The current approach tracks math maximum supported errors by explicitly
setting them per function and architecture. On newer implementations or
new compiler versions, the file is updated with newer values if it
shows higher results. The idea is to track the maximum known error, to
update the manual with the obtained values.
The constant libm-test-ulps shows little value, where it is usually a
mechanical change done by the maintainer, for past releases it is
usually ignored whether the ulp change resulted from a compiler
regression, and the math tests already have a maximum ulp error that
triggers a regression.
It was shown by a recent update after the new acosf [1] implementation
that is correctly rounded, where the libm-test-ulps was indeed from a
compiler issue.
This patch removes all arch-specific libm-test-ulps, adds system generic
libm-test-ulps where applicable, and changes its semantics. The generic
files now track specific implementation constraints, like if it is
expected to be correctly rounded, or if the system-specific has
different error expectations.
Now multiple libm-test-ulps can be defined, and system-specific
overrides generic implementation. This is for the case where
arch-specific implementation might show worse precision than generic
implementation, for instance, the cbrtf on i686.
Regressions are only reported if the implementation shows larger errors
than 9 ulps (13 for IBM long double) unless it is overridden by
libm-test-ulps and the maximum error is not printed at the end of tests.
The regen-ulps rule is also removed since it does not make sense to
update the libm-test-ulps automatically.
The manual error table is also removed, Paul Zimmermann and others have
been tracking libm precision with a more comprehensive analysis for some
releases; so link to his work instead.
[1] https://sourceware.org/git/?p=glibc.git;a=commit;h=9cc9f8e11e8fb8f54f1e84d9f024917634a78201
The CORE-MATH implementation is correctly rounded (for any rounding mode),
although it should worse performance than current one. The current
implementation performance comes mainly from the internal usage of
the optimize expf implementation, and shows a maximum ULPs of 2 for
FE_TONEAREST and 3 for other rounding modes.
The code was adapted to glibc style and to use the definition of
math_config.h (to handle errno, overflow, and underflow).
Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (Neoverse-N1,
gcc 13.3.1), and powerpc (POWER10, gcc 13.2.1):
Latency master patched improvement
x86_64 40.6995 49.0737 -20.58%
x86_64v2 40.5841 44.3604 -9.30%
x86_64v3 39.3879 39.7502 -0.92%
i686 112.3380 129.8570 -15.59%
aarch64 (Neoverse) 18.6914 17.0946 8.54%
power10 11.1343 9.3245 16.25%
reciprocal-throughput master patched improvement
x86_64 18.6471 24.1077 -29.28%
x86_64v2 17.7501 20.2946 -14.34%
x86_64v3 17.8262 17.1877 3.58%
i686 64.1454 86.5645 -34.95%
aarch64 (Neoverse) 9.77226 12.2314 -25.16%
power10 4.0200 5.3316 -32.63%
Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
The CORE-MATH implementation is correctly rounded (for any rounding mode)
and shows better performance to the generic tanf.
The code was adapted to glibc style, to use the definition of
math_config.h, to remove errno handling, and to use a generic
128 bit routine for ABIs that do not support it natively.
Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (neoverse1,
gcc 13.2.1), and powerpc (POWER10, gcc 13.2.1):
latency master patched improvement
x86_64 82.3961 54.8052 33.49%
x86_64v2 82.3415 54.8052 33.44%
x86_64v3 69.3661 50.4864 27.22%
i686 219.271 45.5396 79.23%
aarch64 29.2127 19.1951 34.29%
power10 19.5060 16.2760 16.56%
reciprocal-throughput master patched improvement
x86_64 28.3976 19.7334 30.51%
x86_64v2 28.4568 19.7334 30.65%
x86_64v3 21.1815 16.1811 23.61%
i686 105.016 15.1426 85.58%
aarch64 18.1573 10.7681 40.70%
power10 8.7207 8.7097 0.13%
Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
The CORE-MATH implementation is correctly rounded (for any rounding mode)
and shows better performance compared to the generic exp2m1f.
The code was adapted to glibc style and to use the definition of
math_config.h (to handle errno, overflow, and underflow). The
only change is to handle FLT_MAX_EXP for FE_DOWNWARD or FE_TOWARDZERO.
The benchmark inputs are based on exp2f ones.
Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (Neoverse-N1,
gcc 13.3.1), and powerpc (POWER10, gcc 13.2.1):
Latency master patched improvement
x86_64 40.6042 48.7104 -19.96%
x86_64v2 40.7506 35.9032 11.90%
x86_64v3 35.2301 31.7956 9.75%
i686 102.094 94.6657 7.28%
aarch64 18.2704 15.1387 17.14%
power10 11.9444 8.2402 31.01%
reciprocal-throughput master patched improvement
x86_64 20.8683 16.1428 22.64%
x86_64v2 19.5076 10.4474 46.44%
x86_64v3 19.2106 10.4014 45.86%
i686 56.4054 59.3004 -5.13%
aarch64 12.0781 7.3953 38.77%
power10 6.5306 5.9388 9.06%
The generic implementation calls __ieee754_exp2f and x86_64 provides
an optimized ifunc version (built with -mfma -mavx2, not correctly
rounded). This explains the performance difference for x86_64.
Same for i686, where the ABI provides an optimized __ieee754_exp2f
version built with '-msse2 -mfpmath=sse'. When built wth same
flags, the new algorithm shows a better performance:
master patched improvement
latency 102.094 91.2823 10.59%
reciprocal-throughput 56.4054 52.7984 6.39%
Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
The CORE-MATH implementation is correctly rounded (for any rounding mode)
and shows better performance compared to the generic exp10m1f.
The code was adapted to glibc style and to use the definition of
math_config.h (to handle errno, overflow, and underflow). I mostly
fixed some small issues in corner cases (sNaN handling, -INFINITY,
a specific overflow check).
Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (Neoverse-N1,
gcc 13.3.1), and powerpc (POWER10, gcc 13.2.1):
Latency master patched improvement
x86_64 45.4690 49.5845 -9.05%
x86_64v2 46.1604 36.2665 21.43%
x86_64v3 37.8442 31.0359 17.99%
i686 121.367 93.0079 23.37%
aarch64 21.1126 15.0165 28.87%
power10 12.7426 8.4929 33.35%
reciprocal-throughput master patched improvement
x86_64 19.6005 17.4005 11.22%
x86_64v2 19.6008 11.1977 42.87%
x86_64v3 17.5427 10.2898 41.34%
i686 59.4215 60.9675 -2.60%
aarch64 13.9814 7.9173 43.37%
power10 6.7814 6.4258 5.24%
The generic implementation calls __ieee754_exp10f which has an
optimized version, although it is not correctly rounded, which is
the main culprit of the the latency difference for x86_64 and
throughp for i686.
Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
The CORE-MATH implementation is correctly rounded (for any rounding mode).
This can be checked by exhaustive tests in a few minutes since there are
less than 2^32 values to check against for example GNU MPFR.
This patch also adds some bench values for tgammaf.
Tested on x86_64 and x86 (cfarm26).
With the initial GNU libc code it gave on an Intel(R) Core(TM) i7-8700:
"tgammaf": {
"": {
"duration": 3.50188e+09,
"iterations": 2e+07,
"max": 602.891,
"min": 65.1415,
"mean": 175.094
}
}
With the new code:
"tgammaf": {
"": {
"duration": 3.30825e+09,
"iterations": 5e+07,
"max": 211.592,
"min": 32.0325,
"mean": 66.1649
}
}
With the initial GNU libc code it gave on cfarm26 (i686):
"tgammaf": {
"": {
"duration": 3.70505e+09,
"iterations": 6e+06,
"max": 2420.23,
"min": 243.154,
"mean": 617.509
}
}
With the new code:
"tgammaf": {
"": {
"duration": 3.24497e+09,
"iterations": 1.8e+07,
"max": 1238.15,
"min": 101.155,
"mean": 180.276
}
}
Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Changes in v2:
- include <math.h> (fix the linknamespace failures)
- restored original benchtests/strcoll-inputs/filelist#en_US.UTF-8 file
- restored original wrapper code (math/w_tgammaf_compat.c),
except for the dealing with the sign
- removed the tgammaf/float entries in all libm-test-ulps files
- address other comments from Joseph Myers
(https://sourceware.org/pipermail/libc-alpha/2024-July/158736.html)
Changes in v3:
- pass NULL argument for signgam from w_tgammaf_compat.c
- use of math_narrow_eval
- added more comments
Changes in v4:
- initialize local_signgam to 0 in math/w_tgamma_template.c
- replace sysdeps/ieee754/dbl-64/gamma_productf.c by dummy file
Changes in v5:
- do not mention local_signgam any more in math/w_tgammaf_compat.c
- initialize local_signgam to 1 instead of 0 in w_tgamma_template.c
and added comment
Changes in v6:
- pass NULL as 2nd argument of __ieee754_gammaf_r in
w_tgammaf_compat.c, and check for NULL in e_gammaf_r.c
Changes in v7:
- added Signed-off-by line for Alexei Sibidanov (author of the code)
Changes in v8:
- added Signed-off-by line for Paul Zimmermann (submitted of the patch)
Changes in v9:
- address comments from review by Adhemerval Zanella
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the logp1 functions (aliases for log1p functions - the
name is intended to be more consistent with the new log2p1 and
log10p1, where clearly it would have been very confusing to name those
functions log21p and log101p). As aliases rather than new functions,
the content of this patch is somewhat different from those actually
adding new functions.
