1
0
mirror of https://sourceware.org/git/glibc.git synced 2025-08-08 17:42:12 +03:00
Commit Graph

41 Commits

Author SHA1 Message Date
Joseph Myers
06caf53adf Implement C23 rootn.
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the rootn functions, which compute the Yth root of X for
integer Y (with a domain error if Y is 0, even if X is a NaN).  The
integer exponent has type long long int in C23; it was intmax_t in TS
18661-4, and as with other interfaces changed after their initial
appearance in the TS, I don't think we need to support the original
version of the interface.

As with pown and compoundn, I strongly encourage searching for worst
cases for ulps error for these implementations (necessarily
non-exhaustively, given the size of the input space).  I also expect a
custom implementation for a given format could be much faster as well
as more accurate, although the implementation is simpler than those
for pown and compoundn.

This completes adding to glibc those TS 18661-4 functions (ignoring
DFP) that are included in C23.  See
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=118592 regarding the C23
mathematical functions (not just the TS 18661-4 ones) missing built-in
functions in GCC, where such functions might usefully be added.

Tested for x86_64 and x86, and with build-many-glibcs.py.
2025-05-14 10:51:46 +00:00
Joseph Myers
ae31254432 Implement C23 compoundn
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the compoundn functions, which compute (1+X) to the
power Y for integer Y (and X at least -1).  The integer exponent has
type long long int in C23; it was intmax_t in TS 18661-4, and as with
other interfaces changed after their initial appearance in the TS, I
don't think we need to support the original version of the interface.

Note that these functions are "compoundn" with a trailing "n", *not*
"compound" (CORE-MATH has the wrong name, for example).

As with pown, I strongly encourage searching for worst cases for ulps
error for these implementations (necessarily non-exhaustively, given
the size of the input space).  I also expect a custom implementation
for a given format could be much faster as well as more accurate (I
haven't tested or benchmarked the CORE-MATH implementation for
binary32); this is one of the more complicated and less efficient
functions to implement in a type-generic way.

As with exp2m1 and exp10m1, this showed up places where the
powerpc64le IFUNC setup is not as self-contained as one might hope (in
this case, without the changes specific to powerpc64le, there were
undefined references to __GI___expf128).

Tested for x86_64 and x86, and with build-many-glibcs.py.
2025-05-09 15:17:27 +00:00
Joseph Myers
75ad83f564 Implement C23 pown
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the pown functions, which are like pow but with an
integer exponent.  That exponent has type long long int in C23; it was
intmax_t in TS 18661-4, and as with other interfaces changed after
their initial appearance in the TS, I don't think we need to support
the original version of the interface.  The test inputs are based on
the subset of test inputs for pow that use integer exponents that fit
in long long.

As the first such template implementation that saves and restores the
rounding mode internally (to avoid possible issues with directed
rounding and intermediate overflows or underflows in the wrong
rounding mode), support also needed to be added for using
SET_RESTORE_ROUND* in such template function implementations.  This
required math-type-macros-float128.h to include <fenv_private.h>, so
it can tell whether SET_RESTORE_ROUNDF128 is defined.  In turn, the
include order with <fenv_private.h> included before <math_private.h>
broke loongarch builds, showing up that
sysdeps/loongarch/math_private.h is really a fenv_private.h file
(maybe implemented internally before the consistent split of those
headers in 2018?) and needed to be renamed to fenv_private.h to avoid
errors with duplicate macro definitions if <math_private.h> is
included after <fenv_private.h>.

The underlying implementation uses __ieee754_pow functions (called
more than once in some cases, where the exponent does not fit in the
floating type).  I expect a custom implementation for a given format,
that only handles integer exponents but handles larger exponents
directly, could be faster and more accurate in some cases.

I encourage searching for worst cases for ulps error for these
implementations (necessarily non-exhaustively, given the size of the
input space).

