (C) 1997-2014 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include <complex.h>
 | |
| #include <math.h>
 | |
| #include <math_private.h>
 | |
| #include <float.h>
 | |
| 
 | |
| /* Return the complex inverse hyperbolic sine of finite nonzero Z,
 | |
|    with the imaginary part of the result subtracted from pi/2 if ADJ
 | |
|    is nonzero.  */
 | |
| 
 | |
| __complex__ double
 | |
| __kernel_casinh (__complex__ double x, int adj)
 | |
| {
 | |
|   __complex__ double res;
 | |
|   double rx, ix;
 | |
|   __complex__ double y;
 | |
| 
 | |
|   /* Avoid cancellation by reducing to the first quadrant.  */
 | |
|   rx = fabs (__real__ x);
 | |
|   ix = fabs (__imag__ x);
 | |
| 
 | |
|   if (rx >= 1.0 / DBL_EPSILON || ix >= 1.0 / DBL_EPSILON)
 | |
|     {
 | |
|       /* For large x in the first quadrant, x + csqrt (1 + x * x)
 | |
| 	 is sufficiently close to 2 * x to make no significant
 | |
| 	 difference to the result; avoid possible overflow from
 | |
| 	 the squaring and addition.  */
 | |
|       __real__ y = rx;
 | |
|       __imag__ y = ix;
 | |
| 
 | |
|       if (adj)
 | |
| 	{
 | |
| 	  double t = __real__ y;
 | |
| 	  __real__ y = __copysign (__imag__ y, __imag__ x);
 | |
| 	  __imag__ y = t;
 | |
| 	}
 | |
| 
 | |
|       res = __clog (y);
 | |
|       __real__ res += M_LN2;
 | |
|     }
 | |
|   else if (rx >= 0.5 && ix < DBL_EPSILON / 8.0)
 | |
|     {
 | |
|       double s = __ieee754_hypot (1.0, rx);
 | |
| 
 | |
|       __real__ res = __ieee754_log (rx + s);
 | |
|       if (adj)
 | |
| 	__imag__ res = __ieee754_atan2 (s, __imag__ x);
 | |
|       else
 | |
| 	__imag__ res = __ieee754_atan2 (ix, s);
 | |
|     }
 | |
|   else if (rx < DBL_EPSILON / 8.0 && ix >= 1.5)
 | |
|     {
 | |
|       double s = __ieee754_sqrt ((ix + 1.0) * (ix - 1.0));
 | |
| 
 | |
|       __real__ res = __ieee754_log (ix + s);
 | |
|       if (adj)
 | |
| 	__imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x));
 | |
|       else
 | |
| 	__imag__ res = __ieee754_atan2 (s, rx);
 | |
|     }
 | |
|   else if (ix > 1.0 && ix < 1.5 && rx < 0.5)
 | |
|     {
 | |
|       if (rx < DBL_EPSILON * DBL_EPSILON)
 | |
| 	{
 | |
| 	  double ix2m1 = (ix + 1.0) * (ix - 1.0);
 | |
| 	  double s = __ieee754_sqrt (ix2m1);
 | |
| 
 | |
| 	  __real__ res = __log1p (2.0 * (ix2m1 + ix * s)) / 2.0;
 | |
| 	  if (adj)
 | |
| 	    __imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x));
 | |
| 	  else
 | |
| 	    __imag__ res = __ieee754_atan2 (s, rx);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  double ix2m1 = (ix + 1.0) * (ix - 1.0);
 | |
| 	  double rx2 = rx * rx;
 | |
| 	  double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix);
 | |
| 	  double d = __ieee754_sqrt (ix2m1 * ix2m1 + f);
 | |
| 	  double dp = d + ix2m1;
 | |
| 	  double dm = f / dp;
 | |
| 	  double r1 = __ieee754_sqrt ((dm + rx2) / 2.0);
 | |
| 	  double r2 = rx * ix / r1;
 | |
| 
 | |
| 	  __real__ res = __log1p (rx2 + dp + 2.0 * (rx * r1 + ix * r2)) / 2.0;
 | |
| 	  if (adj)
 | |
| 	    __imag__ res = __ieee754_atan2 (rx + r1, __copysign (ix + r2,
 | |
| 								 __imag__ x));
 | |
| 	  else
 | |
| 	    __imag__ res = __ieee754_atan2 (ix + r2, rx + r1);
 | |
| 	}
 | |
|     }
 | |
|   else if (ix == 1.0 && rx < 0.5)
 | |
|     {
 | |
|       if (rx < DBL_EPSILON / 8.0)
