mirror of
https://sourceware.org/git/glibc.git
synced 2025-04-19 01:04:13 +03:00
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the pown functions, which are like pow but with an integer exponent. That exponent has type long long int in C23; it was intmax_t in TS 18661-4, and as with other interfaces changed after their initial appearance in the TS, I don't think we need to support the original version of the interface. The test inputs are based on the subset of test inputs for pow that use integer exponents that fit in long long. As the first such template implementation that saves and restores the rounding mode internally (to avoid possible issues with directed rounding and intermediate overflows or underflows in the wrong rounding mode), support also needed to be added for using SET_RESTORE_ROUND* in such template function implementations. This required math-type-macros-float128.h to include <fenv_private.h>, so it can tell whether SET_RESTORE_ROUNDF128 is defined. In turn, the include order with <fenv_private.h> included before <math_private.h> broke loongarch builds, showing up that sysdeps/loongarch/math_private.h is really a fenv_private.h file (maybe implemented internally before the consistent split of those headers in 2018?) and needed to be renamed to fenv_private.h to avoid errors with duplicate macro definitions if <math_private.h> is included after <fenv_private.h>. The underlying implementation uses __ieee754_pow functions (called more than once in some cases, where the exponent does not fit in the floating type). I expect a custom implementation for a given format, that only handles integer exponents but handles larger exponents directly, could be faster and more accurate in some cases. I encourage searching for worst cases for ulps error for these implementations (necessarily non-exhaustively, given the size of the input space). Tested for x86_64 and x86, and with build-many-glibcs.py.
1376 lines
20 KiB
C
1376 lines
20 KiB
C
/* Test compilation of tgmath macros.
|
|
Copyright (C) 2001-2025 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef HAVE_MAIN
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <tgmath.h>
|
|
|
|
//#define DEBUG
|
|
|
|
static void compile_test (void);
|
|
static void compile_testf (void);
|
|
#if LDBL_MANT_DIG > DBL_MANT_DIG
|
|
static void compile_testl (void);
|
|
#endif
|
|
|
|
float fx;
|
|
double dx;
|
|
long double lx;
|
|
const float fy = 1.25;
|
|
const double dy = 1.25;
|
|
const long double ly = 1.25;
|
|
complex float fz;
|
|
complex double dz;
|
|
complex long double lz;
|
|
|
|
volatile int count_double;
|
|
volatile int count_float;
|
|
volatile int count_ldouble;
|
|
volatile int count_cdouble;
|
|
volatile int count_cfloat;
|
|
volatile int count_cldouble;
|
|
|
|
#define NCALLS 190
|
|
#define NCALLS_INT 4
|
|
#define NCCALLS 47
|
|
|
|
static int
|
|
do_test (void)
|
|
{
|
|
int result = 0;
|
|
|
|
count_float = count_double = count_ldouble = 0;
|
|
count_cfloat = count_cdouble = count_cldouble = 0;
|
|
compile_test ();
|
|
if (count_float != 0 || count_cfloat != 0)
|
|
{
|
|
puts ("float function called for double test");
|
|
result = 1;
|
|
}
|
|
if (count_ldouble != 0 || count_cldouble != 0)
|
|
{
|
|
puts ("long double function called for double test");
|
|
result = 1;
|
|
}
|
|
if (count_double < NCALLS + NCALLS_INT)
|
|
{
|
|
printf ("double functions not called often enough (%d)\n",
|
|
count_double);
|
|
result = 1;
|
|
}
|
|
else if (count_double > NCALLS + NCALLS_INT)
|
|
{
|
|
printf ("double functions called too often (%d)\n",
|
|
count_double);
|
|
result = 1;
|
|
}
|
|
if (count_cdouble < NCCALLS)
|
|
{
|
|
printf ("double complex functions not called often enough (%d)\n",
|
|
count_cdouble);
|
|
result = 1;
|
|
}
|
|
else if (count_cdouble > NCCALLS)
|
|
{
|
|
printf ("double complex functions called too often (%d)\n",
|
|
count_cdouble);
|
|
result = 1;
|
|
}
|
|
|
|
count_float = count_double = count_ldouble = 0;
|
|
count_cfloat = count_cdouble = count_cldouble = 0;
|
|
compile_testf ();
|
|
if (count_double != 0 || count_cdouble != 0)
|
|
{
|
|
puts ("double function called for float test");
|
|
result = 1;
|
|
}
|
|
if (count_ldouble != 0 || count_cldouble != 0)
|
|
{
|
|
puts ("long double function called for float test");
|
|
result = 1;
|
|
}
|
|