Tested for x86_64 and x86, and with build-many-glibcs.py.
2025-03-27 10:44:44 +00:00
Joseph Myers
409668f6e8 Implement C23 powr
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the powr functions, which are like pow, but with simpler
handling of special cases (based on exp(y*log(x)), so negative x and
0^0 are domain errors, powers of -0 are always +0 or +Inf never -0 or
-Inf, and 1^+-Inf and Inf^0 are also domain errors, while NaN^0 and
1^NaN are NaN).  The test inputs are taken from those for pow, with
appropriate adjustments (including removing all tests that would be
domain errors from those in auto-libm-test-in and adding some more
such tests in libm-test-powr.inc).

The underlying implementation uses __ieee754_pow functions after
dealing with all special cases that need to be handled differently.
It might be a little faster (avoiding a wrapper and redundant checks
for special cases) to have an underlying implementation built
separately for both pow and powr with compile-time conditionals for
special-case handling, but I expect the benefit of that would be
limited given that both functions will end up needing to use the same
logic for computing pow outside of special cases.

My understanding is that powr(negative, qNaN) should raise "invalid":
that the rule on "invalid" for an argument outside the domain of the
function takes precedence over a quiet NaN argument producing a quiet
NaN result with no exceptions raised (for rootn it's explicit that the
0th root of qNaN raises "invalid").  I've raised this on the WG14
reflector to confirm the intent.

Tested for x86_64 and x86, and with build-many-glibcs.py.
2025-03-14 15:58:11 +00:00
Joseph Myers
77261698b4 Implement C23 rsqrt
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the rsqrt functions (1/sqrt(x)).  The test inputs are
taken from those for sqrt.

Tested for x86_64 and x86, and with build-many-glibcs.py.
2025-03-07 19:15:26 +00:00
Joseph Myers
3374de9038 Implement C23 atan2pi
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the atan2pi functions (atan2(y,x)/pi).

Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-12 20:57:44 +00:00
Joseph Myers
ffe79c446c Implement C23 atanpi
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the atanpi functions (atan(x)/pi).

Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-11 21:51:49 +00:00
Joseph Myers
f962932206 Implement C23 asinpi
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the asinpi functions (asin(x)/pi).

Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-10 20:42:20 +00:00
Joseph Myers
28d102d15c Implement C23 acospi
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the acospi functions (acos(x)/pi).

Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-09 23:01:29 +00:00
Joseph Myers
f9e90e4b4c Implement C23 tanpi
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the tanpi functions (tan(pi*x)).

Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-05 21:42:10 +00:00
Joseph Myers
776938e8b8 Implement C23 sinpi
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the sinpi functions (sin(pi*x)).

Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-04 20:04:04 +00:00
Joseph Myers
0ae0af68d8 Implement C23 cospi
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the cospi functions (cos(pi*x)).

Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-04 10:20:44 +00:00
Joseph Myers
7ec903e028 Implement C23 exp2m1, exp10m1
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the exp2m1 and exp10m1 functions (exp2(x)-1 and
exp10(x)-1, like expm1).

As with other such functions, these use type-generic templates that
could be replaced with faster and more accurate type-specific
implementations in future.  Test inputs are copied from those for
expm1, plus some additions close to the overflow threshold (copied
from exp2 and exp10) and also some near the underflow threshold.

exp2m1 has the unusual property of having an input (M_MAX_EXP) where
whether the function overflows (under IEEE semantics) depends on the
rounding mode.  Although these could reasonably be XFAILed in the
testsuite (as we do in some cases for arguments very close to a
function's overflow threshold when an error of a few ulps in the
implementation can result in the implementation not agreeing with an
ideal one on whether overflow takes place - the testsuite isn't smart
enough to handle this automatically), since these functions aren't
required to be correctly rounding, I made the implementation check for
and handle this case specially.

The Makefile ordering expected by lint-makefiles for the new functions
is a bit peculiar, but I implemented it in this patch so that the test
passes; I don't know why log2 also needed moving in one Makefile
variable setting when it didn't in my previous patches, but the
failure showed a different place was expected for that function as
well.

The powerpc64le IFUNC setup seems not to be as self-contained as one
might hope; it shouldn't be necessary to add IFUNCs for new functions
such as these simply to get them building, but without setting up
IFUNCs for the new functions, there were undefined references to
__GI___expm1f128 (that IFUNC machinery results in no such function
being defined, but doesn't stop include/math.h from doing the
redirection resulting in the exp2m1f128 and exp10m1f128
implementations expecting to call it).

Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-06-17 16:31:49 +00:00
Joseph Myers
55eb99e9a9 Implement C23 log10p1
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the log10p1 functions (log10(1+x): like log1p, but for
base-10 logarithms).

This is directly analogous to the log2p1 implementation (except that
whereas log2p1 has a smaller underflow range than log1p, log10p1 has a
larger underflow range).  The test inputs are copied from those for
log1p and log2p1, plus a few more inputs in that wider underflow
range.

Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-06-17 13:48:13 +00:00
Joseph Myers
bb014f50c4 Implement C23 logp1
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the logp1 functions (aliases for log1p functions - the
name is intended to be more consistent with the new log2p1 and
log10p1, where clearly it would have been very confusing to name those
functions log21p and log101p).  As aliases rather than new functions,
the content of this patch is somewhat different from those actually
adding new functions.

Tests are shared with log1p, so this patch *does* mechanically update
all affected libm-test-ulps files to expect the same errors for both
functions.

The vector versions of log1p on aarch64 and x86_64 are *not* updated
to have logp1 aliases (and thus there are no corresponding header,
tests, abilist or ulps changes for vector functions either).  It would
be reasonable for such vector aliases and corresponding changes to
other files to be made separately.  For now, the log1p tests instead
avoid testing logp1 in the vector case (a Makefile change is needed to
avoid problems with grep, used in generating the .c files for vector
function tests, matching more than one ALL_RM_TEST line in a file
testing multiple functions with the same inputs, when it assumes that
the .inc file only has a single such line).

Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-06-17 13:47:09 +00:00
Joseph Myers
79c52daf47 Implement C23 log2p1
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the log2p1 functions (log2(1+x): like log1p, but for
base-2 logarithms).

This illustrates the intended structure of implementations of all
these function families: define them initially with a type-generic
template implementation.  If someone wishes to add type-specific
implementations, it is likely such implementations can be both faster
and more accurate than the type-generic one and can then override it
for types for which they are implemented (adding benchmarks would be
desirable in such cases to demonstrate that a new implementation is
indeed faster).

The test inputs are copied from those for log1p.  Note that these
changes make gen-auto-libm-tests depend on MPFR 4.2 (or later).

The bulk of the changes are fairly generic for any such new function.
(sysdeps/powerpc/nofpu/Makefile only needs changing for those
type-generic templates that use fabs.)

Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-05-20 13:41:39 +00:00
Joseph Myers
dee2bea048 C2x scanf binary constant handling
C2x adds binary integer constants starting with 0b or 0B, and supports
those constants for the %i scanf format (in addition to the %b format,
which isn't yet implemented for scanf in glibc).  Implement that scanf
support for glibc.

As with the strtol support, this is incompatible with previous C
standard versions, in that such an input string starting with 0b or 0B
was previously required to be parsed as 0 (with the rest of the input
potentially matching subsequent parts of the scanf format string).
Thus this patch adds 12 new __isoc23_* functions per long double
format (12, 24 or 36 depending on how many long double formats the
glibc configuration supports), with appropriate header redirection
support (generally very closely following that for the __isoc99_*
scanf functions - note that __GLIBC_USE (DEPRECATED_SCANF) takes
precedence over __GLIBC_USE (C2X_STRTOL), so the case of GNU
extensions to C89 continues to get old-style GNU %a and does not get
this new feature).  The function names would remain as __isoc23_* even
if C2x ends up published in 2024 rather than 2023.

When scanf %b support is added, I think it will be appropriate for all
versions of scanf to follow C2x rules for inputs to the %b format
(given that there are no compatibility concerns for a new format).