 | |
| 	{
 | |
| 	  __real__ res = __log1p (2.0 * (rx + __ieee754_sqrt (rx))) / 2.0;
 | |
| 	  if (adj)
 | |
| 	    __imag__ res = __ieee754_atan2 (__ieee754_sqrt (rx),
 | |
| 					    __copysign (1.0, __imag__ x));
 | |
| 	  else
 | |
| 	    __imag__ res = __ieee754_atan2 (1.0, __ieee754_sqrt (rx));
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  double d = rx * __ieee754_sqrt (4.0 + rx * rx);
 | |
| 	  double s1 = __ieee754_sqrt ((d + rx * rx) / 2.0);
 | |
| 	  double s2 = __ieee754_sqrt ((d - rx * rx) / 2.0);
 | |
| 
 | |
| 	  __real__ res = __log1p (rx * rx + d + 2.0 * (rx * s1 + s2)) / 2.0;
 | |
| 	  if (adj)
 | |
| 	    __imag__ res = __ieee754_atan2 (rx + s1, __copysign (1.0 + s2,
 | |
| 								 __imag__ x));
 | |
| 	  else
 | |
| 	    __imag__ res = __ieee754_atan2 (1.0 + s2, rx + s1);
 | |
| 	}
 | |
|     }
 | |
|   else if (ix < 1.0 && rx < 0.5)
 | |
|     {
 | |
|       if (ix >= DBL_EPSILON)
 | |
| 	{
 | |
| 	  if (rx < DBL_EPSILON * DBL_EPSILON)
 | |
| 	    {
 | |
| 	      double onemix2 = (1.0 + ix) * (1.0 - ix);
 | |
| 	      double s = __ieee754_sqrt (onemix2);
 | |
| 
 | |
| 	      __real__ res = __log1p (2.0 * rx / s) / 2.0;
 | |
| 	      if (adj)
 | |
| 		__imag__ res = __ieee754_atan2 (s, __imag__ x);
 | |
| 	      else
 | |
| 		__imag__ res = __ieee754_atan2 (ix, s);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      double onemix2 = (1.0 + ix) * (1.0 - ix);
 | |
| 	      double rx2 = rx * rx;
 | |
| 	      double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix);
 | |
| 	      double d = __ieee754_sqrt (onemix2 * onemix2 + f);
 | |
| 	      double dp = d + onemix2;
 | |
| 	      double dm = f / dp;
 | |
| 	      double r1 = __ieee754_sqrt ((dp + rx2) / 2.0);
 | |
| 	      double r2 = rx * ix / r1;
 | |
| 
 | |
| 	      __real__ res
 | |
| 		= __log1p (rx2 + dm + 2.0 * (rx * r1 + ix * r2)) / 2.0;
 | |
| 	      if (adj)
 | |
| 		__imag__ res = __ieee754_atan2 (rx + r1,
 | |
| 						__copysign (ix + r2,
 | |
| 							    __imag__ x));
 | |
| 	      else
 | |
| 		__imag__ res = __ieee754_atan2 (ix + r2, rx + r1);
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  double s = __ieee754_hypot (1.0, rx);
 | |
| 
 | |
| 	  __real__ res = __log1p (2.0 * rx * (rx + s)) / 2.0;
 | |
| 	  if (adj)
 | |
| 	    __imag__ res = __ieee754_atan2 (s, __imag__ x);
 | |
| 	  else
 | |
| 	    __imag__ res = __ieee754_atan2 (ix, s);
 | |
| 	}
 | |
|       if (__real__ res < DBL_MIN)
 | |
| 	{
 | |
| 	  volatile double force_underflow = __real__ res * __real__ res;
 | |
| 	  (void) force_underflow;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       __real__ y = (rx - ix) * (rx + ix) + 1.0;
 | |
|       __imag__ y = 2.0 * rx * ix;
 | |
| 
 | |
|       y = __csqrt (y);
 | |
| 
 | |
|       __real__ y += rx;
 | |
|       __imag__ y += ix;
 | |
| 
 | |
|       if (adj)
 | |
| 	{
 | |
| 	  double t = __real__ y;
 | |
| 	  __real__ y = copysign (__imag__ y, __imag__ x);
 | |
| 	  __imag__ y = t;
 | |
| 	}
 | |
| 
 | |
|       res = __clog (y);
 | |
|     }
 | |
| 
 | |
|   /* Give results the correct sign for the original argument.  */
 | |
|   __real__ res = __copysign (__real__ res, __real__ x);
 | |
|   __imag__ res = __copysign (__imag__ res, (adj ? 1.0 : __imag__ x));
 | |
| 
 | |
|   return res;
 | |
| }
 |