mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			258 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			258 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Quad-precision floating point e^x.
 | |
|    Copyright (C) 1999-2012 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
|    Contributed by Jakub Jelinek <jj@ultra.linux.cz>
 | |
|    Partly based on double-precision code
 | |
|    by Geoffrey Keating <geoffk@ozemail.com.au>
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| /* The basic design here is from
 | |
|    Abraham Ziv, "Fast Evaluation of Elementary Mathematical Functions with
 | |
|    Correctly Rounded Last Bit", ACM Trans. Math. Soft., 17 (3), September 1991,
 | |
|    pp. 410-423.
 | |
| 
 | |
|    We work with number pairs where the first number is the high part and
 | |
|    the second one is the low part. Arithmetic with the high part numbers must
 | |
|    be exact, without any roundoff errors.
 | |
| 
 | |
|    The input value, X, is written as
 | |
|    X = n * ln(2)_0 + arg1[t1]_0 + arg2[t2]_0 + x
 | |
|        - n * ln(2)_1 + arg1[t1]_1 + arg2[t2]_1 + xl
 | |
| 
 | |
|    where:
 | |
|    - n is an integer, 16384 >= n >= -16495;
 | |
|    - ln(2)_0 is the first 93 bits of ln(2), and |ln(2)_0-ln(2)-ln(2)_1| < 2^-205
 | |
|    - t1 is an integer, 89 >= t1 >= -89
 | |
|    - t2 is an integer, 65 >= t2 >= -65
 | |
|    - |arg1[t1]-t1/256.0| < 2^-53
 | |
|    - |arg2[t2]-t2/32768.0| < 2^-53
 | |
|    - x + xl is whatever is left, |x + xl| < 2^-16 + 2^-53
 | |
| 
 | |
|    Then e^x is approximated as
 | |
| 
 | |
|    e^x = 2^n_1 ( 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
 | |
| 	       + 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
 | |
| 		 * p (x + xl + n * ln(2)_1))
 | |
|    where:
 | |
|    - p(x) is a polynomial approximating e(x)-1
 | |
|    - e^(arg1[t1]_0 + arg1[t1]_1) is obtained from a table
 | |
|    - e^(arg2[t2]_0 + arg2[t2]_1) likewise
 | |
|    - n_1 + n_0 = n, so that |n_0| < -LDBL_MIN_EXP-1.
 | |
| 
 | |
|    If it happens that n_1 == 0 (this is the usual case), that multiplication
 | |
|    is omitted.
 | |
|    */
 | |
| 
 | |
| #ifndef _GNU_SOURCE
 | |
| #define _GNU_SOURCE
 | |
| #endif
 | |
| #include <float.h>
 | |
| #include <ieee754.h>
 | |
| #include <math.h>
 | |
| #include <fenv.h>
 | |
| #include <inttypes.h>
 | |
| #include <math_private.h>
 | |
| #include <sysdeps/ieee754/ldbl-128/t_expl.h>
 | |
| 
 | |
| static const long double C[] = {
 | |
| /* Smallest integer x for which e^x overflows.  */
 | |
| #define himark C[0]
 | |
|  709.08956571282405153382846025171462914L,
 | |
| 
 | |
| /* Largest integer x for which e^x underflows.  */
 | |
| #define lomark C[1]
 | |
| -744.44007192138121808966388925909996033L,
 | |
| 
 | |
| /* 3x2^96 */
 | |
| #define THREEp96 C[2]
 | |
|  59421121885698253195157962752.0L,