Tested for x86_64 (full glibc testsuite).  The first version was also
tested for powerpc (32-bit) and powerpc64le (stdio-common/ and wcsmbs/
tests), and with build-many-glibcs.py.
2023-03-02 19:10:37 +00:00
Joseph Myers
90f0ac10a7 Add fmaximum, fminimum functions
C2X adds new <math.h> functions for floating-point maximum and
minimum, corresponding to the new operations that were added in IEEE
754-2019 because of concerns about the old operations not being
associative in the presence of signaling NaNs.  fmaximum and fminimum
handle NaNs like most <math.h> functions (any NaN argument means the
result is a quiet NaN).  fmaximum_num and fminimum_num handle both
quiet and signaling NaNs the way fmax and fmin handle quiet NaNs (if
one argument is a number and the other is a NaN, return the number),
but still raise "invalid" for a signaling NaN argument, making them
exceptions to the normal rule that a function with a floating-point
result raising "invalid" also returns a quiet NaN.  fmaximum_mag,
fminimum_mag, fmaximum_mag_num and fminimum_mag_num are corresponding
functions returning the argument with greatest or least absolute
value.  All these functions also treat +0 as greater than -0.  There
are also corresponding <tgmath.h> type-generic macros.

Add these functions to glibc.  The implementations use type-generic
templates based on those for fmax, fmin, fmaxmag and fminmag, and test
inputs are based on those for those functions with appropriate
adjustments to the expected results.  The RISC-V maintainers might
wish to add optimized versions of fmaximum_num and fminimum_num (for
float and double), since RISC-V (F extension version 2.2 and later)
provides instructions corresponding to those functions - though it
might be at least as useful to add architecture-independent built-in
functions to GCC and teach the RISC-V back end to expand those
functions inline, which is what you generally want for functions that
can be implemented with a single instruction.

Tested for x86_64 and x86, and with build-many-glibcs.py.
2021-09-28 23:31:35 +00:00
Joseph Myers
b3f27d8150 Add narrowing fma functions
This patch adds the narrowing fused multiply-add functions from TS
18661-1 / TS 18661-3 / C2X to glibc's libm: ffma, ffmal, dfmal,
f32fmaf64, f32fmaf32x, f32xfmaf64 for all configurations; f32fmaf64x,
f32fmaf128, f64fmaf64x, f64fmaf128, f32xfmaf64x, f32xfmaf128,
f64xfmaf128 for configurations with _Float64x and _Float128;
__f32fmaieee128 and __f64fmaieee128 aliases in the powerpc64le case
(for calls to ffmal and dfmal when long double is IEEE binary128).
Corresponding tgmath.h macro support is also added.

The changes are mostly similar to those for the other narrowing
functions previously added, especially that for sqrt, so the
description of those generally applies to this patch as well.  As with
sqrt, I reused the same test inputs in auto-libm-test-in as for
non-narrowing fma rather than adding extra or separate inputs for
narrowing fma.  The tests in libm-test-narrow-fma.inc also follow
those for non-narrowing fma.

The non-narrowing fma has a known bug (bug 6801) that it does not set
errno on errors (overflow, underflow, Inf * 0, Inf - Inf).  Rather
than fixing this or having narrowing fma check for errors when
non-narrowing does not (complicating the cases when narrowing fma can
otherwise be an alias for a non-narrowing function), this patch does
not attempt to check for errors from narrowing fma and set errno; the
CHECK_NARROW_FMA macro is still present, but as a placeholder that
does nothing, and this missing errno setting is considered to be
covered by the existing bug rather than needing a separate open bug.
missing-errno annotations are duly added to many of the
auto-libm-test-in test inputs for fma.

This completes adding all the new functions from TS 18661-1 to glibc,
so will be followed by corresponding stdc-predef.h changes to define
__STDC_IEC_60559_BFP__ and __STDC_IEC_60559_COMPLEX__, as the support
for TS 18661-1 will be at a similar level to that for C standard
floating-point facilities up to C11 (pragmas not implemented, but
library functions done).  (There are still further changes to be done
to implement changes to the types of fromfp functions from N2548.)