if (count_float < NCALLS)
|
|
{
|
|
printf ("float functions not called often enough (%d)\n", count_float);
|
|
result = 1;
|
|
}
|
|
else if (count_float > NCALLS)
|
|
{
|
|
printf ("float functions called too often (%d)\n",
|
|
count_double);
|
|
result = 1;
|
|
}
|
|
if (count_cfloat < NCCALLS)
|
|
{
|
|
printf ("float complex functions not called often enough (%d)\n",
|
|
count_cfloat);
|
|
result = 1;
|
|
}
|
|
else if (count_cfloat > NCCALLS)
|
|
{
|
|
printf ("float complex functions called too often (%d)\n",
|
|
count_cfloat);
|
|
result = 1;
|
|
}
|
|
|
|
#if LDBL_MANT_DIG > DBL_MANT_DIG
|
|
count_float = count_double = count_ldouble = 0;
|
|
count_cfloat = count_cdouble = count_cldouble = 0;
|
|
compile_testl ();
|
|
if (count_float != 0 || count_cfloat != 0)
|
|
{
|
|
puts ("float function called for long double test");
|
|
result = 1;
|
|
}
|
|
if (count_double != 0 || count_cdouble != 0)
|
|
{
|
|
puts ("double function called for long double test");
|
|
result = 1;
|
|
}
|
|
if (count_ldouble < NCALLS)
|
|
{
|
|
printf ("long double functions not called often enough (%d)\n",
|
|
count_ldouble);
|
|
result = 1;
|
|
}
|
|
else if (count_ldouble > NCALLS)
|
|
{
|
|
printf ("long double functions called too often (%d)\n",
|
|
count_double);
|
|
result = 1;
|
|
}
|
|
if (count_cldouble < NCCALLS)
|
|
{
|
|
printf ("long double complex functions not called often enough (%d)\n",
|
|
count_cldouble);
|
|
result = 1;
|
|
}
|
|
else if (count_cldouble > NCCALLS)
|
|
{
|
|
printf ("long double complex functions called too often (%d)\n",
|
|
count_cldouble);
|
|
result = 1;
|
|
}
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Now generate the three functions. */
|
|
#define HAVE_MAIN
|
|
|
|
#define F(name) name
|
|
#define TYPE double
|
|
#define TEST_INT 1
|
|
#define x dx
|
|
#define y dy
|
|
#define z dz
|
|
#define count count_double
|
|
#define ccount count_cdouble
|
|
#include "test-tgmath.c"
|
|
|
|
#define F(name) name##f
|
|
#define TYPE float
|
|
#define x fx
|
|
#define y fy
|
|
#define z fz
|
|
#define count count_float
|
|
#define ccount count_cfloat
|
|
#include "test-tgmath.c"
|
|
|
|
#if LDBL_MANT_DIG > DBL_MANT_DIG
|
|
#define F(name) name##l
|
|
#define TYPE long double
|
|
#define x lx
|
|
#define y ly
|
|
#define z lz
|
|
#define count count_ldouble
|
|
#define ccount count_cldouble
|
|
#include "test-tgmath.c"
|
|
#endif
|
|
|
|
#define TEST_FUNCTION do_test ()
|
|
#include "../test-skeleton.c"
|
|
|
|
#else
|
|
|
|
#ifdef DEBUG
|
|
#define P() puts (__FUNCTION__)
|
|
#else
|
|
#define P()
|
|
#endif
|
|
|
|
static void
|
|
F(compile_test) (void)
|
|
{
|
|
TYPE a, b, c = 1.0;
|
|
complex TYPE d;
|
|
int i = 2;
|
|
int saved_count;
|
|
long int j;
|
|
long long int k = 2;
|
|
intmax_t m;
|
|
uintmax_t um;
|
|
|
|
a = cos (cos (x));
|
|
a = cospi (cospi (x));
|
|
b = acospi (acospi (a));
|
|
b = acos (acos (a));
|
|
a = sin (sin (x));
|
|
b = sinpi (sinpi (x));
|
|
b = asinpi (asinpi (a));
|
|
b = asin (asin (a));
|
|
a = tan (tan (x));
|
|
b = tanpi (tanpi (x));
|
|
b = atanpi (atanpi (a));
|
|
b = atan (atan (a));
|
|
c = atan2 (atan2 (a, c), atan2 (b, x));
|
|
b = atan2pi (atan2pi (a, c), atan2pi (b, x));
|
|
a = cosh (cosh (x));
|
|
b = acosh (acosh (a));
|
|
a = sinh (sinh (x));
|
|
b = asinh (asinh (a));
|
|
a = tanh (tanh (x));
|
|
b = atanh (atanh (a));
|
|
a = exp (exp (x));
|
|
b = log (log (a));
|
|
a = log10 (log10 (x));
|
|
b = ldexp (ldexp (a, 1), 5);
|
|
a = frexp (frexp (x, &i), &i);
|
|
b = expm1 (expm1 (a));
|
|
a = exp2m1 (exp2m1 (b));
|
|
b = exp10m1 (exp10m1 (a));
|
|
a = log1p (log1p (x));
|
|
b = logb (logb (a));
|
|
a = exp2 (exp2 (x));
|
|
a = exp10 (exp10 (x));
|
|
b = log2 (log2 (a));
|
|
a = log2p1 (log2p1 (x));
|
|
a = log10p1 (log10p1 (x));
|
|
a = logp1 (logp1 (x));
|
|
a = pow (pow (x, a), pow (c, b));
|
|
b = pown (pown (x, k), k);
|
|
a = powr (powr (x, a), powr (c, b));
|
|
b = sqrt (sqrt (a));
|
|
a = rsqrt (rsqrt (b));
|
|
a = hypot (hypot (x, b), hypot (c, a));
|
|
b = cbrt (cbrt (a));
|
|
a = ceil (ceil (x));
|
|
b = fabs (fabs (a));
|
|
a = floor (floor (x));
|
|
b = fmod (fmod (a, b), fmod (c, x));
|
|
a = nearbyint (nearbyint (x));
|
|
b = round (round (a));
|
|
c = roundeven (roundeven (a));
|
|
a = trunc (trunc (x));
|
|
b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i);