 | |
| 
 | |
| /* 3x2^103 */
 | |
| #define THREEp103 C[3]
 | |
|  30423614405477505635920876929024.0L,
 | |
| 
 | |
| /* 3x2^111 */
 | |
| #define THREEp111 C[4]
 | |
|  7788445287802241442795744493830144.0L,
 | |
| 
 | |
| /* 1/ln(2) */
 | |
| #define M_1_LN2 C[5]
 | |
|  1.44269504088896340735992468100189204L,
 | |
| 
 | |
| /* first 93 bits of ln(2) */
 | |
| #define M_LN2_0 C[6]
 | |
|  0.693147180559945309417232121457981864L,
 | |
| 
 | |
| /* ln2_0 - ln(2) */
 | |
| #define M_LN2_1 C[7]
 | |
| -1.94704509238074995158795957333327386E-31L,
 | |
| 
 | |
| /* very small number */
 | |
| #define TINY C[8]
 | |
|  1.0e-308L,
 | |
| 
 | |
| /* 2^16383 */
 | |
| #define TWO1023 C[9]
 | |
|  8.988465674311579538646525953945123668E+307L,
 | |
| 
 | |
| /* 256 */
 | |
| #define TWO8 C[10]
 | |
|  256.0L,
 | |
| 
 | |
| /* 32768 */
 | |
| #define TWO15 C[11]
 | |
|  32768.0L,
 | |
| 
 | |
| /* Chebyshev polynom coeficients for (exp(x)-1)/x */
 | |
| #define P1 C[12]
 | |
| #define P2 C[13]
 | |
| #define P3 C[14]
 | |
| #define P4 C[15]
 | |
| #define P5 C[16]
 | |
| #define P6 C[17]
 | |
|  0.5L,
 | |
|  1.66666666666666666666666666666666683E-01L,
 | |
|  4.16666666666666666666654902320001674E-02L,
 | |
|  8.33333333333333333333314659767198461E-03L,
 | |
|  1.38888888889899438565058018857254025E-03L,
 | |
|  1.98412698413981650382436541785404286E-04L,
 | |
| };
 | |
| 
 | |
| long double
 | |
| __ieee754_expl (long double x)
 | |
| {
 | |
|   /* Check for usual case.  */
 | |
|   if (isless (x, himark) && isgreater (x, lomark))
 | |
|     {
 | |
|       int tval1, tval2, unsafe, n_i, exponent2;
 | |
|       long double x22, n, result, xl;
 | |
|       union ibm_extended_long_double ex2_u, scale_u;
 | |
|       fenv_t oldenv;
 | |
| 
 | |
|       feholdexcept (&oldenv);
 | |
| #ifdef FE_TONEAREST
 | |
|       fesetround (FE_TONEAREST);
 | |
| #endif
 | |
| 
 | |
|       n = __roundl (x*M_1_LN2);
 | |
|       x = x-n*M_LN2_0;
 | |
|       xl = n*M_LN2_1;
 | |
| 
 | |
|       tval1 = __roundl (x*TWO8);
 | |
|       x -= __expl_table[T_EXPL_ARG1+2*tval1];
 | |
|       xl -= __expl_table[T_EXPL_ARG1+2*tval1+1];
 | |
| 
 | |
|       tval2 = __roundl (x*TWO15);
 | |
|       x -= __expl_table[T_EXPL_ARG2+2*tval2];
 | |
|       xl -= __expl_table[T_EXPL_ARG2+2*tval2+1];
 | |
| 
 | |
|       x = x + xl;
 | |
| 
 | |
|       /* Compute ex2 = 2^n_0 e^(argtable[tval1]) e^(argtable[tval2]).  */
 | |
|       ex2_u.d = __expl_table[T_EXPL_RES1 + tval1]
 | |
| 		* __expl_table[T_EXPL_RES2 + tval2];
 | |
|       n_i = (int)n;
 | |
|       /* 'unsafe' is 1 iff n_1 != 0.  */
 | |
|       unsafe = fabsl(n_i) >= -LDBL_MIN_EXP - 1;
 | |
|       ex2_u.ieee.exponent += n_i >> unsafe;
 | |
|       /* Fortunately, there are no subnormal lowpart doubles in
 | |
| 	 __expl_table, only normal values and zeros.
