mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			150 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			150 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Quad-precision floating point cosine on <-pi/4,pi/4>.
 | |
|    Copyright (C) 1999,2004,2006 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
|    Contributed by Jakub Jelinek <jj@ultra.linux.cz>
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <math_private.h>
 | |
| 
 | |
| static const long double c[] = {
 | |
| #define ONE c[0]
 | |
|  1.00000000000000000000000000000000000E+00L, /* 3fff0000000000000000000000000000 */
 | |
| 
 | |
| /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
 | |
|    x in <0,1/256>  */
 | |
| #define SCOS1 c[1]
 | |
| #define SCOS2 c[2]
 | |
| #define SCOS3 c[3]
 | |
| #define SCOS4 c[4]
 | |
| #define SCOS5 c[5]
 | |
| -5.00000000000000000000000000000000000E-01L, /* bffe0000000000000000000000000000 */
 | |
|  4.16666666666666666666666666556146073E-02L, /* 3ffa5555555555555555555555395023 */
 | |
| -1.38888888888888888888309442601939728E-03L, /* bff56c16c16c16c16c16a566e42c0375 */
 | |
|  2.48015873015862382987049502531095061E-05L, /* 3fefa01a01a019ee02dcf7da2d6d5444 */
 | |
| -2.75573112601362126593516899592158083E-07L, /* bfe927e4f5dce637cb0b54908754bde0 */
 | |
| 
 | |
| /* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 )
 | |
|    x in <0,0.1484375>  */
 | |
| #define COS1 c[6]
 | |
| #define COS2 c[7]
 | |
| #define COS3 c[8]
 | |
| #define COS4 c[9]
 | |
| #define COS5 c[10]
 | |
| #define COS6 c[11]
 | |
| #define COS7 c[12]
 | |
| #define COS8 c[13]
 | |
| -4.99999999999999999999999999999999759E-01L, /* bffdfffffffffffffffffffffffffffb */
 | |
|  4.16666666666666666666666666651287795E-02L, /* 3ffa5555555555555555555555516f30 */
 | |
| -1.38888888888888888888888742314300284E-03L, /* bff56c16c16c16c16c16c16a463dfd0d */
 | |
|  2.48015873015873015867694002851118210E-05L, /* 3fefa01a01a01a01a0195cebe6f3d3a5 */
 | |
| -2.75573192239858811636614709689300351E-07L, /* bfe927e4fb7789f5aa8142a22044b51f */
 | |
|  2.08767569877762248667431926878073669E-09L, /* 3fe21eed8eff881d1e9262d7adff4373 */
 | |
| -1.14707451049343817400420280514614892E-11L, /* bfda9397496922a9601ed3d4ca48944b */
 | |
|  4.77810092804389587579843296923533297E-14L, /* 3fd2ae5f8197cbcdcaf7c3fb4523414c */
 | |
| 
 | |
| /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
 | |
|    x in <0,1/256>  */
 | |
| #define SSIN1 c[14]
 | |
| #define SSIN2 c[15]
 | |
| #define SSIN3 c[16]
 | |
| #define SSIN4 c[17]
 | |
| #define SSIN5 c[18]
 | |
| -1.66666666666666666666666666666666659E-01L, /* bffc5555555555555555555555555555 */
 | |
|  8.33333333333333333333333333146298442E-03L, /* 3ff81111111111111111111110fe195d */
 | |
| -1.98412698412698412697726277416810661E-04L, /* bff2a01a01a01a01a019e7121e080d88 */
 | |
|  2.75573192239848624174178393552189149E-06L, /* 3fec71de3a556c640c6aaa51aa02ab41 */
 | |
| -2.50521016467996193495359189395805639E-08L, /* bfe5ae644ee90c47dc71839de75b2787 */
 | |
| };
 | |
| 
 | |
| #define SINCOSL_COS_HI 0
 | |
| #define SINCOSL_COS_LO 1
 | |
| #define SINCOSL_SIN_HI 2
 | |
| #define SINCOSL_SIN_LO 3
 | |
| extern const long double __sincosl_table[];
 | |
| 
 | |
| long double
 | |
| __kernel_cosl(long double x, long double y)
 | |
| {
 | |
|   long double h, l, z, sin_l, cos_l_m1;
 | |
|   int64_t ix;
 | |
|   u_int32_t tix, hix, index;
 | |
|   GET_LDOUBLE_MSW64 (ix, x);
 | |
|   tix = ((u_int64_t)ix) >> 32;
 | |
|   tix &= ~0x80000000;			/* tix = |x|'s high 32 bits */
 | |
|   if (tix < 0x3fc30000)			/* |x| < 0.1484375 */
 | |
|     {
 | |
|       /* Argument is small enough to approximate it by a Chebyshev
 | |
| 	 polynomial of degree 16.  */
 | |
|       if (tix < 0x3c600000)		/* |x| < 2^-57 */
 | |
| 	if (!((int)x)) return ONE;	/* generate inexact */
 | |
|       z = x * x;
 | |
|       return ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+
 | |
| 		    z*(COS5+z*(COS6+z*(COS7+z*COS8))))))));
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       /* So that we don't have to use too large polynomial,  we find
 | |
| 	 l and h such that x = l + h,  where fabsl(l) <= 1.0/256 with 83
 | |
| 	 possible values for h.  We look up cosl(h) and sinl(h) in
 | |
| 	 pre-computed tables,  compute cosl(l) and sinl(l) using a
 | |
| 	 Chebyshev polynomial of degree 10(11) and compute
 | |
| 	 cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l).  */
 | |
|       int six = tix;
 | |
|       tix = ((six - 0x3ff00000) >> 4) + 0x3fff0000;
 | |
|       index = 0x3ffe - (tix >> 16);
 | |
|       hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
 | |
|       x = fabsl (x);
 | |
|       switch (index)
 | |
| 	{
 | |
| 	case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
 | |
| 	case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
 | |
| 	default:
 | |
| 	case 2: index = (hix - 0x3ffc3000) >> 10; break;
 | |
| 	}
 | |
|       hix = (hix << 4) & 0x3fffffff;
 | |
| /*
 | |
|     The following should work for double but generates the wrong index.
 | |
|     For now the code above converts double to ieee extended to compute
 | |
|     the index back to double for the h value.
 | |
|     
 | |
|       index = 0x3fe - (tix >> 20);
 | |
|       hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
 | |
|       if (signbit (x))
 | |
| 	{
 | |
| 	  x = -x;
 | |
| 	  y = -y;
 | |
| 	}
 | |
|       switch (index)
 | |
| 	{
 | |
| 	case 0: index = ((45 << 14) + hix - 0x3fe00000) >> 12; break;
 | |
| 	case 1: index = ((13 << 15) + hix - 0x3fd00000) >> 13; break;
 | |
| 	default:
 | |
| 	case 2: index = (hix - 0x3fc30000) >> 14; break;
 | |
| 	}
 | |
| */
 | |
|       SET_LDOUBLE_WORDS64(h, ((u_int64_t)hix) << 32, 0);
 | |
|       l = y - (h - x);
 | |
|       z = l * l;
 | |
|       sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
 | |
|       cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
 | |
|       return __sincosl_table [index + SINCOSL_COS_HI]
 | |
| 	     + (__sincosl_table [index + SINCOSL_COS_LO]
 | |
| 		- (__sincosl_table [index + SINCOSL_SIN_HI] * sin_l
 | |
| 		   - __sincosl_table [index + SINCOSL_COS_HI] * cos_l_m1));
 | |
|     }
 | |
| }
 |