1
0
mirror of https://sourceware.org/git/glibc.git synced 2025-04-19 01:04:13 +03:00
glibc/math/test-tgmath.c
Joseph Myers 75ad83f564 Implement C23 pown
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the pown functions, which are like pow but with an
integer exponent.  That exponent has type long long int in C23; it was
intmax_t in TS 18661-4, and as with other interfaces changed after
their initial appearance in the TS, I don't think we need to support
the original version of the interface.  The test inputs are based on
the subset of test inputs for pow that use integer exponents that fit
in long long.

As the first such template implementation that saves and restores the
rounding mode internally (to avoid possible issues with directed
rounding and intermediate overflows or underflows in the wrong
rounding mode), support also needed to be added for using
SET_RESTORE_ROUND* in such template function implementations.  This
required math-type-macros-float128.h to include <fenv_private.h>, so
it can tell whether SET_RESTORE_ROUNDF128 is defined.  In turn, the
include order with <fenv_private.h> included before <math_private.h>
broke loongarch builds, showing up that
sysdeps/loongarch/math_private.h is really a fenv_private.h file
(maybe implemented internally before the consistent split of those
headers in 2018?) and needed to be renamed to fenv_private.h to avoid
errors with duplicate macro definitions if <math_private.h> is
included after <fenv_private.h>.

The underlying implementation uses __ieee754_pow functions (called
more than once in some cases, where the exponent does not fit in the
floating type).  I expect a custom implementation for a given format,
that only handles integer exponents but handles larger exponents
directly, could be faster and more accurate in some cases.

I encourage searching for worst cases for ulps error for these
implementations (necessarily non-exhaustively, given the size of the
input space).

Tested for x86_64 and x86, and with build-many-glibcs.py.
2025-03-27 10:44:44 +00:00

1376 lines
20 KiB
C

/* Test compilation of tgmath macros.
Copyright (C) 2001-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef HAVE_MAIN
#include <float.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <tgmath.h>
//#define DEBUG
static void compile_test (void);
static void compile_testf (void);
#if LDBL_MANT_DIG > DBL_MANT_DIG
static void compile_testl (void);
#endif
float fx;
double dx;
long double lx;
const float fy = 1.25;
const double dy = 1.25;
const long double ly = 1.25;
complex float fz;
complex double dz;
complex long double lz;
volatile int count_double;
volatile int count_float;
volatile int count_ldouble;
volatile int count_cdouble;
volatile int count_cfloat;
volatile int count_cldouble;
#define NCALLS 190
#define NCALLS_INT 4
#define NCCALLS 47
static int
do_test (void)
{
int result = 0;
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_test ();
if (count_float != 0 || count_cfloat != 0)
{
puts ("float function called for double test");
result = 1;
}
if (count_ldouble != 0 || count_cldouble != 0)
{
puts ("long double function called for double test");
result = 1;
}
if (count_double < NCALLS + NCALLS_INT)
{
printf ("double functions not called often enough (%d)\n",
count_double);
result = 1;
}
else if (count_double > NCALLS + NCALLS_INT)
{
printf ("double functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cdouble < NCCALLS)
{
printf ("double complex functions not called often enough (%d)\n",
count_cdouble);
result = 1;
}
else if (count_cdouble > NCCALLS)
{
printf ("double complex functions called too often (%d)\n",
count_cdouble);
result = 1;
}
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_testf ();
if (count_double != 0 || count_cdouble != 0)
{
puts ("double function called for float test");
result = 1;
}
if (count_ldouble != 0 || count_cldouble != 0)
{
puts ("long double function called for float test");
result = 1;
}
if (count_float < NCALLS)
{
printf ("float functions not called often enough (%d)\n", count_float);
result = 1;
}
else if (count_float > NCALLS)
{
printf ("float functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cfloat < NCCALLS)
{
printf ("float complex functions not called often enough (%d)\n",
count_cfloat);
result = 1;
}
else if (count_cfloat > NCCALLS)
{
printf ("float complex functions called too often (%d)\n",
count_cfloat);
result = 1;
}
#if LDBL_MANT_DIG > DBL_MANT_DIG
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_testl ();
if (count_float != 0 || count_cfloat != 0)
{
puts ("float function called for long double test");
result = 1;
}
if (count_double != 0 || count_cdouble != 0)
{
puts ("double function called for long double test");
result = 1;
}
if (count_ldouble < NCALLS)