|
|
j = lrint (x) + lround (a);
|
|
k = llrint (b) + llround (c);
|
|
m = fromfp (a, FP_INT_UPWARD, 2) + fromfpx (b, FP_INT_DOWNWARD, 3);
|
|
um = ufromfp (c, FP_INT_TONEAREST, 4) + ufromfpx (a, FP_INT_TOWARDZERO, 5);
|
|
a = erf (erf (x));
|
|
b = erfc (erfc (a));
|
|
a = tgamma (tgamma (x));
|
|
b = lgamma (lgamma (a));
|
|
a = rint (rint (x));
|
|
b = nextafter (nextafter (a, b), nextafter (c, x));
|
|
a = nextdown (nextdown (a));
|
|
b = nexttoward (nexttoward (x, a), c);
|
|
a = nextup (nextup (a));
|
|
b = remainder (remainder (a, b), remainder (c, x));
|
|
a = scalb (scalb (x, a), (TYPE) (6));
|
|
k = scalbn (a, 7) + scalbln (c, 10l);
|
|
i = ilogb (x);
|
|
j = llogb (x);
|
|
a = fdim (fdim (x, a), fdim (c, b));
|
|
b = fmax (fmax (a, x), fmax (c, b));
|
|
a = fmin (fmin (x, a), fmin (c, b));
|
|
b = fmaxmag (fmaxmag (a, x), fmaxmag (c, b));
|
|
a = fminmag (fminmag (x, a), fminmag (c, b));
|
|
b = fmaximum (fmaximum (a, x), fmaximum (c, b));
|
|
a = fminimum (fminimum (x, a), fminimum (c, b));
|
|
b = fmaximum_num (fmaximum_num (a, x), fmaximum_num (c, b));
|
|
a = fminimum_num (fminimum_num (x, a), fminimum_num (c, b));
|
|
b = fmaximum_mag (fmaximum_mag (a, x), fmaximum_mag (c, b));
|
|
a = fminimum_mag (fminimum_mag (x, a), fminimum_mag (c, b));
|
|
b = fmaximum_mag_num (fmaximum_mag_num (a, x), fmaximum_mag_num (c, b));
|
|
a = fminimum_mag_num (fminimum_mag_num (x, a), fminimum_mag_num (c, b));
|
|
b = fma (sin (a), sin (x), sin (c));
|
|
|
|
#ifdef TEST_INT
|
|
a = atan2 (i, b);
|
|
b = remquo (i, a, &i);
|
|
c = fma (i, b, i);
|
|
a = pow (i, c);
|
|
#endif
|
|
x = a + b + c + i + j + k + m + um;
|
|
|
|
saved_count = count;
|
|
if (ccount != 0)
|
|
ccount = -10000;
|
|
|
|
d = cos (cos (z));
|
|
z = acos (acos (d));
|
|
d = sin (sin (z));
|
|
z = asin (asin (d));
|
|
d = tan (tan (z));
|
|
z = atan (atan (d));
|
|
d = cosh (cosh (z));
|
|
z = acosh (acosh (d));
|
|
d = sinh (sinh (z));
|
|
z = asinh (asinh (d));
|
|
d = tanh (tanh (z));
|
|
z = atanh (atanh (d));
|
|
d = exp (exp (z));
|
|
z = log (log (d));
|
|
d = sqrt (sqrt (z));
|
|
z = conj (conj (d));
|
|
d = fabs (conj (a));
|
|
z = pow (pow (a, d), pow (b, z));
|
|
d = cproj (cproj (z));
|
|
z += fabs (cproj (a));
|
|
a = carg (carg (z));
|
|
b = creal (creal (d));
|
|
c = cimag (cimag (z));
|
|
x += a + b + c + i + j + k;
|
|
z += d;
|
|
|
|
if (saved_count != count)
|
|
count = -10000;
|
|
|
|
if (0)
|
|
{
|
|
a = cos (y);
|
|
a = cospi (y);
|
|
a = acos (y);
|
|
a = acospi (y);
|
|
a = sin (y);
|
|
a = sinpi (y);
|
|
a = asin (y);
|
|
a = asinpi (y);
|
|
a = tan (y);
|
|
a = tanpi (y);
|
|
a = atan (y);
|
|
a = atanpi (y);
|
|
a = atan2 (y, y);
|
|
a = atan2pi (y, y);
|
|
a = cosh (y);
|
|
a = acosh (y);
|
|
a = sinh (y);
|
|
a = asinh (y);
|
|
a = tanh (y);
|
|
a = atanh (y);
|
|
a = exp (y);
|
|
a = log (y);
|
|
a = log10 (y);
|
|
a = ldexp (y, 5);
|
|
a = frexp (y, &i);
|
|
a = expm1 (y);
|
|
a = exp2m1 (y);
|
|
a = exp10m1 (y);
|
|
a = log1p (y);
|
|
a = logb (y);
|
|
a = exp2 (y);
|
|
a = exp10 (y);
|
|
a = log2 (y);
|
|
a = log2p1 (y);
|
|
a = log10p1 (y);
|
|
a = logp1 (y);
|
|
a = pow (y, y);
|
|
a = pown (y, 12345);
|
|
a = powr (y, y);
|
|
a = sqrt (y);
|
|
a = rsqrt (y);
|
|
a = hypot (y, y);
|
|
a = cbrt (y);
|
|
a = ceil (y);
|
|
a = fabs (y);
|
|
a = floor (y);
|
|
a = fmod (y, y);
|
|
a = nearbyint (y);
|
|
a = round (y);
|
|
a = roundeven (y);
|
|
a = trunc (y);
|
|
a = remquo (y, y, &i);
|
|
j = lrint (y) + lround (y);
|
|
k = llrint (y) + llround (y);
|
|
m = fromfp (y, FP_INT_UPWARD, 6) + fromfpx (y, FP_INT_DOWNWARD, 7);
|
|
um = (ufromfp (y, FP_INT_TONEAREST, 8)
|
|
+ ufromfpx (y, FP_INT_TOWARDZERO, 9));
|
|
a = erf (y);
|
|
a = erfc (y);
|
|
a = tgamma (y);
|
|
a = lgamma (y);
|
|
a = rint (y);
|
|
a = nextafter (y, y);
|
|
a = nexttoward (y, y);
|
|
a = remainder (y, y);
|
|
a = scalb (y, (const TYPE) (6));
|
|
k = scalbn (y, 7) + scalbln (y, 10l);
|
|
i = ilogb (y);
|
|
j = llogb (y);
|
|
a = fdim (y, y);
|
|
a = fmax (y, y);
|
|
a = fmin (y, y);
|
|
a = fmaxmag (y, y);
|
|
a = fminmag (y, y);
|
|
a = fmaximum (y, y);
|
|
a = fminimum (y, y);
|
|
a = fmaximum_num (y, y);
|
|
a = fminimum_num (y, y);
|
|
a = fmaximum_mag (y, y);
|
|
a = fminimum_mag (y, y);
|
|
a = fmaximum_mag_num (y, y);
|
|
a = fminimum_mag_num (y, y);
|
|
a = fma (y, y, y);
|
