mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			257 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			257 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*							log10l.c
 | |
|  *
 | |
|  *	Common logarithm, 128-bit long double precision
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * SYNOPSIS:
 | |
|  *
 | |
|  * long double x, y, log10l();
 | |
|  *
 | |
|  * y = log10l( x );
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * DESCRIPTION:
 | |
|  *
 | |
|  * Returns the base 10 logarithm of x.
 | |
|  *
 | |
|  * The argument is separated into its exponent and fractional
 | |
|  * parts.  If the exponent is between -1 and +1, the logarithm
 | |
|  * of the fraction is approximated by
 | |
|  *
 | |
|  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
 | |
|  *
 | |
|  * Otherwise, setting  z = 2(x-1)/x+1),
 | |
|  *
 | |
|  *     log(x) = z + z^3 P(z)/Q(z).
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * ACCURACY:
 | |
|  *
 | |
|  *                      Relative error:
 | |
|  * arithmetic   domain     # trials      peak         rms
 | |
|  *    IEEE      0.5, 2.0     30000      2.3e-34     4.9e-35
 | |
|  *    IEEE     exp(+-10000)  30000      1.0e-34     4.1e-35
 | |
|  *
 | |
|  * In the tests over the interval exp(+-10000), the logarithms
 | |
|  * of the random arguments were uniformly distributed over
 | |
|  * [-10000, +10000].
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*
 | |
|    Cephes Math Library Release 2.2:  January, 1991
 | |
|    Copyright 1984, 1991 by Stephen L. Moshier
 | |
|    Adapted for glibc November, 2001
 | |
| 
 | |
|     This library is free software; you can redistribute it and/or
 | |
|     modify it under the terms of the GNU Lesser General Public
 | |
|     License as published by the Free Software Foundation; either
 | |
|     version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|     This library is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|     Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public
 | |
|     License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <math_private.h>
 | |
| 
 | |
| /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
 | |
|  * 1/sqrt(2) <= x < sqrt(2)
 | |
|  * Theoretical peak relative error = 5.3e-37,
 | |
|  * relative peak error spread = 2.3e-14
 | |
|  */
 | |
| static const long double P[13] =
 | |
| {
 | |
|   1.313572404063446165910279910527789794488E4L,
 | |
|   7.771154681358524243729929227226708890930E4L,
 | |
|   2.014652742082537582487669938141683759923E5L,
 | |
|   3.007007295140399532324943111654767187848E5L,
 | |
|   2.854829159639697837788887080758954924001E5L,
 | |
|   1.797628303815655343403735250238293741397E5L,
 | |
|   7.594356839258970405033155585486712125861E4L,
 | |
|   2.128857716871515081352991964243375186031E4L,
 | |
|   3.824952356185897735160588078446136783779E3L,
 | |
|   4.114517881637811823002128927449878962058E2L,
 | |
|   2.321125933898420063925789532045674660756E1L,
 | |
|   4.998469661968096229986658302195402690910E-1L,
 | |
|   1.538612243596254322971797716843006400388E-6L
 | |
| };
 | |
| static const long double Q[12] =
 | |
| {
 | |
|   3.940717212190338497730839731583397586124E4L,
 | |
|   2.626900195321832660448791748036714883242E5L,
 | |
|   7.777690340007566932935753241556479363645E5L,
 | |
|   1.347518538384329112529391120390701166528E6L,
 | |
|   1.514882452993549494932585972882995548426E6L,
 | |
|   1.158019977462989115839826904108208787040E6L,
 | |
|   6.132189329546557743179177159925690841200E5L,
 | |
|   2.248234257620569139969141618556349415120E5L,
 | |
|   5.605842085972455027590989944010492125825E4L,
 | |
|   9.147150349299596453976674231612674085381E3L,
 | |
|   9.104928120962988414618126155557301584078E2L,
 | |
|   4.839208193348159620282142911143429644326E1L
 | |
| /* 1.000000000000000000000000000000000000000E0L, */
 | |
| };
 | |
| 
 | |
| /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
 | |
|  * where z = 2(x-1)/(x+1)
 | |
|  * 1/sqrt(2) <= x < sqrt(2)
 | |