Tested as followed: natively with the full glibc testsuite for x86_64
(GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC
11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32
hard float, mips64 (all three ABIs, both hard and soft float).  The
different GCC versions are to cover the different cases in tgmath.h
and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in
glibc headers, GCC 7 has proper _Float* support, GCC 8 adds
__builtin_tgmath).
2021-09-22 21:25:31 +00:00
Joseph Myers
abd383584b Add narrowing square root functions
This patch adds the narrowing square root functions from TS 18661-1 /
TS 18661-3 / C2X to glibc's libm: fsqrt, fsqrtl, dsqrtl, f32sqrtf64,
f32sqrtf32x, f32xsqrtf64 for all configurations; f32sqrtf64x,
f32sqrtf128, f64sqrtf64x, f64sqrtf128, f32xsqrtf64x, f32xsqrtf128,
f64xsqrtf128 for configurations with _Float64x and _Float128;
__f32sqrtieee128 and __f64sqrtieee128 aliases in the powerpc64le case
(for calls to fsqrtl and dsqrtl when long double is IEEE binary128).
Corresponding tgmath.h macro support is also added.

The changes are mostly similar to those for the other narrowing
functions previously added, so the description of those generally
applies to this patch as well.  However, the not-actually-narrowing
cases (where the two types involved in the function have the same
floating-point format) are aliased to sqrt, sqrtl or sqrtf128 rather
than needing a separately built not-actually-narrowing function such
as was needed for add / sub / mul / div.  Thus, there is no
__nldbl_dsqrtl name for ldbl-opt because no such name was needed
(whereas the other functions needed such a name since the only other
name for that entry point was e.g. f32xaddf64, not reserved by TS
18661-1); the headers are made to arrange for sqrt to be called in
that case instead.

The DIAG_* calls in sysdeps/ieee754/soft-fp/s_dsqrtl.c are because
they were observed to be needed in GCC 7 testing of
riscv32-linux-gnu-rv32imac-ilp32.  The other sysdeps/ieee754/soft-fp/
files added didn't need such DIAG_* in any configuration I tested with
build-many-glibcs.py, but if they do turn out to be needed in more
files with some other configuration / GCC version, they can always be
added there.

I reused the same test inputs in auto-libm-test-in as for
non-narrowing sqrt rather than adding extra or separate inputs for
narrowing sqrt.  The tests in libm-test-narrow-sqrt.inc also follow
those for non-narrowing sqrt.

Tested as followed: natively with the full glibc testsuite for x86_64
(GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC
11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32
hard float, mips64 (all three ABIs, both hard and soft float).  The
different GCC versions are to cover the different cases in tgmath.h
and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in
glibc headers, GCC 7 has proper _Float* support, GCC 8 adds
__builtin_tgmath).
2021-09-10 20:56:22 +00:00
Gabriel F. T. Gomes
d967237443 ldbl-128ibm-compat: Provide nexttoward functions
The functions in the nexttoward family are special, in the sense that
they always have a long double argument, regardless of their suffix
(i.e.: nexttowardf and nexttoward have a long double argument, besides
the float and double arguments).

On top of that, they are also special because nexttoward functions are
not part of the _FloatN API, hence __nexttowardf128 do not exist.

This patch adds 4 new function implementations for the new long double
format:

  __nexttoward_to_ieee128
  __nexttowardf_to_ieee128
  __nexttowardieee128 (as an alias to __nextafterieee128)

Likewise, rename "long double" "_Float128" in shared ldbl-128
files to ensure correct type is used irrespective of ABI
switches.

Thank you to those who helped out with this patch:

Co-Authored-By: Tulio Magno Quites Machado Filho  <tuliom@linux.ibm.com>
2020-02-28 08:20:02 -06:00
Tulio Magno Quites Machado Filho
f1a166b0d7 ldbl-128ibm-compat: Provide a significand implementation
Reuse the template in order to provide the global symbol
__significandieee128.
2020-02-28 08:20:02 -06:00
Tulio Magno Quites Machado Filho
218dad29e8 ldbl-128ibm-compat: Provide ieee128 symbols to narrow functions
Move the narrow math aliasing macros into a new sysdep header file
math-narrow-alias-float128.h.  Then, provide an override header
to supply the necessary changes to supply the *ieee128 aliases of
these symbols.

