1
0
mirror of https://sourceware.org/git/glibc.git synced 2025-08-01 10:06:57 +03:00
Files
glibc/sysdeps/ieee754/flt-32/s_exp2m1f.c
Florian Weimer ba60be8735 math: Fix incorrect results of exp10m1f with some GCC versions
On GCC 11 (x86-64), the previous code produced test failures like
this one:

Failure: Test: exp10m1_towardzero (-0x1.1p+4)
Result:
 is:         -1.00000000e+00  -0x1.000000p+0
 should be:  -9.99999940e-01  -0x1.fffffep-1
 difference:  5.96046447e-08   0x1.000000p-24
 ulp       :  1.0000
 max.ulp   :  0.0000

Apply a similar fix to exp2m1f.

Co-authored-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Reviewed-by: Adhemerval Zanella  <adhemerval.zanella@linaro.org>
2024-11-06 16:09:05 +01:00

195 lines
6.1 KiB
C

/* Correctly-rounded base-2 exponent function biased by 1 for binary32 value.
Copyright (c) 2022-2024 Alexei Sibidanov.
The original version of this file was copied from the CORE-MATH
project (file src/binary32/exp2m1/exp2m1f.c, revision baf5f6b).
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <fenv.h>
#include <math.h>
#include "math_config.h"
#include <libm-alias-float.h>
#include <math-narrow-eval.h>
#include <float.h>
float
__exp2m1f (float x)
{
double z = x;
uint32_t ux = asuint (x);
uint32_t ax = ux & (~0u >> 1);
if (__glibc_unlikely (ux >= 0xc1c80000u))
{ /* x <= -25 */
if (ax > (0xffu << 23))
return x + x; /* nan */
return (ux == 0xff800000) ? -0x1p+0f : -0x1p+0f + 0x1p-26f;
}
else if (__glibc_unlikely (ax >= 0x43000000u))
{ /* x >= 128 */
if (ax >= asuint (INFINITY))
return x + x; /* +Inf or NaN */
/* exp2m1 (MAX_EXP) should not overflow when rounding towards zero
or towards -Inf. We round FLT_MAX + 2^103 which is in the middle
between FLT_MAX and 2^128 (the next number with unbounded range). */
float ret = math_narrow_eval (FLT_MAX + 0x1p103f);
if (x == FLT_MAX_EXP && ret == FLT_MAX)
return ret;
return __math_oflowf (0);
}
else if (__glibc_unlikely (ax < 0x3df95f1fu))
{ /* |x| < 8.44e-2/log(2) */
double z2 = z * z, r;
if (__glibc_unlikely (ax < 0x3d67a4ccu))
{ /* |x| < 3.92e-2/log(2) */
if (__glibc_unlikely (ax < 0x3caa2feeu))
{ /* |x| < 1.44e-2/log(2) */
if (__glibc_unlikely (ax < 0x3bac1405u))
{ /* |x| < 3.64e-3/log(2) */
if (__glibc_unlikely (ax < 0x3a358876u))
{ /* |x| < 4.8e-4/log(2) */
if (__glibc_unlikely (ax < 0x37d32ef6u))
{ /* |x| < 1.745e-5/log(2) */
if (__glibc_unlikely (ax < 0x331fdd82u))
{ /* |x| < 2.58e-8/log(2) */
if (__glibc_unlikely (ax < 0x2538aa3bu))
/* |x| < 1.60171e-16 */
r = 0x1.62e42fefa39efp-1;
else
r = 0x1.62e42fefa39fp-1
+ z * 0x1.ebfbdff82c58fp-3;
}
else
{