{
printf ("long double functions not called often enough (%d)\n",
count_ldouble);
result = 1;
}
else if (count_ldouble > NCALLS)
{
printf ("long double functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cldouble < NCCALLS)
{
printf ("long double complex functions not called often enough (%d)\n",
count_cldouble);
result = 1;
}
else if (count_cldouble > NCCALLS)
{
printf ("long double complex functions called too often (%d)\n",
count_cldouble);
result = 1;
}
#endif
return result;
}
/* Now generate the three functions. */
#define HAVE_MAIN
#define F(name) name
#define TYPE double
#define TEST_INT 1
#define x dx
#define y dy
#define z dz
#define count count_double
#define ccount count_cdouble
#include "test-tgmath.c"
#define F(name) name##f
#define TYPE float
#define x fx
#define y fy
#define z fz
#define count count_float
#define ccount count_cfloat
#include "test-tgmath.c"
#if LDBL_MANT_DIG > DBL_MANT_DIG
#define F(name) name##l
#define TYPE long double
#define x lx
#define y ly
#define z lz
#define count count_ldouble
#define ccount count_cldouble
#include "test-tgmath.c"
#endif
#define TEST_FUNCTION do_test ()
#include "../test-skeleton.c"
#else
#ifdef DEBUG
#define P() puts (__FUNCTION__)
#else
#define P()
#endif
static void
F(compile_test) (void)
{
TYPE a, b, c = 1.0;
complex TYPE d;
int i = 2;
int saved_count;
long int j;
long long int k = 2;
intmax_t m;
uintmax_t um;
a = cos (cos (x));
a = cospi (cospi (x));
b = acospi (acospi (a));
b = acos (acos (a));
a = sin (sin (x));
b = sinpi (sinpi (x));
b = asinpi (asinpi (a));
b = asin (asin (a));
a = tan (tan (x));
b = tanpi (tanpi (x));
b = atanpi (atanpi (a));
b = atan (atan (a));
c = atan2 (atan2 (a, c), atan2 (b, x));
b = atan2pi (atan2pi (a, c), atan2pi (b, x));
a = cosh (cosh (x));
b = acosh (acosh (a));
a = sinh (sinh (x));
b = asinh (asinh (a));
a = tanh (tanh (x));
b = atanh (atanh (a));
a = exp (exp (x));
b = log (log (a));
a = log10 (log10 (x));
b = ldexp (ldexp (a, 1), 5);
a = frexp (frexp (x, &i), &i);
b = expm1 (expm1 (a));
a = exp2m1 (exp2m1 (b));
b = exp10m1 (exp10m1 (a));
a = log1p (log1p (x));
b = logb (logb (a));
a = exp2 (exp2 (x));
a = exp10 (exp10 (x));
b = log2 (log2 (a));
a = log2p1 (log2p1 (x));
a = log10p1 (log10p1 (x));
a = logp1 (logp1 (x));
a = pow (pow (x, a), pow (c, b));
b = pown (pown (x, k), k);
a = powr (powr (x, a), powr (c, b));
b = sqrt (sqrt (a));
a = rsqrt (rsqrt (b));
a = hypot (hypot (x, b), hypot (c, a));
b = cbrt (cbrt (a));
a = ceil (ceil (x));
b = fabs (fabs (a));
a = floor (floor (x));
b = fmod (fmod (a, b), fmod (c, x));
a = nearbyint (nearbyint (x));
b = round (round (a));
c = roundeven (roundeven (a));
a = trunc (trunc (x));
b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i);
j = lrint (x) + lround (a);
k = llrint (b) + llround (c);
m = fromfp (a, FP_INT_UPWARD, 2) + fromfpx (b, FP_INT_DOWNWARD, 3);
um = ufromfp (c, FP_INT_TONEAREST, 4) + ufromfpx (a, FP_INT_TOWARDZERO, 5);
a = erf (erf (x));
b = erfc (erfc (a));
a = tgamma (tgamma (x));
b = lgamma (lgamma (a));
a = rint (rint (x));
b = nextafter (nextafter (a, b), nextafter (c, x));
a = nextdown (nextdown (a));
b = nexttoward (nexttoward (x, a), c);
a = nextup (nextup (a));
b = remainder (remainder (a, b), remainder (c, x));
a = scalb (scalb (x, a), (TYPE) (6));
k = scalbn (a, 7) + scalbln (c, 10l);
i = ilogb (x);
j = llogb (x);
a = fdim (fdim (x, a), fdim (c, b));
b = fmax (fmax (a, x), fmax (c, b));
a = fmin (fmin (x, a), fmin (c, b));
b = fmaxmag (fmaxmag (a, x), fmaxmag (c, b));
a = fminmag (fminmag (x, a), fminmag (c, b));
b = fmaximum (fmaximum (a, x), fmaximum (c, b));
a = fminimum (fminimum (x, a), fminimum (c, b));
b = fmaximum_num (fmaximum_num (a, x), fmaximum_num (c, b));
a = fminimum_num (fminimum_num (x, a), fminimum_num (c, b));
b = fmaximum_mag (fmaximum_mag (a, x), fmaximum_mag (c, b));
a = fminimum_mag (fminimum_mag (x, a), fminimum_mag (c, b));
b = fmaximum_mag_num (fmaximum_mag_num (a, x), fmaximum_mag_num (c, b));
a = fminimum_mag_num (fminimum_mag_num (x, a), fminimum_mag_num (c, b));
b = fma (sin (a), sin (x), sin (c));
#ifdef TEST_INT
a = atan2 (i, b);
b = remquo (i, a, &i);
c = fma (i, b, i);
a = pow (i, c);
#endif
x = a + b + c + i + j + k + m + um;
saved_count = count;
if (ccount != 0)
ccount = -10000;
d = cos (cos (z));
z = acos (acos (d));
d = sin (sin (z));
z = asin (asin (d));
d = tan (tan (z));
z = atan (atan (d));
d = cosh (cosh (z));
z = acosh (acosh (d));
d = sinh (sinh (z));
z = asinh (asinh (d));
d = tanh (tanh (z));
z = atanh (atanh (d));
d = exp (exp (z));
z = log (log (d));
d = sqrt (sqrt (z));
z = conj (conj (d));
d = fabs (conj (a));
z = pow (pow (a, d), pow (b, z));
d = cproj (cproj (z));
z += fabs (cproj (a));
a = carg (carg (z));
b = creal (creal (d));
