It seems that some gcc versions might generates a stack frame for the
sigreturn stub requires on sparc signal handling. For instance:
$ cat test.c
#define _GNU_SOURCE
#include <sys/syscall.h>
__attribute__ ((__optimize__ ("-fno-stack-protector")))
void
__sigreturn_stub (void)
{
__asm__ ("mov %0, %%g1\n\t"
"ta 0x10\n\t"
: /* no outputs */
: "i" (SYS_rt_sigreturn));
}
$ gcc -v
[...]
gcc version 9.2.1 20200224 (Debian 9.2.1-30)
$ gcc -O2 -m64 test.c -S -o -
[...]
__sigreturn_stub:
save %sp, -176, %sp
#APP
! 9 "t.c" 1
mov 101, %g1
ta 0x10
! 0 "" 2
#NO_APP
.size __sigreturn_stub, .-__sigreturn_stub
As indicated by kernel developers [1], the sigreturn stub can not change
the register window or the stack pointer since the kernel has setup the
restore frame at a precise location relative to the stack pointer when
the stub is invoked.
I tried to play with some compiler flags and even with _Noreturn and
__builtin_unreachable after the asm does not help (and Sparc does not
support naked functions).
To avoid similar issues, as the stack-protector support also have
stumbled, this patch moves the implementation of the sigreturn stubs to
assembly.
Checked on sparcv9-linux-gnu and sparc64-linux-gnu with gcc 9.2.1
and gcc 7.5.0.
[1] https://lkml.org/lkml/2016/5/27/465
The kernel might not clear the padding value for the ipc_perm mode
fields in compat mode (32 bit running on a 64 bit kernel). It was
fixed on v4.14 when the ipc compat code was refactored to move
(commits 553f770ef71b, 469391684626, c0ebccb6fa1e).
Although it is most likely a kernel issue, it was shown only due
BZ#18231 fix which made all the SysVIPC mode_t 32-bit regardless of
the kABI.
This patch fixes it by explicitly zeroing the upper bits for such
cases. The __ASSUME_SYSVIPC_BROKEN_MODE_T case already handles
it with the shift.
(The aarch64 ipc_priv.h is superflous since
__ASSUME_SYSVIPC_DEFAULT_IPC_64 is now defined as default).
Checked on i686-linux-gnu on 3.10 and on 4.15 kernel.
fstatat64 depends on inlining to produce the desired __fxstatat64
call, which does not happen with -Os, leading to a link failure
with an undefined reference to fstatat64. __fxstatat64 has a macro
definition in include/sys/stat.h and thus avoids the problem.
This patch replaces auto generated wrapper (as described in
sysdeps/unix/sysv/linux/syscalls.list) for utime with one which adds extra
support for setting file's access and modification 64 bit time on machines
with __TIMESIZE != 64.
Internally, the __utimensat_time64 helper function is used. This patch is
necessary for having architectures with __WORDSIZE == 32 && __TIMESIZE != 64
Y2038 safe.
Moreover, a 32 bit version - __utime has been refactored to internally use
__utime64.
The __utime is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversion between struct
utimbuf and struct __utimbuf64.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as
without to test proper usage of both __utime64 and __utime.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch provides new __utimes64 explicit 64 bit function for setting file's
64 bit attributes for access and modification time.
Internally, the __utimensat64_helper function is used. This patch is necessary
for having architectures with __WORDSIZE == 32 Y2038 safe.
Moreover, a 32 bit version - __utimes has been refactored to internally use
__utimes64.
The __utimes is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversion of struct
timeval to 64 bit struct __timeval64.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as without
to test proper usage of both __utimes64 and __utimes.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_vfork is always defined, so the
fork-based fallback code is never used.
(It appears that the vfork system call was wired up when the port was
contributed to the kernel.)
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_getdents64 is always defined,
although it may not be supported at run time.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
With the built-in tables __NR_preadv2 and __NR_pwritev2 are always
defined.
