mirror of
https://sourceware.org/git/glibc.git
synced 2025-08-01 10:06:57 +03:00
On GCC 11 (x86-64), the previous code produced test failures like this one: Failure: Test: exp10m1_towardzero (-0x1.1p+4) Result: is: -1.00000000e+00 -0x1.000000p+0 should be: -9.99999940e-01 -0x1.fffffep-1 difference: 5.96046447e-08 0x1.000000p-24 ulp : 1.0000 max.ulp : 0.0000 Apply a similar fix to exp2m1f. Co-authored-by: Paul Zimmermann <Paul.Zimmermann@inria.fr> Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
195 lines
6.1 KiB
C
195 lines
6.1 KiB
C
/* Correctly-rounded base-2 exponent function biased by 1 for binary32 value.
|
|
|
|
Copyright (c) 2022-2024 Alexei Sibidanov.
|
|
|
|
The original version of this file was copied from the CORE-MATH
|
|
project (file src/binary32/exp2m1/exp2m1f.c, revision baf5f6b).
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in all
|
|
copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
*/
|
|
|
|
#include <fenv.h>
|
|
#include <math.h>
|
|
#include "math_config.h"
|
|
#include <libm-alias-float.h>
|
|
#include <math-narrow-eval.h>
|
|
#include <float.h>
|
|
|
|
float
|
|
__exp2m1f (float x)
|
|
{
|
|
double z = x;
|
|
uint32_t ux = asuint (x);
|
|
uint32_t ax = ux & (~0u >> 1);
|
|
if (__glibc_unlikely (ux >= 0xc1c80000u))
|
|
{ /* x <= -25 */
|
|
if (ax > (0xffu << 23))
|
|
return x + x; /* nan */
|
|
return (ux == 0xff800000) ? -0x1p+0f : -0x1p+0f + 0x1p-26f;
|
|
}
|
|
else if (__glibc_unlikely (ax >= 0x43000000u))
|
|
{ /* x >= 128 */
|
|
if (ax >= asuint (INFINITY))
|
|
return x + x; /* +Inf or NaN */
|
|
/* exp2m1 (MAX_EXP) should not overflow when rounding towards zero
|
|
or towards -Inf. We round FLT_MAX + 2^103 which is in the middle
|
|
between FLT_MAX and 2^128 (the next number with unbounded range). */
|
|
float ret = math_narrow_eval (FLT_MAX + 0x1p103f);
|
|
if (x == FLT_MAX_EXP && ret == FLT_MAX)
|
|
return ret;
|
|
return __math_oflowf (0);
|
|
}
|
|
else if (__glibc_unlikely (ax < 0x3df95f1fu))
|
|
{ /* |x| < 8.44e-2/log(2) */
|
|
double z2 = z * z, r;
|
|
if (__glibc_unlikely (ax < 0x3d67a4ccu))
|
|
{ /* |x| < 3.92e-2/log(2) */
|
|
if (__glibc_unlikely (ax < 0x3caa2feeu))
|
|
{ /* |x| < 1.44e-2/log(2) */
|
|
if (__glibc_unlikely (ax < 0x3bac1405u))
|
|
{ /* |x| < 3.64e-3/log(2) */
|
|
if (__glibc_unlikely (ax < 0x3a358876u))
|
|
{ /* |x| < 4.8e-4/log(2) */
|
|
if (__glibc_unlikely (ax < 0x37d32ef6u))
|
|
{ /* |x| < 1.745e-5/log(2) */
|
|
if (__glibc_unlikely (ax < 0x331fdd82u))
|
|
{ /* |x| < 2.58e-8/log(2) */
|
|
if (__glibc_unlikely (ax < 0x2538aa3bu))
|
|
/* |x| < 1.60171e-16 */
|
|
r = 0x1.62e42fefa39efp-1;
|
|
else
|
|
r = 0x1.62e42fefa39fp-1
|
|
+ z * 0x1.ebfbdff82c58fp-3;
|
|
}
|
|
else
|
|
{
|
|
if (__glibc_unlikely (ux == 0xb3d85005u))
|
|
return -0x1.2bdf76p-24 - 0x1.8p-77;
|
|
if (__glibc_unlikely (ux == 0x3338428du))
|
|
return 0x1.fee08ap-26 + 0x1p-80;
|
|
static const double c[] =
|
|
{
|
|