|  * Theoretical peak relative error = 1.1e-35,
 | |
|  * relative peak error spread 1.1e-9
 | |
|  */
 | |
| static const long double R[6] =
 | |
| {
 | |
|   1.418134209872192732479751274970992665513E5L,
 | |
|  -8.977257995689735303686582344659576526998E4L,
 | |
|   2.048819892795278657810231591630928516206E4L,
 | |
|  -2.024301798136027039250415126250455056397E3L,
 | |
|   8.057002716646055371965756206836056074715E1L,
 | |
|  -8.828896441624934385266096344596648080902E-1L
 | |
| };
 | |
| static const long double S[6] =
 | |
| {
 | |
|   1.701761051846631278975701529965589676574E6L,
 | |
|  -1.332535117259762928288745111081235577029E6L,
 | |
|   4.001557694070773974936904547424676279307E5L,
 | |
|  -5.748542087379434595104154610899551484314E4L,
 | |
|   3.998526750980007367835804959888064681098E3L,
 | |
|  -1.186359407982897997337150403816839480438E2L
 | |
| /* 1.000000000000000000000000000000000000000E0L, */
 | |
| };
 | |
| 
 | |
| static const long double
 | |
| /* log10(2) */
 | |
| L102A = 0.3125L,
 | |
| L102B = -1.14700043360188047862611052755069732318101185E-2L,
 | |
| /* log10(e) */
 | |
| L10EA = 0.5L,
 | |
| L10EB = -6.570551809674817234887108108339491770560299E-2L,
 | |
| /* sqrt(2)/2 */
 | |
| SQRTH = 7.071067811865475244008443621048490392848359E-1L;
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
 | |
| 
 | |
| static long double
 | |
| neval (long double x, const long double *p, int n)
 | |
| {
 | |
|   long double y;
 | |
| 
 | |
|   p += n;
 | |
|   y = *p--;
 | |
|   do
 | |
|     {
 | |
|       y = y * x + *p--;
 | |
|     }
 | |
|   while (--n > 0);
 | |
|   return y;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
 | |
| 
 | |
| static long double
 | |
| deval (long double x, const long double *p, int n)
 | |
| {
 | |
|   long double y;
 | |
| 
 | |
|   p += n;
 | |
|   y = x + *p--;
 | |
|   do
 | |
|     {
 | |
|       y = y * x + *p--;
 | |
|     }
 | |
|   while (--n > 0);
 | |
|   return y;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| long double
 | |
| __ieee754_log10l (long double x)
 | |
| {
 | |
|   long double z;
 | |
|   long double y;
 | |
|   int e;
 | |
|   int64_t hx, lx;
 | |
| 
 | |
| /* Test for domain */
 | |
|   GET_LDOUBLE_WORDS64 (hx, lx, x);
 | |
|   if (((hx & 0x7fffffffffffffffLL) | (lx & 0x7fffffffffffffffLL)) == 0)
 | |
|     return (-1.0L / (x - x));
 | |
|   if (hx < 0)
 | |
|     return (x - x) / (x - x);
 | |
|   if (hx >= 0x7ff0000000000000LL)
 | |
|     return (x + x);
 | |
| 
 | |
| /* separate mantissa from exponent */
 | |
| 
 | |
| /* Note, frexp is used so that denormal numbers
 | |
|  * will be handled properly.
 | |
|  */
 | |
|   x = __frexpl (x, &e);
 | |
| 
 | |
| 
 | |
| /* logarithm using log(x) = z + z**3 P(z)/Q(z),
 | |
|  * where z = 2(x-1)/x+1)
 | |
|  */
 | |
|   if ((e > 2) || (e < -2))
 | |
|     {
 | |
|       if (x < SQRTH)
 | |
| 	{			/* 2( 2x-1 )/( 2x+1 ) */
 | |
| 	  e -= 1;
 | |
| 	  z = x - 0.5L;
 | |
| 	  y = 0.5L * z + 0.5L;
 | |
| 	}
 | |
|       else
 | |
| 	{			/*  2 (x-1)/(x+1)   */
 | |
| 	  z = x - 0.5L;
 | |
| 	  z -= 0.5L;
 | |
| 	  y = 0.5L * x + 0.5L;
 | |
| 	}
 | |
|       x = z / y;
 | |
|       z = x * x;
 | |
|       y = x * (z * neval (z, R, 5) / deval (z, S, 5));
 | |
|       goto done;
 | |
|     }
 | |
| 
 | |
| 
 | |
| /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
 | |
| 
 | |
|   if (x < SQRTH)
 | |
|     {
 | |
|       e -= 1;
 | |
|       x = 2.0 * x - 1.0L;	/*  2x - 1  */
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       x = x - 1.0L;
 | |
|     }
 | |
|   z = x * x;
 | |
|   y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
 | |
|   y = y - 0.5 * z;
 | |
| 
 | |
| done:
 | |
| 
 | |
|   /* Multiply log of fraction by log10(e)
 | |
|    * and base 2 exponent by log10(2).
 | |
|    */
 | |
|   z = y * L10EB;
 | |
|   z += x * L10EB;
 | |
|   z += e * L102B;
 | |
|   z += y * L10EA;
 | |
|   z += x * L10EA;
 | |
|   z += e * L102A;
 | |
|   return (z);
 | |
| }
 | |
| strong_alias (__ieee754_log10l, __log10l_finite)
 |