mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			401 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			401 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/python3
 | |
| # Plot GNU C Library string microbenchmark output.
 | |
| # Copyright (C) 2019-2025 Free Software Foundation, Inc.
 | |
| # This file is part of the GNU C Library.
 | |
| #
 | |
| # The GNU C Library is free software; you can redistribute it and/or
 | |
| # modify it under the terms of the GNU Lesser General Public
 | |
| # License as published by the Free Software Foundation; either
 | |
| # version 2.1 of the License, or (at your option) any later version.
 | |
| #
 | |
| # The GNU C Library is distributed in the hope that it will be useful,
 | |
| # but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| # Lesser General Public License for more details.
 | |
| #
 | |
| # You should have received a copy of the GNU Lesser General Public
 | |
| # License along with the GNU C Library; if not, see
 | |
| # <https://www.gnu.org/licenses/>.
 | |
| """Plot string microbenchmark results.
 | |
| 
 | |
| Given a benchmark results file in JSON format and a benchmark schema file,
 | |
| plot the benchmark timings in one of the available representations.
 | |
| 
 | |
| Separate figure is generated and saved to a file for each 'results' array
 | |
| found in the benchmark results file. Output filenames and plot titles
 | |
| are derived from the metadata found in the benchmark results file.
 | |
| """
 | |
| import argparse
 | |
| from collections import defaultdict
 | |
| import json
 | |
| import matplotlib as mpl
 | |
| import numpy as np
 | |
| import os
 | |
| import sys
 | |
| 
 | |
| try:
 | |
|     import jsonschema as validator
 | |
| except ImportError:
 | |
|     print("Could not find jsonschema module.")
 | |
|     raise
 | |
| 
 | |
| # Use pre-selected markers for plotting lines to improve readability
 | |
| markers = [".", "x", "^", "+", "*", "v", "1", ">", "s"]
 | |
| 
 | |
| # Benchmark variants for which the x-axis scale should be logarithmic
 | |
| log_variants = {"powers of 2"}
 | |
| 
 | |
| 
 | |
| def gmean(numbers):
 | |
|     """Compute geometric mean.
 | |
| 
 | |
|     Args:
 | |
|         numbers: 2-D list of numbers
 | |
|     Return:
 | |
|         numpy array with geometric means of numbers along each column
 | |
|     """
 | |
|     a = np.array(numbers, dtype=np.complex)
 | |
|     means = a.prod(0) ** (1.0 / len(a))
 | |
|     return np.real(means)
 | |
| 
 | |
| 
 | |
| def relativeDifference(x, x_reference):
 | |
|     """Compute per-element relative difference between each row of
 | |
|        a matrix and an array of reference values.
 | |
| 
 | |
|     Args:
 | |
|         x: numpy matrix of shape (n, m)
 | |
|         x_reference: numpy array of size m
 | |
|     Return:
 | |
|         relative difference between rows of x and x_reference (in %)
 | |
|     """
 | |
|     abs_diff = np.subtract(x, x_reference)
 | |
|     return np.divide(np.multiply(abs_diff, 100.0), x_reference)
 | |
| 
 | |
| 
 | |
| def plotTime(timings, routine, bench_variant, title, outpath):
 | |
|     """Plot absolute timing values.
