mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			125 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			125 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* @(#)e_hypotl.c 5.1 93/09/24 */
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /* __ieee754_hypotl(x,y)
 | |
|  *
 | |
|  * Method :
 | |
|  *	If (assume round-to-nearest) z=x*x+y*y
 | |
|  *	has error less than sqrtl(2)/2 ulp, than
 | |
|  *	sqrtl(z) has error less than 1 ulp (exercise).
 | |
|  *
 | |
|  *	So, compute sqrtl(x*x+y*y) with some care as
 | |
|  *	follows to get the error below 1 ulp:
 | |
|  *
 | |
|  *	Assume x>y>0;
 | |
|  *	(if possible, set rounding to round-to-nearest)
 | |
|  *	1. if x > 2y  use
 | |
|  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
 | |
|  *	where x1 = x with lower 53 bits cleared, x2 = x-x1; else
 | |
|  *	2. if x <= 2y use
 | |
|  *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
 | |
|  *	where t1 = 2x with lower 53 bits cleared, t2 = 2x-t1,
 | |
|  *	y1= y with lower 53 bits chopped, y2 = y-y1.
 | |
|  *
 | |
|  *	NOTE: scaling may be necessary if some argument is too
 | |
|  *	      large or too tiny
 | |
|  *
 | |
|  * Special cases:
 | |
|  *	hypotl(x,y) is INF if x or y is +INF or -INF; else
 | |
|  *	hypotl(x,y) is NAN if x or y is NAN.
 | |
|  *
 | |
|  * Accuracy:
 | |
|  *	hypotl(x,y) returns sqrtl(x^2+y^2) with error less
 | |
|  *	than 1 ulps (units in the last place)
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <math_private.h>
 | |
| 
 | |
| static const long double two600 = 0x1.0p+600L;
 | |
| static const long double two1022 = 0x1.0p+1022L;
 | |
| 
 | |
| long double
 | |
| __ieee754_hypotl(long double x, long double y)
 | |
| {
 | |
| 	long double a,b,t1,t2,y1,y2,w,kld;
 | |
| 	int64_t j,k,ha,hb;
 | |
| 
 | |
| 	GET_LDOUBLE_MSW64(ha,x);
 | |
| 	ha &= 0x7fffffffffffffffLL;
 | |
| 	GET_LDOUBLE_MSW64(hb,y);
 | |
| 	hb &= 0x7fffffffffffffffLL;
 | |
| 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
 | |
| 	a = fabsl(a);	/* a <- |a| */
 | |
| 	b = fabsl(b);	/* b <- |b| */
 | |
| 	if((ha-hb)>0x3c0000000000000LL) {return a+b;} /* x/y > 2**60 */
 | |
| 	k=0;
 | |
| 	kld = 1.0L;
 | |
| 	if(ha > 0x5f30000000000000LL) {	/* a>2**500 */
 | |
| 	   if(ha >= 0x7ff0000000000000LL) {	/* Inf or NaN */
 | |
| 	       u_int64_t low;
 | |
| 	       w = a+b;			/* for sNaN */
 | |
| 	       GET_LDOUBLE_LSW64(low,a);
 | |
| 	       if(((ha&0xfffffffffffffLL)|(low&0x7fffffffffffffffLL))==0)
 | |
| 		 w = a;
 | |
| 	       GET_LDOUBLE_LSW64(low,b);
 | |
| 	       if(((hb^0x7ff0000000000000LL)|(low&0x7fffffffffffffffLL))==0)
 | |
| 		 w = b;
 | |
| 	       return w;
 | |
| 	   }
 | |
| 	   /* scale a and b by 2**-600 */
 | |
| 	   ha -= 0x2580000000000000LL; hb -= 0x2580000000000000LL; k += 600;
 | |
| 	   a /= two600;
 | |
| 	   b /= two600;
 | |
| 	   k += 600;
 | |
| 	   kld = two600;
 | |
| 	}
 | |
| 	if(hb < 0x20b0000000000000LL) {	/* b < 2**-500 */
 | |
| 	    if(hb <= 0x000fffffffffffffLL) {	/* subnormal b or 0 */
 | |
| 		u_int64_t low;
 | |
| 		GET_LDOUBLE_LSW64(low,b);
 | |
| 		if((hb|(low&0x7fffffffffffffffLL))==0) return a;
 | |
| 		t1=two1022;	/* t1=2^1022 */
 | |
| 		b *= t1;
 | |
| 		a *= t1;
 | |
| 		k -= 1022;
 | |
| 		kld = kld / two1022;
 | |
| 	    } else {		/* scale a and b by 2^600 */
 | |
| 		ha += 0x2580000000000000LL;	/* a *= 2^600 */
 | |
| 		hb += 0x2580000000000000LL;	/* b *= 2^600 */
 | |
| 		k -= 600;
 | |
| 		a *= two600;
 | |
| 		b *= two600;
 | |
| 		kld = kld / two600;
 | |
| 	    }
 | |
| 	}
 | |
|     /* medium size a and b */
 | |
| 	w = a-b;
 | |
| 	if (w>b) {
 | |
| 	    SET_LDOUBLE_WORDS64(t1,ha,0);
 | |
| 	    t2 = a-t1;
 | |
| 	    w  = __ieee754_sqrtl(t1*t1-(b*(-b)-t2*(a+t1)));
 | |
| 	} else {
 | |
| 	    a  = a+a;
 | |
| 	    SET_LDOUBLE_WORDS64(y1,hb,0);
 | |
| 	    y2 = b - y1;
 | |
| 	    SET_LDOUBLE_WORDS64(t1,ha+0x0010000000000000LL,0);
 | |
| 	    t2 = a - t1;
 | |
| 	    w  = __ieee754_sqrtl(t1*y1-(w*(-w)-(t1*y2+t2*b)));
 | |
| 	}
 | |
| 	if(k!=0)
 | |
| 	    return w*kld;
 | |
| 	else
 | |
| 	    return w;
 | |
| }
 | |
| strong_alias (__ieee754_hypotl, __hypotl_finite)
 |