/* Copyright (C) 1991-2022 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.
   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.
   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   .  */
#ifndef _LIBC
# include 
#endif
#include 
#ifndef _LIBC
# define __memmem	memmem
#endif
#define RETURN_TYPE void *
#define AVAILABLE(h, h_l, j, n_l) ((j) <= (h_l) - (n_l))
#define FASTSEARCH(S,C,N) (void*) memchr ((void *)(S), (C), (N))
#include "str-two-way.h"
#undef memmem
/* Hash character pairs so a small shift table can be used.  All bits of
   p[0] are included, but not all bits from p[-1].  So if two equal hashes
   match on p[-1], p[0] matches too.  Hash collisions are harmless and result
   in smaller shifts.  */
#define hash2(p) (((size_t)(p)[0] - ((size_t)(p)[-1] << 3)) % sizeof (shift))
/* Fast memmem algorithm with guaranteed linear-time performance.
   Small needles up to size 2 use a dedicated linear search.  Longer needles
   up to size 256 use a novel modified Horspool algorithm.  It hashes pairs
   of characters to quickly skip past mismatches.  The main search loop only
   exits if the last 2 characters match, avoiding unnecessary calls to memcmp
   and allowing for a larger skip if there is no match.  A self-adapting
   filtering check is used to quickly detect mismatches in long needles.
   By limiting the needle length to 256, the shift table can be reduced to 8
   bits per entry, lowering preprocessing overhead and minimizing cache effects.
   The limit also implies worst-case performance is linear.
   Needles larger than 256 characters use the linear-time Two-Way algorithm.  */
void *
__memmem (const void *haystack, size_t hs_len,
	  const void *needle, size_t ne_len)
{
  const unsigned char *hs = (const unsigned char *) haystack;
  const unsigned char *ne = (const unsigned char *) needle;
  if (ne_len == 0)
    return (void *) hs;
  if (ne_len == 1)
    return (void *) memchr (hs, ne[0], hs_len);
  /* Ensure haystack length is >= needle length.  */
  if (hs_len < ne_len)
    return NULL;
  const unsigned char *end = hs + hs_len - ne_len;
  if (ne_len == 2)
    {
      uint32_t nw = ne[0] << 16 | ne[1], hw = hs[0] << 16 | hs[1];
      for (hs++; hs <= end && hw != nw; )
	hw = hw << 16 | *++hs;
      return hw == nw ? (void *)hs - 1 : NULL;
    }
  /* Use Two-Way algorithm for very long needles.  */
  if (__builtin_expect (ne_len > 256, 0))
    return two_way_long_needle (hs, hs_len, ne, ne_len);
  uint8_t shift[256];
  size_t tmp, shift1;
  size_t m1 = ne_len - 1;
  size_t offset = 0;
  memset (shift, 0, sizeof (shift));
  for (int i = 1; i < m1; i++)
    shift[hash2 (ne + i)] = i;
  /* Shift1 is the amount we can skip after matching the hash of the
     needle end but not the full needle.  */
  shift1 = m1 - shift[hash2 (ne + m1)];
  shift[hash2 (ne + m1)] = m1;
  for ( ; hs <= end; )
    {
      /* Skip past character pairs not in the needle.  */
      do
	{
	  hs += m1;
	  tmp = shift[hash2 (hs)];
	}
      while (tmp == 0 && hs <= end);
      /* If the match is not at the end of the needle, shift to the end
	 and continue until we match the hash of the needle end.  */
      hs -= tmp;
      if (tmp < m1)
	continue;
      /* Hash of the last 2 characters matches.  If the needle is long,
	 try to quickly filter out mismatches.  */
      if (m1 < 15 || memcmp (hs + offset, ne + offset, 8) == 0)
	{
	  if (memcmp (hs, ne, m1) == 0)
	    return (void *) hs;
	  /* Adjust filter offset when it doesn't find the mismatch.  */
	  offset = (offset >= 8 ? offset : m1) - 8;
	}
      /* Skip based on matching the hash of the needle end.  */
      hs += shift1;
    }
  return NULL;
}
libc_hidden_def (__memmem)
weak_alias (__memmem, memmem)
libc_hidden_weak (memmem)