0x1.62e42fefa39efp-1, 0x1.ebfbdff8548fdp-3,
|
|
0x1.c6b08d704a06dp-5
|
|
};
|
|
r = c[0] + z * (c[1] + z * c[2]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (__glibc_unlikely (ux == 0x388bca4fu))
|
|
return 0x1.839702p-15 - 0x1.8p-68;
|
|
static const double c[] =
|
|
{
|
|
0x1.62e42fefa39efp-1, 0x1.ebfbdff82c58fp-3,
|
|
0x1.c6b08dc82b347p-5, 0x1.3b2ab6fbad172p-7
|
|
};
|
|
r = (c[0] + z * c[1]) + z2 * (c[2] + z * c[3]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
static const double c[] =
|
|
{
|
|
0x1.62e42fefa39efp-1, 0x1.ebfbdff82c068p-3,
|
|
0x1.c6b08d704a6dcp-5, 0x1.3b2ac262c3eedp-7,
|
|
0x1.5d87fe7af779ap-10
|
|
};
|
|
r = (c[0] + z * c[1])
|
|
+ z2 * (c[2] + z * (c[3] + z * c[4]));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
static const double c[] =
|
|
{
|
|
0x1.62e42fefa39fp-1, 0x1.ebfbdff82c58dp-3,
|
|
0x1.c6b08d7011d13p-5, 0x1.3b2ab6fbd267dp-7,
|
|
0x1.5d88a81cea49ep-10, 0x1.430912ea9b963p-13
|
|
};
|
|
r = (c[0] + z * c[1])
|
|
+ z2 * ((c[2] + z * c[3]) + z2 * (c[4] + z * c[5]));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
static const double c[] =
|
|
{
|
|
0x1.62e42fefa39efp-1, 0x1.ebfbdff82c639p-3,
|
|
0x1.c6b08d7049f1cp-5, 0x1.3b2ab6f5243bdp-7,
|
|
0x1.5d87fe80a9e6cp-10, 0x1.430d0b9257fa8p-13,
|
|
0x1.ffcbfc4cf0952p-17
|
|
};
|
|
r = (c[0] + z * c[1])
|
|
+ z2 * ((c[2] + z * c[3])
|
|
+ z2 * (c[4] + z * (c[5] + z * c[6])));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
static const double c[] =
|
|
{
|
|
0x1.62e42fefa39efp-1, 0x1.ebfbdff82c591p-3,
|
|
0x1.c6b08d704cf6bp-5, 0x1.3b2ab6fba00cep-7,
|
|
0x1.5d87fdfdaadb4p-10, 0x1.4309137333066p-13,
|
|
0x1.ffe5e90daf7ddp-17, 0x1.62c0220eed731p-20
|
|
};
|
|
r = ((c[0] + z * c[1]) + z2 * (c[2] + z * c[3]))
|
|
+ (z2 * z2) * ((c[4] + z * c[5]) + z2 * (c[6] + z * c[7]));
|
|
}
|
|
r *= z;
|
|
return r;
|
|
}
|
|
else
|
|
{
|
|
static const double c[] =
|
|
{
|
|
0x1.62e42fefa398bp-5, 0x1.ebfbdff84555ap-11,
|
|
0x1.c6b08d4ad86d3p-17, 0x1.3b2ad1b1716a2p-23,
|
|
0x1.5d7472718ce9dp-30, 0x1.4a1d7f457ac56p-37
|
|
};
|
|
static const double tb[] =
|
|
{
|
|
0x1p+0, 0x1.0b5586cf9890fp+0, 0x1.172b83c7d517bp+0,
|
|
0x1.2387a6e756238p+0, 0x1.306fe0a31b715p+0, 0x1.3dea64c123422p+0,
|
|
0x1.4bfdad5362a27p+0, 0x1.5ab07dd485429p+0, 0x1.6a09e667f3bcdp+0,
|
|
0x1.7a11473eb0187p+0, 0x1.8ace5422aa0dap+0, 0x1.9c49182a3f09p+0,
|
|
0x1.ae89f995ad3adp+0, 0x1.c199bdd85529cp+0, 0x1.d5818dcfba487p+0,
|
|
0x1.ea4afa2a490dap+0
|
|
};
|
|
double a = 16.0 * z;
|
|
double ia = floor (a);
|
|
double h = a - ia;
|
|
double h2 = h * h;
|
|
int64_t i = ia, j = i & 0xf, e = i - j;
|
|
e >>= 4;
|
|
double s = tb[j];
|
|
s *= asdouble ((e + 0x3ffull) << 52);
|
|
double c0 = c[0] + h * c[1];
|
|
double c2 = c[2] + h * c[3];
|
|
double c4 = c[4] + h * c[5];
|
|
c0 += h2 * (c2 + h2 * c4);
|
|
double w = s * h;
|
|
return (s - 1.0) + w * c0;
|
|
}
|
|
}
|
|
#ifndef __exp2m1f
|
|
libm_alias_float (__exp2m1, exp2m1)
|
|
#endif
|