if (__glibc_unlikely (ux == 0xb3d85005u))
return -0x1.2bdf76p-24 - 0x1.8p-77;
if (__glibc_unlikely (ux == 0x3338428du))
return 0x1.fee08ap-26 + 0x1p-80;
static const double c[] =
{
0x1.62e42fefa39efp-1, 0x1.ebfbdff8548fdp-3,
0x1.c6b08d704a06dp-5
};
r = c[0] + z * (c[1] + z * c[2]);
}
}
else
{
if (__glibc_unlikely (ux == 0x388bca4fu))
return 0x1.839702p-15 - 0x1.8p-68;
static const double c[] =
{
0x1.62e42fefa39efp-1, 0x1.ebfbdff82c58fp-3,
0x1.c6b08dc82b347p-5, 0x1.3b2ab6fbad172p-7
};
r = (c[0] + z * c[1]) + z2 * (c[2] + z * c[3]);
}
}
else
{
static const double c[] =
{
0x1.62e42fefa39efp-1, 0x1.ebfbdff82c068p-3,
0x1.c6b08d704a6dcp-5, 0x1.3b2ac262c3eedp-7,
0x1.5d87fe7af779ap-10
};
r = (c[0] + z * c[1])
+ z2 * (c[2] + z * (c[3] + z * c[4]));
}
}
else
{
static const double c[] =
{
0x1.62e42fefa39fp-1, 0x1.ebfbdff82c58dp-3,
0x1.c6b08d7011d13p-5, 0x1.3b2ab6fbd267dp-7,
0x1.5d88a81cea49ep-10, 0x1.430912ea9b963p-13
};
r = (c[0] + z * c[1])
+ z2 * ((c[2] + z * c[3]) + z2 * (c[4] + z * c[5]));
}
}
else
{
static const double c[] =
{
0x1.62e42fefa39efp-1, 0x1.ebfbdff82c639p-3,
0x1.c6b08d7049f1cp-5, 0x1.3b2ab6f5243bdp-7,
0x1.5d87fe80a9e6cp-10, 0x1.430d0b9257fa8p-13,
0x1.ffcbfc4cf0952p-17
};
r = (c[0] + z * c[1])
+ z2 * ((c[2] + z * c[3])
+ z2 * (c[4] + z * (c[5] + z * c[6])));
}
}
else
{
static const double c[] =
{
0x1.62e42fefa39efp-1, 0x1.ebfbdff82c591p-3,
0x1.c6b08d704cf6bp-5, 0x1.3b2ab6fba00cep-7,
0x1.5d87fdfdaadb4p-10, 0x1.4309137333066p-13,
0x1.ffe5e90daf7ddp-17, 0x1.62c0220eed731p-20
};
r = ((c[0] + z * c[1]) + z2 * (c[2] + z * c[3]))
+ (z2 * z2) * ((c[4] + z * c[5]) + z2 * (c[6] + z * c[7]));
}
r *= z;
return r;
}
else
{
static const double c[] =
{
0x1.62e42fefa398bp-5, 0x1.ebfbdff84555ap-11,
0x1.c6b08d4ad86d3p-17, 0x1.3b2ad1b1716a2p-23,
0x1.5d7472718ce9dp-30, 0x1.4a1d7f457ac56p-37
};
static const double tb[] =
{
0x1p+0, 0x1.0b5586cf9890fp+0, 0x1.172b83c7d517bp+0,
0x1.2387a6e756238p+0, 0x1.306fe0a31b715p+0, 0x1.3dea64c123422p+0,
0x1.4bfdad5362a27p+0, 0x1.5ab07dd485429p+0, 0x1.6a09e667f3bcdp+0,
0x1.7a11473eb0187p+0, 0x1.8ace5422aa0dap+0, 0x1.9c49182a3f09p+0,
0x1.ae89f995ad3adp+0, 0x1.c199bdd85529cp+0, 0x1.d5818dcfba487p+0,
0x1.ea4afa2a490dap+0
};
double a = 16.0 * z;
double ia = floor (a);
double h = a - ia;
double h2 = h * h;
int64_t i = ia, j = i & 0xf, e = i - j;
e >>= 4;
double s = tb[j];
s *= asdouble ((e + 0x3ffull) << 52);
double c0 = c[0] + h * c[1];
double c2 = c[2] + h * c[3];
double c4 = c[4] + h * c[5];
c0 += h2 * (c2 + h2 * c4);
double w = s * h;
return (s - 1.0) + w * c0;
}
}
#ifndef __exp2m1f
libm_alias_float (__exp2m1, exp2m1)
#endif