 | |
| 
 | |
|     Args:
 | |
|         timings: timings to plot
 | |
|         routine: benchmarked string routine name
 | |
|         bench_variant: top-level benchmark variant name
 | |
|         title: figure title (generated so far)
 | |
|         outpath: output file path (generated so far)
 | |
|     Return:
 | |
|         y: y-axis values to plot
 | |
|         title_final: final figure title
 | |
|         outpath_final: file output file path
 | |
|     """
 | |
|     y = timings
 | |
|     plt.figure()
 | |
| 
 | |
|     if not args.values:
 | |
|         plt.axes().yaxis.set_major_formatter(plt.NullFormatter())
 | |
| 
 | |
|     plt.ylabel("timing")
 | |
|     title_final = "%s %s benchmark timings\n%s" % \
 | |
|                   (routine, bench_variant, title)
 | |
|     outpath_final = os.path.join(args.outdir, "%s_%s_%s%s" % \
 | |
|                     (routine, args.plot, bench_variant, outpath))
 | |
| 
 | |
|     return y, title_final, outpath_final
 | |
| 
 | |
| 
 | |
| def plotRelative(timings, all_timings, routine, ifuncs, bench_variant,
 | |
|                  title, outpath):
 | |
|     """Plot timing values relative to a chosen ifunc
 | |
| 
 | |
|     Args:
 | |
|         timings: timings to plot
 | |
|         all_timings: all collected timings
 | |
|         routine: benchmarked string routine name
 | |
|         ifuncs: names of ifuncs tested
 | |
|         bench_variant: top-level benchmark variant name
 | |
|         title: figure title (generated so far)
 | |
|         outpath: output file path (generated so far)
 | |
|     Return:
 | |
|         y: y-axis values to plot
 | |
|         title_final: final figure title
 | |
|         outpath_final: file output file path
 | |
|     """
 | |
|     # Choose the baseline ifunc
 | |
|     if args.baseline:
 | |
|         baseline = args.baseline.replace("__", "")
 | |
|     else:
 | |
|         baseline = ifuncs[0]
 | |
| 
 | |
|     baseline_index = ifuncs.index(baseline)
 | |
| 
 | |
|     # Compare timings against the baseline
 | |
|     y = relativeDifference(timings, all_timings[baseline_index])
 | |
| 
 | |
|     plt.figure()
 | |
|     plt.axhspan(-args.threshold, args.threshold, color="lightgray", alpha=0.3)
 | |
|     plt.axhline(0, color="k", linestyle="--", linewidth=0.4)
 | |
|     plt.ylabel("relative timing (in %)")
 | |
|     title_final = "Timing comparison against %s\nfor %s benchmark, %s" % \
 | |
|                   (baseline, bench_variant, title)
 | |
|     outpath_final = os.path.join(args.outdir, "%s_%s_%s%s" % \
 | |
|                     (baseline, args.plot, bench_variant, outpath))
 | |
| 
 | |
|     return y, title_final, outpath_final
 | |
| 
 | |
| 
 | |
| def plotMax(timings, routine, bench_variant, title, outpath):
 | |
|     """Plot results as percentage of the maximum ifunc performance.
 | |
| 
 | |
|     The optimal ifunc is computed on a per-parameter-value basis.
 | |
|     Performance is computed as 1/timing.
 | |
| 
 | |
|     Args:
 | |
|         timings: timings to plot
 | |
|         routine: benchmarked string routine name
 | |
|         bench_variant: top-level benchmark variant name
 | |
|         title: figure title (generated so far)
 | |
|         outpath: output file path (generated so far)
 | |
|     Return:
 | |
|         y: y-axis values to plot
 | |
|         title_final: final figure title
 | |
|         outpath_final: file output file path
 | |
|     """
 | |
|     perf = np.reciprocal(timings)
 | |
|     max_perf = np.max(perf, axis=0)
 | |
|     y = np.add(100.0, relativeDifference(perf, max_perf))
 | |
| 
 | |
|     plt.figure()
 | |
|     plt.axhline(100.0, color="k", linestyle="--", linewidth=0.4)
 | |
|     plt.ylabel("1/timing relative to max (in %)")
 | |
|     title_final = "Performance comparison against max for %s\n%s " \
 | |
|                   "benchmark, %s" % (routine, bench_variant, title)
 | |
|     outpath_final = os.path.join(args.outdir, "%s_%s_%s%s" % \
 | |
|                     (routine, args.plot, bench_variant, outpath))
 | |
| 
 | |
|     return y, title_final, outpath_final
 | |
| 
 | |
| 
 | |
| def plotThroughput(timings, params, routine, bench_variant, title, outpath):
 | |
|     """Plot throughput.
 | |
| 
 | |
|     Throughput is computed as the varied parameter value over timing.
 | |
| 
 | |
|     Args:
 | |
|         timings: timings to plot
 | |
|         params: varied parameter values
 | |
|         routine: benchmarked string routine name
 | |
|         bench_variant: top-level benchmark variant name
 | |
|         title: figure title (generated so far)
 | |
|         outpath: output file path (generated so far)
 | |
|     Return:
 | |
|         y: y-axis values to plot
 | |
|         title_final: final figure title
 | |
|         outpath_final: file output file path
 | |
|     """
 | |
|     y = np.divide(params, timings)
 | |
|     plt.figure()
 | |
| 
 | |
|     if not args.values:
 | |
|         plt.axes().yaxis.set_major_formatter(plt.NullFormatter())
 | |
| 
 | |
|     plt.ylabel("%s / timing" % args.key)
 | |
|     title_final = "%s %s benchmark throughput results\n%s" % \
 | |
|                   (routine, bench_variant, title)
 | |
|     outpath_final = os.path.join(args.outdir, "%s_%s_%s%s" % \
 | |
|                     (routine, args.plot, bench_variant, outpath))
 | |
|     return y, title_final, outpath_final
 | |
| 
 | |
| 
 | |
| def finishPlot(x, y, title, outpath, x_scale, plotted_ifuncs):
 | |
|     """Finish generating current Figure.