c = cimag (cimag (z));
x += a + b + c + i + j + k;
z += d;
if (saved_count != count)
count = -10000;
if (0)
{
a = cos (y);
a = cospi (y);
a = acos (y);
a = acospi (y);
a = sin (y);
a = sinpi (y);
a = asin (y);
a = asinpi (y);
a = tan (y);
a = tanpi (y);
a = atan (y);
a = atanpi (y);
a = atan2 (y, y);
a = atan2pi (y, y);
a = cosh (y);
a = acosh (y);
a = sinh (y);
a = asinh (y);
a = tanh (y);
a = atanh (y);
a = exp (y);
a = log (y);
a = log10 (y);
a = ldexp (y, 5);
a = frexp (y, &i);
a = expm1 (y);
a = exp2m1 (y);
a = exp10m1 (y);
a = log1p (y);
a = logb (y);
a = exp2 (y);
a = exp10 (y);
a = log2 (y);
a = log2p1 (y);
a = log10p1 (y);
a = logp1 (y);
a = pow (y, y);
a = pown (y, 12345);
a = powr (y, y);
a = sqrt (y);
a = rsqrt (y);
a = hypot (y, y);
a = cbrt (y);
a = ceil (y);
a = fabs (y);
a = floor (y);
a = fmod (y, y);
a = nearbyint (y);
a = round (y);
a = roundeven (y);
a = trunc (y);
a = remquo (y, y, &i);
j = lrint (y) + lround (y);
k = llrint (y) + llround (y);
m = fromfp (y, FP_INT_UPWARD, 6) + fromfpx (y, FP_INT_DOWNWARD, 7);
um = (ufromfp (y, FP_INT_TONEAREST, 8)
+ ufromfpx (y, FP_INT_TOWARDZERO, 9));
a = erf (y);
a = erfc (y);
a = tgamma (y);
a = lgamma (y);
a = rint (y);
a = nextafter (y, y);
a = nexttoward (y, y);
a = remainder (y, y);
a = scalb (y, (const TYPE) (6));
k = scalbn (y, 7) + scalbln (y, 10l);
i = ilogb (y);
j = llogb (y);
a = fdim (y, y);
a = fmax (y, y);
a = fmin (y, y);
a = fmaxmag (y, y);
a = fminmag (y, y);
a = fmaximum (y, y);
a = fminimum (y, y);
a = fmaximum_num (y, y);
a = fminimum_num (y, y);
a = fmaximum_mag (y, y);
a = fminimum_mag (y, y);
a = fmaximum_mag_num (y, y);
a = fminimum_mag_num (y, y);
a = fma (y, y, y);
#ifdef TEST_INT
a = atan2 (i, y);
a = remquo (i, y, &i);
a = fma (i, y, i);
a = pow (i, y);
#endif
d = cos ((const complex TYPE) z);
d = acos ((const complex TYPE) z);
d = sin ((const complex TYPE) z);
d = asin ((const complex TYPE) z);
d = tan ((const complex TYPE) z);
d = atan ((const complex TYPE) z);
d = cosh ((const complex TYPE) z);
d = acosh ((const complex TYPE) z);
d = sinh ((const complex TYPE) z);
d = asinh ((const complex TYPE) z);
d = tanh ((const complex TYPE) z);
d = atanh ((const complex TYPE) z);
d = exp ((const complex TYPE) z);
d = log ((const complex TYPE) z);
d = sqrt ((const complex TYPE) z);
d = pow ((const complex TYPE) z, (const complex TYPE) z);
d = fabs ((const complex TYPE) z);
d = carg ((const complex TYPE) z);
d = creal ((const complex TYPE) z);
d = cimag ((const complex TYPE) z);
d = conj ((const complex TYPE) z);
d = cproj ((const complex TYPE) z);
}
}
#undef x
#undef y
#undef z
TYPE
(F(cos)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(cospi)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(acos)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(acospi)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(sin)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(sinpi)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(asin)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(asinpi)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tan)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tanpi)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atan)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atan2)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(atanpi)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atan2pi)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(cosh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(acosh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(sinh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(asinh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tanh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atanh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log10)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(ldexp)) (TYPE x, int y)
{
++count;
P ();
return x + y;
}
TYPE
(F(frexp)) (TYPE x, int *y)
{
++count;
P ();
return x + *y;
}
TYPE
(F(expm1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp2m1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp10m1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log1p)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(logb)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp10)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp2)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log2)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log2p1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log10p1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(logp1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(pow)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(pown)) (TYPE x, long long int y)
{
++count;
P ();
return x + y;
}
TYPE