|
|
|
#ifdef TEST_INT
|
|
a = atan2 (i, y);
|
|
a = remquo (i, y, &i);
|
|
a = fma (i, y, i);
|
|
a = pow (i, y);
|
|
#endif
|
|
|
|
d = cos ((const complex TYPE) z);
|
|
d = acos ((const complex TYPE) z);
|
|
d = sin ((const complex TYPE) z);
|
|
d = asin ((const complex TYPE) z);
|
|
d = tan ((const complex TYPE) z);
|
|
d = atan ((const complex TYPE) z);
|
|
d = cosh ((const complex TYPE) z);
|
|
d = acosh ((const complex TYPE) z);
|
|
d = sinh ((const complex TYPE) z);
|
|
d = asinh ((const complex TYPE) z);
|
|
d = tanh ((const complex TYPE) z);
|
|
d = atanh ((const complex TYPE) z);
|
|
d = exp ((const complex TYPE) z);
|
|
d = log ((const complex TYPE) z);
|
|
d = sqrt ((const complex TYPE) z);
|
|
d = pow ((const complex TYPE) z, (const complex TYPE) z);
|
|
d = fabs ((const complex TYPE) z);
|
|
d = carg ((const complex TYPE) z);
|
|
d = creal ((const complex TYPE) z);
|
|
d = cimag ((const complex TYPE) z);
|
|
d = conj ((const complex TYPE) z);
|
|
d = cproj ((const complex TYPE) z);
|
|
}
|
|
}
|
|
#undef x
|
|
#undef y
|
|
#undef z
|
|
|
|
|
|
TYPE
|
|
(F(cos)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(cospi)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(acos)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(acospi)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(sin)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(sinpi)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(asin)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(asinpi)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(tan)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(tanpi)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(atan)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(atan2)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(atanpi)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(atan2pi)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(cosh)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(acosh)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(sinh)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(asinh)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(tanh)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(atanh)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(exp)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(log)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(log10)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(ldexp)) (TYPE x, int y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(frexp)) (TYPE x, int *y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + *y;
|
|
}
|
|
|
|
TYPE
|
|
(F(expm1)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(exp2m1)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(exp10m1)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(log1p)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(logb)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(exp10)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(exp2)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(log2)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(log2p1)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(log10p1)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(logp1)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(pow)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(pown)) (TYPE x, long long int y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(powr)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(sqrt)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(rsqrt)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(hypot)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(cbrt)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(ceil)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(fabs)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(floor)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmod)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(nearbyint)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(round)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(roundeven)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(trunc)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(remquo)) (TYPE x, TYPE y, int *i)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y + *i;
|
|
}
