mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			140 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			140 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* e_fmodl.c -- long double version of e_fmod.c.
 | |
|  * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
 | |
|  */
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * __ieee754_fmodl(x,y)
 | |
|  * Return x mod y in exact arithmetic
 | |
|  * Method: shift and subtract
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <math_private.h>
 | |
| #include <ieee754.h>
 | |
| 
 | |
| static const long double one = 1.0, Zero[] = {0.0, -0.0,};
 | |
| 
 | |
| long double
 | |
| __ieee754_fmodl (long double x, long double y)
 | |
| {
 | |
| 	int64_t n,hx,hy,hz,ix,iy,sx, i;
 | |
| 	u_int64_t lx,ly,lz;
 | |
| 	int temp;
 | |
| 
 | |
| 	GET_LDOUBLE_WORDS64(hx,lx,x);
 | |
| 	GET_LDOUBLE_WORDS64(hy,ly,y);
 | |
| 	sx = hx&0x8000000000000000ULL;		/* sign of x */
 | |
| 	hx ^=sx;				/* |x| */
 | |
| 	hy &= 0x7fffffffffffffffLL;		/* |y| */
 | |
| 
 | |
|     /* purge off exception values */
 | |
| 	if(__builtin_expect((hy|(ly&0x7fffffffffffffff))==0 ||
 | |
| 			    (hx>=0x7ff0000000000000LL)|| /* y=0,or x not finite */
 | |
| 			    (hy>0x7ff0000000000000LL),0))	/* or y is NaN */
 | |
| 	    return (x*y)/(x*y);
 | |
| 	if(__builtin_expect(hx<=hy,0)) {
 | |
| 	    if((hx<hy)||(lx<ly)) return x;	/* |x|<|y| return x */
 | |
| 	    if(lx==ly)
 | |
| 		return Zero[(u_int64_t)sx>>63];	/* |x|=|y| return x*0*/
 | |
| 	}
 | |
| 
 | |
|     /* determine ix = ilogb(x) */
 | |
| 	if(__builtin_expect(hx<0x0010000000000000LL,0)) {	/* subnormal x */
 | |
| 	    if(hx==0) {
 | |
| 		for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
 | |
| 	    } else {
 | |
| 		for (ix = -1022, i=(hx<<11); i>0; i<<=1) ix -=1;
 | |
| 	    }
 | |
| 	} else ix = (hx>>52)-0x3ff;
 | |
| 
 | |
|     /* determine iy = ilogb(y) */
 | |
| 	if(__builtin_expect(hy<0x0010000000000000LL,0)) {	/* subnormal y */
 | |
| 	    if(hy==0) {
 | |
| 		for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
 | |
| 	    } else {
 | |
| 		for (iy = -1022, i=(hy<<11); i>0; i<<=1) iy -=1;
 | |
| 	    }
 | |
| 	} else iy = (hy>>52)-0x3ff;
 | |
| 
 | |
|     /* Make the IBM extended format 105 bit mantissa look like the ieee854 112
 | |
|        bit mantissa so the following operations will give the correct
 | |
|        result.  */
 | |
| 	ldbl_extract_mantissa(&hx, &lx, &temp, x);
 | |
| 	ldbl_extract_mantissa(&hy, &ly, &temp, y);
 | |
| 
 | |
|     /* set up {hx,lx}, {hy,ly} and align y to x */
 | |
| 	if(__builtin_expect(ix >= -1022, 1))
 | |
| 	    hx = 0x0001000000000000LL|(0x0000ffffffffffffLL&hx);
 | |
| 	else {		/* subnormal x, shift x to normal */
 | |
| 	    n = -1022-ix;
 | |
| 	    if(n<=63) {
 | |
| 		hx = (hx<<n)|(lx>>(64-n));
 | |
| 		lx <<= n;
 | |
| 	    } else {
 | |
| 		hx = lx<<(n-64);
 | |
| 		lx = 0;
 | |
| 	    }
 | |
| 	}
 | |
| 	if(__builtin_expect(iy >= -1022, 1))
 | |
| 	    hy = 0x0001000000000000LL|(0x0000ffffffffffffLL&hy);
 | |
| 	else {		/* subnormal y, shift y to normal */
 | |
| 	    n = -1022-iy;
 | |
| 	    if(n<=63) {
 | |
| 		hy = (hy<<n)|(ly>>(64-n));
 | |
| 		ly <<= n;
 | |
| 	    } else {
 | |
| 		hy = ly<<(n-64);
 | |
| 		ly = 0;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     /* fix point fmod */
 | |
| 	n = ix - iy;
 | |
| 	while(n--) {
 | |
| 	    hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
 | |
| 	    if(hz<0){hx = hx+hx+(lx>>63); lx = lx+lx;}
 | |
| 	    else {
 | |
| 		if((hz|(lz&0x7fffffffffffffff))==0)		/* return sign(x)*0 */
 | |
| 		    return Zero[(u_int64_t)sx>>63];
 | |
| 		hx = hz+hz+(lz>>63); lx = lz+lz;
 | |
| 	    }
 | |
| 	}
 | |
| 	hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
 | |
| 	if(hz>=0) {hx=hz;lx=lz;}
 | |
| 
 | |
|     /* convert back to floating value and restore the sign */
 | |
| 	if((hx|(lx&0x7fffffffffffffff))==0)			/* return sign(x)*0 */
 | |
| 	    return Zero[(u_int64_t)sx>>63];
 | |
| 	while(hx<0x0001000000000000LL) {	/* normalize x */
 | |
| 	    hx = hx+hx+(lx>>63); lx = lx+lx;
 | |
| 	    iy -= 1;
 | |
| 	}
 | |
| 	if(__builtin_expect(iy>= -1022,0)) {	/* normalize output */
 | |
| 	    x = ldbl_insert_mantissa((sx>>63), iy, hx, lx);
 | |
| 	} else {		/* subnormal output */
 | |
| 	    n = -1022 - iy;
 | |
| 	    if(n<=48) {
 | |
| 		lx = (lx>>n)|((u_int64_t)hx<<(64-n));
 | |
| 		hx >>= n;
 | |
| 	    } else if (n<=63) {
 | |
| 		lx = (hx<<(64-n))|(lx>>n); hx = sx;
 | |
| 	    } else {
 | |
| 		lx = hx>>(n-64); hx = sx;
 | |
| 	    }
 | |
| 	    x = ldbl_insert_mantissa((sx>>63), iy, hx, lx);
 | |
| 	    x *= one;		/* create necessary signal */
 | |
| 	}
 | |
| 	return x;		/* exact output */
 | |
| }
 | |
| strong_alias (__ieee754_fmodl, __fmodl_finite)
 |