mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			154 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			154 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
|   Long double expansions are
 | |
|   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
 | |
|   and are incorporated herein by permission of the author.  The author
 | |
|   reserves the right to distribute this material elsewhere under different
 | |
|   copying permissions.  These modifications are distributed here under
 | |
|   the following terms:
 | |
| 
 | |
|     This library is free software; you can redistribute it and/or
 | |
|     modify it under the terms of the GNU Lesser General Public
 | |
|     License as published by the Free Software Foundation; either
 | |
|     version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|     This library is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|     Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public
 | |
|     License along with this library; if not, see
 | |
|     <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| /* __kernel_tanl( x, y, k )
 | |
|  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
 | |
|  * Input x is assumed to be bounded by ~pi/4 in magnitude.
 | |
|  * Input y is the tail of x.
 | |
|  * Input k indicates whether tan (if k=1) or
 | |
|  * -1/tan (if k= -1) is returned.
 | |
|  *
 | |
|  * Algorithm
 | |
|  *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
 | |
|  *	2. if x < 2^-57, return x with inexact if x!=0.
 | |
|  *	3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
 | |
|  *          on [0,0.67433].
 | |
|  *
 | |
|  *	   Note: tan(x+y) = tan(x) + tan'(x)*y
 | |
|  *		          ~ tan(x) + (1+x*x)*y
 | |
|  *	   Therefore, for better accuracy in computing tan(x+y), let
 | |
|  *		r = x^3 * R(x^2)
 | |
|  *	   then
 | |
|  *		tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
 | |
|  *
 | |
|  *      4. For x in [0.67433,pi/4],  let y = pi/4 - x, then
 | |
|  *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
 | |
|  *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <math_private.h>
 | |
| static const long double
 | |
|   one = 1.0L,
 | |
|   pio4hi = 7.8539816339744830961566084581987569936977E-1L,
 | |
|   pio4lo = 2.1679525325309452561992610065108379921906E-35L,
 | |
| 
 | |
|   /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
 | |
|      0 <= x <= 0.6743316650390625
 | |
|      Peak relative error 8.0e-36  */
 | |
|  TH =  3.333333333333333333333333333333333333333E-1L,
 | |
|  T0 = -1.813014711743583437742363284336855889393E7L,
 | |
|  T1 =  1.320767960008972224312740075083259247618E6L,
 | |
|  T2 = -2.626775478255838182468651821863299023956E4L,
 | |
|  T3 =  1.764573356488504935415411383687150199315E2L,
 | |
|  T4 = -3.333267763822178690794678978979803526092E-1L,
 | |
| 
 | |
|  U0 = -1.359761033807687578306772463253710042010E8L,
 | |
|  U1 =  6.494370630656893175666729313065113194784E7L,
 | |
|  U2 = -4.180787672237927475505536849168729386782E6L,
 | |
|  U3 =  8.031643765106170040139966622980914621521E4L,
 | |
|  U4 = -5.323131271912475695157127875560667378597E2L;
 | |
|   /* 1.000000000000000000000000000000000000000E0 */
 | |
| 
 | |
| 
 | |
| long double
 | |
| __kernel_tanl (long double x, long double y, int iy)
 | |
| {
 | |
|   long double z, r, v, w, s;
 | |
|   int32_t ix, sign;
 | |
|   ieee854_long_double_shape_type u, u1;
 | |
| 
 | |
|   u.value = x;
 | |
|   ix = u.parts32.w0 & 0x7fffffff;
 | |
|   if (ix < 0x3c600000)		/* x < 2**-57 */
 | |
|     {
 | |
|       if ((int) x == 0)
 | |
| 	{			/* generate inexact */
 | |
| 	  if ((ix | u.parts32.w1 | (u.parts32.w2 & 0x7fffffff) | u.parts32.w3
 | |
| 	       | (iy + 1)) == 0)
 | |
| 	    return one / fabs (x);
 | |
| 	  else
 | |
| 	    return (iy == 1) ? x : -one / x;
 | |
| 	}
 | |
|     }
 | |
|   if (ix >= 0x3fe59420) /* |x| >= 0.6743316650390625 */
 | |
|     {
 | |
|       if ((u.parts32.w0 & 0x80000000) != 0)
 | |
| 	{
 | |
| 	  x = -x;
 | |
| 	  y = -y;
 | |
| 	  sign = -1;
 | |
| 	}
 | |
|       else
 | |
| 	sign = 1;
 | |
|       z = pio4hi - x;
 | |
|       w = pio4lo - y;
 | |
|       x = z + w;
 | |
|       y = 0.0;
 | |
|     }
 | |
|   z = x * x;
 | |
|   r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
 | |
|   v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
 | |
|   r = r / v;
 | |
| 
 | |
|   s = z * x;
 | |
|   r = y + z * (s * r + y);
 | |
|   r += TH * s;
 | |
|   w = x + r;
 | |
|   if (ix >= 0x3fe59420)
 | |
|     {
 | |
|       v = (long double) iy;
 | |
|       w = (v - 2.0 * (x - (w * w / (w + v) - r)));
 | |
|       if (sign < 0)
 | |
| 	w = -w;
 | |
|       return w;
 | |
|     }
 | |
|   if (iy == 1)
 | |
|     return w;
 | |
|   else
 | |
|     {				/* if allow error up to 2 ulp,
 | |
| 				   simply return -1.0/(x+r) here */
 | |
|       /*  compute -1.0/(x+r) accurately */
 | |
|       u1.value = w;
 | |
|       u1.parts32.w2 = 0;
 | |
|       u1.parts32.w3 = 0;
 | |
|       v = r - (u1.value - x);		/* u1+v = r+x */
 | |
|       z = -1.0 / w;
 | |
|       u.value = z;
 | |
|       u.parts32.w2 = 0;
 | |
|       u.parts32.w3 = 0;
 | |
|       s = 1.0 + u.value * u1.value;
 | |
|       return u.value + z * (s + u.value * v);
 | |
|     }
 | |
| }
 |