|
|
|
|
long int
|
|
(F(lrint)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
long int
|
|
(F(lround)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
long long int
|
|
(F(llrint)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
long long int
|
|
(F(llround)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
intmax_t
|
|
(F(fromfp)) (TYPE x, int round, unsigned int width)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
intmax_t
|
|
(F(fromfpx)) (TYPE x, int round, unsigned int width)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
uintmax_t
|
|
(F(ufromfp)) (TYPE x, int round, unsigned int width)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
uintmax_t
|
|
(F(ufromfpx)) (TYPE x, int round, unsigned int width)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(erf)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(erfc)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(tgamma)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(lgamma)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(rint)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(nextafter)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(nextdown)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(nexttoward)) (TYPE x, long double y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(nextup)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(remainder)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(scalb)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(scalbn)) (TYPE x, int y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(scalbln)) (TYPE x, long int y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
int
|
|
(F(ilogb)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
long int
|
|
(F(llogb)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(fdim)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmin)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmax)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fminmag)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmaxmag)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fminimum)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmaximum)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fminimum_num)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmaximum_num)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fminimum_mag)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmaximum_mag)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fminimum_mag_num)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmaximum_mag_num)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fma)) (TYPE x, TYPE y, TYPE z)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y + z;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(cacos)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(casin)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(catan)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(ccos)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(csin)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(ctan)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(cacosh)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(casinh)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(catanh)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(ccosh)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(csinh)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(ctanh)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(cexp)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(clog)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(csqrt)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(cpow)) (complex TYPE x, complex TYPE y)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(cabs)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(carg)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(creal)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return __real__ x;
|
|
}
|
|
|
|
TYPE
|
|
(F(cimag)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return __imag__ x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(conj)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(cproj)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
#undef F
|
|
#undef TYPE
|
|
#undef count
|
|
#undef ccount
|
|
#undef TEST_INT
|
|
#endif
|