 | |
| 	 But after scaling it can be subnormal.  */
 | |
|       exponent2 = ex2_u.ieee.exponent2 + (n_i >> unsafe);
 | |
|       if (ex2_u.ieee.exponent2 == 0)
 | |
| 	/* assert ((ex2_u.ieee.mantissa2|ex2_u.ieee.mantissa3) == 0) */;
 | |
|       else if (exponent2 > 0)
 | |
| 	ex2_u.ieee.exponent2 = exponent2;
 | |
|       else if (exponent2 <= -54)
 | |
| 	{
 | |
| 	  ex2_u.ieee.exponent2 = 0;
 | |
| 	  ex2_u.ieee.mantissa2 = 0;
 | |
| 	  ex2_u.ieee.mantissa3 = 0;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  static const double
 | |
| 	    two54 = 1.80143985094819840000e+16, /* 4350000000000000 */
 | |
| 	    twom54 = 5.55111512312578270212e-17; /* 3C90000000000000 */
 | |
| 	  ex2_u.dd[1] *= two54;
 | |
| 	  ex2_u.ieee.exponent2 += n_i >> unsafe;
 | |
| 	  ex2_u.dd[1] *= twom54;
 | |
| 	}
 | |
| 
 | |
|       /* Compute scale = 2^n_1.  */
 | |
|       scale_u.d = 1.0L;
 | |
|       scale_u.ieee.exponent += n_i - (n_i >> unsafe);
 | |
| 
 | |
|       /* Approximate e^x2 - 1, using a seventh-degree polynomial,
 | |
| 	 with maximum error in [-2^-16-2^-53,2^-16+2^-53]
 | |
| 	 less than 4.8e-39.  */
 | |
|       x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6)))));
 | |
| 
 | |
|       /* Return result.  */
 | |
|       fesetenv (&oldenv);
 | |
| 
 | |
|       result = x22 * ex2_u.d + ex2_u.d;
 | |
| 
 | |
|       /* Now we can test whether the result is ultimate or if we are unsure.
 | |
| 	 In the later case we should probably call a mpn based routine to give
 | |
| 	 the ultimate result.
 | |
| 	 Empirically, this routine is already ultimate in about 99.9986% of
 | |
| 	 cases, the test below for the round to nearest case will be false
 | |
| 	 in ~ 99.9963% of cases.
 | |
| 	 Without proc2 routine maximum error which has been seen is
 | |
| 	 0.5000262 ulp.
 | |
| 
 | |
| 	  union ieee854_long_double ex3_u;
 | |
| 
 | |
| 	  #ifdef FE_TONEAREST
 | |
| 	    fesetround (FE_TONEAREST);
 | |
| 	  #endif
 | |
| 	  ex3_u.d = (result - ex2_u.d) - x22 * ex2_u.d;
 | |
| 	  ex2_u.d = result;
 | |
| 	  ex3_u.ieee.exponent += LDBL_MANT_DIG + 15 + IEEE854_LONG_DOUBLE_BIAS
 | |
| 	  			 - ex2_u.ieee.exponent;
 | |
| 	  n_i = abs (ex3_u.d);
 | |
| 	  n_i = (n_i + 1) / 2;
 | |
| 	  fesetenv (&oldenv);
 | |
| 	  #ifdef FE_TONEAREST
 | |
| 	  if (fegetround () == FE_TONEAREST)
 | |
| 	    n_i -= 0x4000;
 | |
| 	  #endif
 | |
| 	  if (!n_i) {
 | |
| 	    return __ieee754_expl_proc2 (origx);
 | |
| 	  }
 | |
|        */
 | |
|       if (!unsafe)
 | |
| 	return result;
 | |
|       else
 | |
| 	return result * scale_u.d;
 | |
|     }
 | |
|   /* Exceptional cases:  */
 | |
|   else if (isless (x, himark))
 | |
|     {
 | |
|       if (__isinfl (x))
 | |
| 	/* e^-inf == 0, with no error.  */
 | |
| 	return 0;
 | |
|       else
 | |
| 	/* Underflow */
 | |
| 	return TINY * TINY;
 | |
|     }
 | |
|   else
 | |
|     /* Return x, if x is a NaN or Inf; or overflow, otherwise.  */
 | |
|     return TWO1023*x;
 | |
| }
 | |
| strong_alias (__ieee754_expl, __expl_finite)
 |