The kernel has never defined __NR_preadv64v2 and __NR_pwritev64v2
and is unlikely to do so, given that the preadv2 and pwritev2 system
calls themselves are 64-bit.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_rt_sigqueueinfo is always defined.
sysdeps/pthread/time_routines.c is not updated because it is shared with
Hurd.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The names __NR_preadv64, __NR_pwritev64 appear to be a glibc invention.
With the built-in tables, __NR_preadv and __NR_pwritev are always defined.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Linux removed the last definitions of __NR_pread and __NR_pwrite
in commit 4ba66a9760722ccbb691b8f7116cad2f791cca7b, the removal
of the blackfin port. All architectures now define __NR_pread64 and
__NR_pwrite64 only.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_mq_getsetattr, __NR_mq_notify,
__NR_mq_open, __NR_mq_timedreceive, __NR_mq_timedsend, __NR_mq_unlink
are always defined.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Writable, executable segments defeat security hardening. The
existing check for DT_TEXTREL does not catch this.
hppa and SPARC currently keep the PLT in an RWX load segment.
The behavior of the signal mask on threads created by timer_create
for SIGEV_THREAD timers are implementation-defined and glibc explicit
unblocks all signals before calling the user-defined function.
This behavior, although not incorrect standard-wise, opens a race if a
program using a blocked rt-signal plus sigwaitinfo (and without an
installed signal handler for the rt-signal) receives a signal while
executing the used-defined function for SIGEV_THREAD.
A better alternative discussed in bug report is to rather block all
signals (besides the internal ones not available to application
usage).
This patch fixes this issue by only unblocking SIGSETXID (used on
set*uid function) and SIGCANCEL (used for thread cancellation).
Checked on x86_64-linux-gnu and i686-linux-gnu.
From the GNU C Library manual, the pkey_set can receive a combination of
PKEY_DISABLE_WRITE and PKEY_DISABLE_ACCESS. However PKEY_DISABLE_ACCESS
is more restrictive than PKEY_DISABLE_WRITE and includes its behavior.
The test expects that after setting
(PKEY_DISABLE_WRITE|PKEY_DISABLE_ACCESS) pkey_get should return the
same. This may not be true as PKEY_DISABLE_ACCESS will succeed in
describing the state of the key in this case.
The pkey behavior during signal handling is different between x86 and
POWER. This change make the test compatible with both architectures.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
In the glibc the gettimeofday can use vDSO (on power and x86 the
USE_IFUNC_GETTIMEOFDAY is defined), gettimeofday syscall or 'default'
___gettimeofday() from ./time/gettime.c (as a fallback).
In this patch the last function (___gettimeofday) has been refactored and
moved to ./sysdeps/unix/sysv/linux/gettimeofday.c to be Linux specific.
The new __gettimeofday64 explicit 64 bit function for getting 64 bit time from
the kernel (by internally calling __clock_gettime64) has been introduced.
Moreover, a 32 bit version - __gettimeofday has been refactored to internally
use __gettimeofday64.
The __gettimeofday is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary check for time_t potential
overflow and conversion of struct __timeval64 to 32 bit struct timespec.
The iFUNC vDSO direct call optimization has been removed from both i686 and
powerpc32 (USE_IFUNC_GETTIMEOFDAY is not defined for those architectures
anymore). The Linux kernel does not provide a y2038 safe implementation of
gettimeofday neither it plans to provide it in the future, clock_gettime64
should be used instead. Keeping support for this optimization would require
to handle another build permutation (!__ASSUME_TIME64_SYSCALLS &&
USE_IFUNC_GETTIMEOFDAY) which adds more complexity and has limited use
(since the idea is to eventually have a y2038 safe glibc build).
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as without
to test proper usage of both __gettimeofday64 and __gettimeofday.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
[Including some commit message improvement]
It appears that the ability to change symbolic link modes through such
paths is unintended. On several file systems, the operation fails with
EOPNOTSUPP, even though the symbolic link permissions are updated.
The expected behavior is a failure to update the permissions, without
file system changes.
Reviewed-by: Matheus Castanho <msc@linux.ibm.com>