This adds ieee128 aliases for faddl, fdivl, fmull, fsubl, daddl, ddivl,
dmull, dsubl.
2020-02-20 17:12:14 -06:00
Tulio Magno Quites Machado Filho
2b7dc93f82 ldbl-128ibm-compat: Provide a scalb implementation
Reuse the template in order to provide the redirect for
scalbl to __scalbieee128, but avoid any extra aliasing
as this is intended to support long double redirects only.
2020-02-14 08:24:56 -06:00
Gabriel F. T. Gomes
3021e78178 ldbl-128ibm-compat: Add *cvt functions
This patch adds IEEE long double versions of q*cvt* functions for
powerpc64le.  Unlike all other long double to/from string conversion
functions, these do not rely on internal functions that can take
floating-point numbers with different formats and act on them
accordingly, instead, the related files are rebuilt with the
-mabi=ieeelongdouble compiler flag set.

Having -mabi=ieeelongdouble passed to the compiler causes the object
files to be marked with a .gnu_attribute that is incompatible with the
.gnu_attribute in files built with -mabi=ibmlongdouble (the default).
The difference causes error messages similar to the following:

  ld: libc_pic.a(s_isinfl.os) uses IBM long double,
      libc_pic.a(ieee128-qefgcvt_r.os) uses IEEE long double.
  collect2: error: ld returned 1 exit status
  make[2]: *** [../Makerules:649: libc_pic.os] Error 1

Although this warning is useful in other situations, the library
actually needs to have functions with different long double formats, so
.gnu_attribute generation is explicitly disabled for these files with
the use of -mno-gnu-attribute.

Tested for powerpc64le on the branch that actually enables the
sysdeps/ieee754/ldbl-128ibm-compat for powerpc64le.

Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
2019-12-23 16:32:20 -03:00
Gabriel F. T. Gomes
f1a0eb5b67 ldbl-128ibm-compat: Add ISO C99 versions of scanf functions
In the format string for *scanf functions, the '%as', '%aS', and '%a[]'
modifiers behave differently depending on ISO C99 compatibility.  When
_GNU_SOURCE is defined and -std=c89 is passed to the compiler, these
functions behave like ascanf, and the modifiers allocate memory for the
output.  Otherwise, the ISO C99 compliant version of these functions is
used, and the modifiers consume a floating-point argument.  This patch
adds the IEEE binary128 variant of ISO C99 compliant functions for the
third long double format on powerpc64le.

Tested for powerpc64le.

Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
2019-12-13 18:02:09 -03:00
Rajalakshmi Srinivasaraghavan
66fa30828a ldbl-128ibm-compat: Add strfmon_l with IEEE long double format
Similarly to what has been done for printf-like functions, more
specifically to the internal implementation in __vfprintf_internal, this
patch extends __vstrfmon_l_internal to deal with long double values with
binary128 format (as a third format option and reusing the float128
implementation).

Tested for powerpc64le, powerpc64, x86_64, and with build-many-glibcs.

Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
2019-12-03 13:30:37 -03:00
Gabriel F. T. Gomes
381b76d7a3 ldbl-128ibm-compat: Add syslog functions
Similarly to __vfprintf_internal and __vfscanf_internal, the internal
implementation of syslog functions (__vsyslog_internal) takes a
'mode_flags' parameter used to select the format of long double
parameters.  This patch adds variants of the syslog functions that set
'mode_flags' to PRINTF_LDBL_USES_FLOAT128, thus enabling the correct
printing of long double values on powerpc64le, when long double has IEEE
binary128 format (-mabi=ieeelongdouble).

Tested for powerpc64le.

Reviewed-by: Florian Weimer <fweimer@redhat.com>
Reviewed-by: Joseph Myers <joseph@codesourcery.com>
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
2019-11-27 15:52:41 -03:00
Gabriel F. T. Gomes
590ef889bc ldbl-128ibm-compat: Add obstack printing functions
Similarly to the functions from the *printf family, this patch adds
implementations for __obstack_*printf* functions that set the
'mode_flags' parameter to PRINTF_LDBL_USES_FLOAT128, before making calls
to __vfprintf_internal (indirectly through __obstack_vprintf_internal).

Tested for powerpc64le.

Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
2019-11-27 15:52:41 -03:00
Gabriel F. T. Gomes
9f25935dda ldbl-128ibm-compat: Add error.h functions
Use the recently added, internal functions, __error_at_line_internal and
__error_internal, to provide error.h functions that can take long double
arguments with IEEE binary128 format on platforms where long double can
also take double format or some non-IEEE format (currently, this means
powerpc64le).