Tests are shared with log1p, so this patch *does* mechanically update
all affected libm-test-ulps files to expect the same errors for both
functions.
The vector versions of log1p on aarch64 and x86_64 are *not* updated
to have logp1 aliases (and thus there are no corresponding header,
tests, abilist or ulps changes for vector functions either). It would
be reasonable for such vector aliases and corresponding changes to
other files to be made separately. For now, the log1p tests instead
avoid testing logp1 in the vector case (a Makefile change is needed to
avoid problems with grep, used in generating the .c files for vector
function tests, matching more than one ALL_RM_TEST line in a file
testing multiple functions with the same inputs, when it assumes that
the .inc file only has a single such line).
Tested for x86_64 and x86, and with build-many-glibcs.py.
Generated on a VisionFive 2 board running Linux version 6.4.2 and
GCC 13.1.0.
Needed due to commit cf7ffdd8a5 ("added pair of inputs for hypotf in
binary32").
According to the specification of ISO/IEC TS 18661-1:2014,
The strfromd, strfromf, and strfroml functions are equivalent to
snprintf(s, n, format, fp) (7.21.6.5), except the format string contains only
the character %, an optional precision that does not contain an asterisk *, and
one of the conversion specifiers a, A, e, E, f, F, g, or G, which applies to
the type (double, float, or long double) indicated by the function suffix
(rather than by a length modifier). Use of these functions with any other 20
format string results in undefined behavior.
strfromf will convert the arguement with type float to double first.
According to the latest version of IEEE754 which is published in 2019,
Conversion of a quiet NaN from a narrower format to a wider format in the same
radix, and then back to the same narrower format, should not change the quiet
NaN payload in any way except to make it canonical.
When either an input or result is a NaN, this standard does not interpret the
sign of a NaN. However, operations on bit strings—copy, negate, abs,
copySign—specify the sign bit of a NaN result, sometimes based upon the sign
bit of a NaN operand. The logical predicates totalOrder and isSignMinus are
also affected by the sign bit of a NaN operand. For all other operations, this
standard does not specify the sign bit of a NaN result, even when there is only
one input NaN, or when the NaN is produced from an invalid operation.
converting NAN or -NAN with type float to double doesn't need to keep
the signbit. As a result, this test case isn't mandatory.
The problem is that according to RISC-V ISA manual in chapter 11.3 of
riscv-isa-20191213,
Except when otherwise stated, if the result of a floating-point operation is
NaN, it is the canonical NaN. The canonical NaN has a positive sign and all
significand bits clear except the MSB, a.k.a. the quiet bit. For
single-precision floating-point, this corresponds to the pattern 0x7fc00000.
which means that conversion -NAN from float to double won't keep the signbit.
Since glibc ought to be consistent here between types and architectures, this
patch adds copysign to fix this problem if the string is NAN. This patch
adds two different functions under sysdeps directory to work around the
issue.
This patch has been tested on x86_64 and riscv64.
Resolves: BZ #29501
v2: Change from macros to different inline functions.
v3: Add unlikely check to isnan.
v4: Fix wrong commit message header.
v5: Fix style: add space before parentheses.
v6: Add copyright.
Signed-off-by: Letu Ren <fantasquex@gmail.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
We don't need RV32 specific floating point functions, instead make them
generic for RISC-V.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Both RV32 and RV64 should have the same libm-test-ulps, so consolidate
them into a single file.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 7061 files FOO.