(F(powr)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(sqrt)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(rsqrt)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(hypot)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(cbrt)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(ceil)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fabs)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(floor)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fmod)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nearbyint)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(round)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(roundeven)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(trunc)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(remquo)) (TYPE x, TYPE y, int *i)
{
++count;
P ();
return x + y + *i;
}
long int
(F(lrint)) (TYPE x)
{
++count;
P ();
return x;
}
long int
(F(lround)) (TYPE x)
{
++count;
P ();
return x;
}
long long int
(F(llrint)) (TYPE x)
{
++count;
P ();
return x;
}
long long int
(F(llround)) (TYPE x)
{
++count;
P ();
return x;
}
intmax_t
(F(fromfp)) (TYPE x, int round, unsigned int width)
{
++count;
P ();
return x;
}
intmax_t
(F(fromfpx)) (TYPE x, int round, unsigned int width)
{
++count;
P ();
return x;
}
uintmax_t
(F(ufromfp)) (TYPE x, int round, unsigned int width)
{
++count;
P ();
return x;
}
uintmax_t
(F(ufromfpx)) (TYPE x, int round, unsigned int width)
{
++count;
P ();
return x;
}
TYPE
(F(erf)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(erfc)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tgamma)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(lgamma)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(rint)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(nextafter)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nextdown)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(nexttoward)) (TYPE x, long double y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nextup)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(remainder)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalb)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalbn)) (TYPE x, int y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalbln)) (TYPE x, long int y)
{
++count;
P ();
return x + y;
}
int
(F(ilogb)) (TYPE x)
{
++count;
P ();
return x;
}
long int
(F(llogb)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fdim)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmin)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmax)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminmag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaxmag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminimum)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaximum)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminimum_num)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaximum_num)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminimum_mag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaximum_mag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminimum_mag_num)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaximum_mag_num)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fma)) (TYPE x, TYPE y, TYPE z)
{
++count;
P ();
return x + y + z;
}
complex TYPE
(F(cacos)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(casin)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(catan)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ccos)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csin)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ctan)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cacosh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(casinh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(catanh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ccosh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csinh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ctanh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cexp)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(clog)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csqrt)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cpow)) (complex TYPE x, complex TYPE y)
{
++ccount;
P ();
return x + y;
}
TYPE
(F(cabs)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
TYPE
(F(carg)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
TYPE
(F(creal)) (complex TYPE x)
{
++ccount;
P ();
return __real__ x;
}
TYPE
(F(cimag)) (complex TYPE x)
{
++ccount;
P ();
return __imag__ x;
}
complex TYPE
(F(conj)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cproj)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
#undef F
#undef TYPE
#undef count
#undef ccount
#undef TEST_INT
#endif