Tested for powerpc64le.

Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
2019-11-27 15:52:41 -03:00
Gabriel F. T. Gomes
a23ed31463 ldbl-128ibm-compat: Add err.h functions
Use the recently added, internal functions, __vwarnx_internal and
__vwarn_internal, to provide err.h functions that can take long double
arguments with IEEE binary128 format on platforms where long double can
also take double format or some non-IEEE format (currently, this means
powerpc64le).

Tested for powerpc64le.

Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
2019-11-27 15:52:41 -03:00
Gabriel F. T. Gomes
77607e7d44 ldbl-128ibm-compat: Add argp_error and argp_failure
Use the recently added, internal functions, __argp_error_internal and
__argp_failure_internal, to provide argp_error and argp_failure that can
take long double arguments with IEEE binary128 format on platforms where
long double can also take double format or some non-IEEE format
(currently, this means powerpc64le).

Tested for powerpc64le.

Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
2019-11-27 15:52:41 -03:00
Gabriel F. T. Gomes
b370c5f014 ldbl-128ibm-compat: Add wide character scanning functions
Similarly to what was done for regular character scanning functions,
this patch uses the new mode mask, SCANF_LDBL_USES_FLOAT128, in the
'mode' argument of the wide characters scanning function,
__vfwscanf_internal (which is also extended to support scanning
floating-point values with IEEE binary128, by redirecting calls to
__wcstold_internal to __wcstof128_internal).

Tested for powerpc64le.

Reviewed-By: Paul E. Murphy <murphyp@linux.ibm.com>
2019-11-22 18:13:20 -03:00
Gabriel F. T. Gomes
a5b15bdec8 ldbl-128ibm-compat: Add regular character scanning functions
The 'mode' argument to __vfscanf_internal allows the selection of the
long double format for all long double arguments requested by the format
string.  Currently, there are two possibilities: long double with the
same format as double or long double as something else.  The 'something
else' format varies between architectures, and on powerpc64le, it means
IBM Extended Precision format.

In preparation for the third option of long double format on
powerpc64le, this patch uses the new mode mask,
SCANF_LDBL_USES_FLOAT128, which tells __vfscanf_internal to call
__strtof128_internal, instead of __strtold_internal, and save the output
into a _Float128 variable.

Tested for powerpc64le.

Reviewed-By: Paul E. Murphy <murphyp@linux.ibm.com>
2019-11-22 18:13:01 -03:00
Gabriel F. T. Gomes
329037cead ldbl-128ibm-compat: Add wide character, fortified printing functions
Similarly to what was done for the regular character, fortified printing
functions, this patch combines the mode masks PRINTF_LDBL_USES_FLOAT128
and PRINTF_FORTIFY to provide wide character versions of fortified
printf functions.  It also adds two flavors of test cases: one that
explicitly calls the fortified functions, and another that reuses the
non-fortified test, but defining _FORTIFY_SOURCE as 2.  The first
guarantees that the implementations are actually being tested
(independently of what's in bits/wchar2.h), whereas the second
guarantees that the redirections calls the correct function in the IBM
and IEEE long double cases.

Tested for powerpc64le.

Reviewed-By: Paul E. Murphy <murphyp@linux.ibm.com>
2019-11-22 18:12:27 -03:00
Gabriel F. T. Gomes
5aa64dbc29 ldbl-128ibm-compat: Add regular character, fortified printing functions
Since the introduction of internal functions with explicit flags for the
printf family of functions, the 'mode' parameter can be used to select
which format long double parameters have (with the mode flags:
PRINTF_LDBL_IS_DBL and PRINTF_LDBL_USES_FLOAT128), as well as to select
whether to check for overflows (mode flag: PRINTF_FORTIFY).

This patch combines PRINTF_LDBL_USES_FLOAT128 and PRINTF_FORTIFY to
provide the IEEE binary128 version of printf-like function for platforms
where long double can take this format, in addition to the double format
and to some non-ieee format (currently, this means powerpc64le).