I then removed trailing white space from math/tgmath.h,
support/tst-support-open-dev-null-range.c, and
sysdeps/x86_64/multiarch/strlen-vec.S, to work around the following
obscure pre-commit check failure diagnostics from Savannah. I don't
know why I run into these diagnostics whereas others evidently do not.
remote: *** 912-#endif
remote: *** 913:
remote: *** 914-
remote: *** error: lines with trailing whitespace found
...
remote: *** error: sysdeps/unix/sysv/linux/statx_cp.c: trailing lines
This patch adds the narrowing fused multiply-add functions from TS
18661-1 / TS 18661-3 / C2X to glibc's libm: ffma, ffmal, dfmal,
f32fmaf64, f32fmaf32x, f32xfmaf64 for all configurations; f32fmaf64x,
f32fmaf128, f64fmaf64x, f64fmaf128, f32xfmaf64x, f32xfmaf128,
f64xfmaf128 for configurations with _Float64x and _Float128;
__f32fmaieee128 and __f64fmaieee128 aliases in the powerpc64le case
(for calls to ffmal and dfmal when long double is IEEE binary128).
Corresponding tgmath.h macro support is also added.
The changes are mostly similar to those for the other narrowing
functions previously added, especially that for sqrt, so the
description of those generally applies to this patch as well. As with
sqrt, I reused the same test inputs in auto-libm-test-in as for
non-narrowing fma rather than adding extra or separate inputs for
narrowing fma. The tests in libm-test-narrow-fma.inc also follow
those for non-narrowing fma.
The non-narrowing fma has a known bug (bug 6801) that it does not set
errno on errors (overflow, underflow, Inf * 0, Inf - Inf). Rather
than fixing this or having narrowing fma check for errors when
non-narrowing does not (complicating the cases when narrowing fma can
otherwise be an alias for a non-narrowing function), this patch does
not attempt to check for errors from narrowing fma and set errno; the
CHECK_NARROW_FMA macro is still present, but as a placeholder that
does nothing, and this missing errno setting is considered to be
covered by the existing bug rather than needing a separate open bug.
missing-errno annotations are duly added to many of the
auto-libm-test-in test inputs for fma.
This completes adding all the new functions from TS 18661-1 to glibc,
so will be followed by corresponding stdc-predef.h changes to define
__STDC_IEC_60559_BFP__ and __STDC_IEC_60559_COMPLEX__, as the support
for TS 18661-1 will be at a similar level to that for C standard
floating-point facilities up to C11 (pragmas not implemented, but
library functions done). (There are still further changes to be done
to implement changes to the types of fromfp functions from N2548.)
Tested as followed: natively with the full glibc testsuite for x86_64
(GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC
11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32
hard float, mips64 (all three ABIs, both hard and soft float). The
different GCC versions are to cover the different cases in tgmath.h
and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in
glibc headers, GCC 7 has proper _Float* support, GCC 8 adds
__builtin_tgmath).
include/math.h has a mechanism to redirect internal calls to various
libm functions, that can often be inlined by the compiler, to call
non-exported __* names for those functions in the case when the calls
aren't inlined, with the redirection being disabled when
NO_MATH_REDIRECT. Add fma to the functions to which this mechanism is
applied.
At present, libm-internal fma calls (generally to __builtin_fma*
functions) are only done when it's known the call will be inlined,
with alternative code not relying on an fma operation being used in
the caller otherwise. This patch is in preparation for adding the TS
18661 / C2X narrowing fma functions to glibc; it will be natural for
the narrowing function implementations to call the underlying fma
functions unconditionally, with this either being inlined or resulting
in an __fma* call. (Using two levels of round-to-odd computation like
that, in the case where there isn't an fma hardware instruction, isn't
optimal but is certainly a lot simpler for the initial implementation
than writing different narrowing fma implementations for all the
various pairs of formats.)
Tested with build-many-glibcs.py that installed stripped shared
libraries are unchanged by the patch (using
<https://sourceware.org/pipermail/libc-alpha/2021-September/130991.html>
to fix installed library stripping in build-many-glibcs.py). Also
tested for x86_64.
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
Checked with a build for riscv64-linux-gnu-rv64imac-lp64 (no
builtin support), riscv64-linux-gnu-rv64imafdc-lp64, and
riscv64-linux-gnu-rv64imafdc-lp64d.
This patch adds a new macro, libm_alias_finite, to define all _finite
symbol. It sets all _finite symbol as compat symbol based on its first
version (obtained from the definition at built generated first-versions.h).
The <fn>f128_finite symbols were introduced in GLIBC 2.26 and so need
special treatment in code that is shared between long double and float128.
It is done by adding a list, similar to internal symbol redifinition,
on sysdeps/ieee754/float128/float128_private.h.
Alpha also needs some tricky changes to ensure we still emit 2 compat
symbols for sqrt(f).
Passes buildmanyglibc.
Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>