/* Return (1+X)^Y for integer Y. Copyright (C) 2025 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include #include #include #include /* Calculate X + Y exactly and store the result in *HI + *LO. It is given that |X| >= |Y| and the values are small enough that no overflow occurs. */ static inline void add_split (FLOAT *hi, FLOAT *lo, FLOAT x, FLOAT y) { /* Apply Dekker's algorithm. */ *hi = math_narrow_eval (x + y); *lo = (x - *hi) + y; } /* Store floating-point values that add up to A * (B + C + D) in OUT[0] through OUT[5]. It is given that no overflow or underflow can occur. */ static inline void mul3_split (FLOAT *out, FLOAT a, FLOAT b, FLOAT c, FLOAT d) { out[0] = a * b; out[1] = M_SUF (fma) (a, b, -out[0]); out[2] = a * c; out[3] = M_SUF (fma) (a, c, -out[2]); out[4] = a * d; out[5] = M_SUF (fma) (a, d, -out[4]); } /* Compare absolute values of floating-point values pointed to by P and Q for qsort. */ static int compare (const void *p, const void *q) { FLOAT pd = fabs (*(const FLOAT *) p); FLOAT qd = fabs (*(const FLOAT *) q); if (pd < qd) return -1; else if (pd == qd) return 0; else return 1; } FLOAT M_DECL_FUNC (__compoundn) (FLOAT x, long long int y) { FLOAT ret; if (issignaling (x)) return x + x; if (isless (x, -M_LIT (1.0))) { __set_errno (EDOM); return (x - x) / (x - x); } if (y == 0) return M_LIT (1.0); if (isnan (x)) return x; if (x == -M_LIT (1.0)) { if (y > 0) return M_LIT (0.0); else { __set_errno (ERANGE); return M_LIT (1.0) / M_LIT (0.0); } } if (isinf (x)) return y > 0 ? x : M_LIT (0.0); if (y == 1) { /* Ensure overflow in FE_UPWARD mode when X is the largest positive finite value. */ ret = math_narrow_eval (M_LIT (1.0) + x); if (isinf (ret)) __set_errno (ERANGE); return ret; } /* Now we know X is finite and greater than -1, and Y is not 0 or 1. */ { M_SET_RESTORE_ROUND (FE_TONEAREST); x = math_opt_barrier (x); /* Split 1 + X into high and low parts, where the sign of the low part is the same as the sign of X to avoid possible spurious intermediate overflow or underflow later. */ FLOAT xhi, xlo; if (x >= M_LIT (1.0)) add_split (&xhi, &xlo, x, M_LIT (1.0)); else add_split (&xhi, &xlo, M_LIT (1.0), x); if (xlo != M_LIT (0.0) && !!signbit (xlo) != !!signbit (x)) { FLOAT xhi_n = (signbit (x) ? M_SUF (__nextup) (xhi) : M_SUF (__nextdown) (xhi)); xlo += xhi - xhi_n; xhi = xhi_n; } ret = math_narrow_eval (M_SUF (__pown) (xhi, y)); /* The result is RET * (1 + XLO/XHI)^Y. Evaluate XLO/XHI with extra precision. If XLO/XHI is sufficiently small, the extra factor is not needed and internal underflow should be avoided. If the calculation of RET has overflowed or underflowed, avoid calculations of the extra factor that might end up as Inf*0. */ _Static_assert (-M_MANT_DIG - 65 > M_MIN_EXP, "no underflow from dividing EPSILON by long long"); if (!isinf (ret) && ret != M_LIT (0.0) && (xhi >= M_LIT (1.0) ? M_FABS (xlo) >= xhi * (M_EPSILON * M_LIT (0x1p-65)) : xhi <= M_FABS (xlo) / (M_EPSILON * M_LIT (0x1p-65)))) { FLOAT qhi, qlo, nqhi2; qhi = xlo / xhi; FLOAT xlo_rem = M_SUF (fma) (-qhi, xhi, xlo); if (xhi >= M_LIT (1.0) ? M_FABS (xlo_rem) >= xhi * (M_EPSILON * M_LIT (0x1p-65)) : xhi <= M_FABS (xlo_rem) / (M_EPSILON * M_LIT (0x1p-65))) qlo = xlo_rem / xhi; else qlo = M_LIT (0.0); if (M_FABS (qhi) >= M_EPSILON * M_LIT (0x1p-33)) nqhi2 = qhi * qhi * -M_LIT (0.5); else nqhi2 = M_LIT (0.0); /* To sufficient precision, log1p(XLO/XHI) is QHI + QLO + NQHI2. */ #define NUM_PARTS ((LLONG_WIDTH + M_MANT_DIG - 1) / M_MANT_DIG) _Static_assert (NUM_PARTS <= 3, "long long fits in at most three FLOATs"); FLOAT parts[NUM_PARTS * 6]; FLOAT ypart; ypart = y; mul3_split (parts, ypart, qhi, qlo, nqhi2); #if NUM_PARTS >= 2 y -= ypart; ypart = y; mul3_split (parts + 6, ypart, qhi, qlo, nqhi2); #endif #if NUM_PARTS >= 3 y -= ypart; ypart = y; mul3_split (parts + 12, ypart, qhi, qlo, nqhi2); #endif qsort (parts, NUM_PARTS * 6, sizeof (FLOAT), compare); /* Add up the values so that each element of PARTS has absolute value at most equal to the last set bit of the next nonzero element. */ for (size_t i = 0; i <= NUM_PARTS * 6 - 2; i++) { add_split (&parts[i + 1], &parts[i], parts[i + 1], parts[i]); qsort (parts + i + 1, NUM_PARTS * 6 - 1 - i, sizeof (FLOAT), compare); } /* Add up the values in the other direction, so that each element of PARTS has absolute value less than NUM_PARTS * 3 ulp of the next value. */ size_t dstpos = NUM_PARTS * 6 - 1; for (size_t i = 1; i <= NUM_PARTS * 6 - 1; i++) { if (parts[dstpos] == M_LIT (0.0)) { parts[dstpos] = parts[NUM_PARTS * 6 - 1 - i]; parts[NUM_PARTS * 6 - 1 - i] = M_LIT (0.0); } else { add_split (&parts[dstpos], &parts[NUM_PARTS * 6 - 1 - i], parts[dstpos], parts[NUM_PARTS * 6 - 1 - i]); if (parts[NUM_PARTS * 6 - 1 - i] != M_LIT (0.0)) { if (NUM_PARTS * 6 - 1 - i < dstpos - 1) { parts[dstpos - 1] = parts[NUM_PARTS * 6 - 1 - i]; parts[NUM_PARTS * 6 - 1 - i] = M_LIT (0.0); } dstpos--; } } } ret *= (M_SUF (__exp) (parts[NUM_PARTS * 6 - 1]) * M_SUF (__exp) (parts[NUM_PARTS * 6 - 2])); } ret = math_narrow_eval (ret); math_force_eval (ret); } if (isinf (ret)) ret = math_narrow_eval (M_MAX * M_MAX); else if (ret == M_LIT (0.0)) ret = math_narrow_eval (M_MIN * M_MIN); if (isinf (ret) || ret == M_LIT (0.0)) __set_errno (ERANGE); return ret; } declare_mgen_alias (__compoundn, compoundn);