 | |
| 
 | |
|     Args:
 | |
|         x: x-axis values
 | |
|         y: y-axis values
 | |
|         title: figure title
 | |
|         outpath: output file path
 | |
|         x_scale: x-axis scale
 | |
|         plotted_ifuncs: names of ifuncs to plot
 | |
|     """
 | |
|     plt.xlabel(args.key)
 | |
|     plt.xscale(x_scale)
 | |
|     plt.title(title)
 | |
| 
 | |
|     plt.grid(color="k", linestyle=args.grid, linewidth=0.5, alpha=0.5)
 | |
| 
 | |
|     for i in range(len(plotted_ifuncs)):
 | |
|         plt.plot(x, y[i], marker=markers[i % len(markers)],
 | |
|                  label=plotted_ifuncs[i])
 | |
| 
 | |
|     plt.legend(loc="best", fontsize="small")
 | |
|     plt.savefig("%s_%s.%s" % (outpath, x_scale, args.extension),
 | |
|                 format=args.extension, dpi=args.resolution)
 | |
| 
 | |
|     if args.display:
 | |
|         plt.show()
 | |
| 
 | |
|     plt.close()
 | |
| 
 | |
| 
 | |
| def plotRecursive(json_iter, routine, ifuncs, bench_variant, title, outpath,
 | |
|                   x_scale):
 | |
|     """Plot benchmark timings.
 | |
| 
 | |
|     Args:
 | |
|         json_iter: reference to json object
 | |
|         routine: benchmarked string routine name
 | |
|         ifuncs: names of ifuncs tested
 | |
|         bench_variant: top-level benchmark variant name
 | |
|         title: figure's title (generated so far)
 | |
|         outpath: output file path (generated so far)
 | |
|         x_scale: x-axis scale
 | |
|     """
 | |
| 
 | |
|     # RECURSIVE CASE: 'variants' array found
 | |
|     if "variants" in json_iter:
 | |
|         # Continue recursive search for 'results' array. Record the
 | |
|         # benchmark variant (configuration) in order to customize
 | |
|         # the title, filename and X-axis scale for the generated figure.
 | |
|         for variant in json_iter["variants"]:
 | |
|             new_title = "%s%s, " % (title, variant["name"])
 | |
|             new_outpath = "%s_%s" % (outpath, variant["name"].replace(" ", "_"))
 | |
|             new_x_scale = "log" if variant["name"] in log_variants else x_scale
 | |
| 
 | |
|             plotRecursive(variant, routine, ifuncs, bench_variant, new_title,
 | |
|                           new_outpath, new_x_scale)
 | |
|         return
 | |
| 
 | |
|     # BASE CASE: 'results' array found
 | |
|     domain = []
 | |
|     timings = defaultdict(list)
 | |
| 
 | |
|     # Collect timings
 | |
|     for result in json_iter["results"]:
 | |
|         domain.append(result[args.key])
 | |
|         timings[result[args.key]].append(result["timings"])
 | |
| 
 | |
|     domain = np.unique(np.array(domain))
 | |
|     averages = []
 | |
| 
 | |
|     # Compute geometric mean if there are multiple timings for each
 | |
|     # parameter value.
 | |
|     for parameter in domain:
 | |
|         averages.append(gmean(timings[parameter]))
 | |
| 
 | |
|     averages = np.array(averages).transpose()
 | |
| 
 | |
|     # Choose ifuncs to plot
 | |
|     if isinstance(args.ifuncs, str):
 | |
|         plotted_ifuncs = ifuncs
 | |
|     else:
 | |
|         plotted_ifuncs = [x.replace("__", "") for x in args.ifuncs]
 | |
| 
 | |
|     plotted_indices = [ifuncs.index(x) for x in plotted_ifuncs]
 | |
|     plotted_vals = averages[plotted_indices,:]
 | |
| 
 | |
|     # Plotting logic specific to each plot type
 | |
|     if args.plot == "time":
 | |
|         codomain, title, outpath = plotTime(plotted_vals, routine,
 | |
|                                    bench_variant, title, outpath)
 | |
|     elif args.plot == "rel":
 | |
|         codomain, title, outpath = plotRelative(plotted_vals, averages, routine,
 | |
|                                    ifuncs, bench_variant, title, outpath)
 | |
|     elif args.plot == "max":
 | |
|         codomain, title, outpath = plotMax(plotted_vals, routine,
 | |
|                                    bench_variant, title, outpath)
 | |
|     elif args.plot == "thru":
 | |
|         codomain, title, outpath = plotThroughput(plotted_vals, domain, routine,
 | |
|                                    bench_variant, title, outpath)
 | |
| 
 | |
|     # Plotting logic shared between plot types
 | |
|     finishPlot(domain, codomain, title, outpath, x_scale, plotted_ifuncs)
 | |
| 
 | |
| 
 | |
| def main(args):
 | |
|     """Program Entry Point.
 | |
| 
 | |
|     Args:
 | |
|       args: command line arguments (excluding program name)
 | |
|     """
 | |
| 
 | |
|     # Select non-GUI matplotlib backend if interactive display is disabled
 | |
|     if not args.display:
 | |
|         mpl.use("Agg")
 | |
| 
 | |
|     global plt
 | |
|     import matplotlib.pyplot as plt
 | |
| 
 | |
|     schema = None
 | |
| 
 | |
|     with open(args.schema, "r") as f:
 | |
|         schema = json.load(f)
 | |
| 
 | |
|     for filename in args.bench:
 | |
|         bench = None
 | |
| 
 | |
|         if filename == '-':
 | |
|             bench = json.load(sys.stdin)
 | |
|         else:
 | |
|             with open(filename, "r") as f:
 | |
|                 bench = json.load(f)
 | |
| 
 | |
|         validator.validate(bench, schema)
 | |
| 
 | |
|         for function in bench["functions"]:
 | |
|             bench_variant = bench["functions"][function]["bench-variant"]
 | |
|             ifuncs = bench["functions"][function]["ifuncs"]
 | |
|             ifuncs = [x.replace("__", "") for x in ifuncs]
 | |
| 
 | |
|             plotRecursive(bench["functions"][function], function, ifuncs,
 | |
|                           bench_variant, "", "", args.logarithmic)
 | |
| 
 | |
| 
 | |
| """ main() """
 | |
| if __name__ == "__main__":
 | |
| 
 | |
|     parser = argparse.ArgumentParser(description=
 | |
|             "Plot string microbenchmark results",
 | |
|             formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 | |
| 
 | |
|     # Required parameter
 | |
|     parser.add_argument("bench", nargs="+",
 | |
|                         help="benchmark results file(s) in json format, " \
 | |
|                         "and/or '-' as a benchmark result file from stdin")
 | |
| 
 | |
|     # Optional parameters
 | |
|     parser.add_argument("-b", "--baseline", type=str,
 | |
|                         help="baseline ifunc for 'rel' plot")
 | |
|     parser.add_argument("-d", "--display", action="store_true",
 | |
|                         help="display figures")
 | |
|     parser.add_argument("-e", "--extension", type=str, default="png",
 | |
|                         choices=["png", "pdf", "svg"],
 | |
|                         help="output file(s) extension")
 | |
|     parser.add_argument("-g", "--grid", action="store_const", default="",
 | |
|                         const="-", help="show grid lines")
 | |
|     parser.add_argument("-i", "--ifuncs", nargs="+", default="all",
 | |
|                         help="ifuncs to plot")
 | |
|     parser.add_argument("-k", "--key", type=str, default="length",
 | |
|                         help="key to access the varied parameter")
 | |
|     parser.add_argument("-l", "--logarithmic", action="store_const",
 | |
|                         default="linear", const="log",
 | |
|                         help="use logarithmic x-axis scale")
 | |
|     parser.add_argument("-o", "--outdir", type=str, default=os.getcwd(),
 | |
|                         help="output directory")
 | |
|     parser.add_argument("-p", "--plot", type=str, default="time",
 | |
|                         choices=["time", "rel", "max", "thru"],
 | |
|                         help="plot absolute timings, relative timings, " \
 | |
|                         "performance relative to max, or throughput")
 | |
|     parser.add_argument("-r", "--resolution", type=int, default=100,
 | |
|                         help="dpi resolution for the generated figures")
 | |
|     parser.add_argument("-s", "--schema", type=str,
 | |
|                         default=os.path.join(os.path.dirname(
 | |
|                         os.path.realpath(__file__)),
 | |
|                         "benchout_strings.schema.json"),
 | |
|                         help="schema file to validate the results file.")
 | |
|     parser.add_argument("-t", "--threshold", type=int, default=5,
 | |
|                         help="threshold to mark in 'rel' graph (in %%)")
 | |
|     parser.add_argument("-v", "--values", action="store_true",
 | |
|                         help="show actual values")
 | |
| 
 | |
|     args = parser.parse_args()
 | |
|     main(args)
 |