There are two flavors of test cases provided with this patch: one that
explicitly calls the fortified functions, for instance __asprintf_chk,
and another that reuses the non-fortified test, but defining
_FORTIFY_SOURCE as 2.  The first guarantees that the implementations are
actually being tested (in bits/stdio2.h, vprintf gets redirected to
__vfprintf_chk, which would leave __vprintf_chk untested), whereas the
second guarantees that the redirections calls the correct function in
the IBM and IEEE long double cases.

Tested for powerpc64le.

Reviewed-By: Paul E. Murphy <murphyp@linux.ibm.com>
2019-11-22 18:11:49 -03:00
Gabriel F. T. Gomes
1771a5cf0e ldbl-128ibm-compat: Add wide character printing functions
Similarly to what was done for regular character printing functions,
this patch uses the new mode mask, PRINTF_LDBL_USES_FLOAT128, in the
'mode' argument of the wide characters printing function,
__vfwprintf_internal (which is also extended to support printing
floating-point values with IEEE binary128, by saving floating-point
values into variables of type __float128 and adjusting the parameters to
__printf_fp and __printf_fphex as if it was a call from a wide-character
version of strfromf128 (even though such version does not exist)).

Tested for powerpc64le.

Reviewed-By: Paul E. Murphy <murphyp@linux.ibm.com>
2019-11-22 18:11:38 -03:00
Gabriel F. T. Gomes
421a1d34bf ldbl-128ibm-compat: Add regular character printing functions
The 'mode' argument to __vfprintf_internal allows the selection of the
long double format for all long double arguments requested by the format
string.  Currently, there are two possibilities: long double with the
same format as double or long double as something else.  The 'something
else' format varies between architectures, and on powerpc64le, it means
IBM Extended Precision format.

In preparation for the third option of long double format on
powerpc64le, this patch uses the new mode mask,
PRINTF_LDBL_USES_FLOAT128, which tells __vfprintf_internal to save the
floating-point values into variables of type __float128 and adjusts the
parameters to __printf_fp and __printf_fphex as if it was a call from
strfromf128.

Many files from the stdio-common, wcsmbs, argp, misc, and libio
directories will have IEEE binary128 counterparts.  Setting the correct
compiler options to these files (original and counterparts) would
produce a large amount of repetitive Makefile rules.  To avoid this
repetition, this patch adds a Makefile routine that iterates over the
files adding or removing the appropriate flags.

Tested for powerpc64le.

Reviewed-By: Florian Weimer <fweimer@redhat.com>
Reviewed-By: Joseph Myers <joseph@codesourcery.com>
Reviewed-By: Paul E. Murphy <murphyp@linux.ibm.com>
2019-11-22 18:10:52 -03:00
Gabriel F. T. Gomes
b7b88cea41 ldbl-128ibm-compat: Add printf_size
Since the addition of the _Float128 API, strfromf128 and printf_size use
__printf_fp to print _Float128 values.  This is achieved by setting the
'is_binary128' member of the 'printf_info' structure to one.  Now that
the format of long double on powerpc64le is getting a third option, this
mechanism is reused for long double values that have binary128 format
(i.e.: when -mabi=ieeelongdouble).

This patch adds __printf_sizeieee128 as an exported symbol, but doesn't
provide redirections from printf_size, yet.  All redirections will be
installed in a future commit, once all other functions that print or
read long double values with binary128 format are ready.  In
__printf_fp, when 'is_binary128' is one, the floating-point argument is
treated as if it was of _Float128 type, regardless of the value of
'is_long_double', thus __printf_sizeieee128 sets 'is_binary128' to the
same value of 'is_long_double'.  Otherwise, double values would not be
printed correctly.

Tested for powerpc64le.
2018-07-02 10:51:01 -03:00
Rajalakshmi Srinivasaraghavan
86a0f56158 ldbl-128ibm-compat: Introduce ieee128 symbols
This patch adds __*ieee128 symbols for strfrom, strtold, strtold_l, wcstold
and wcstold_l functions.  Redirection from *l to *ieee128 will be handled
in separate patch once we start building these new files.

2018-06-28  Rajalakshmi Srinivasaraghavan  <raji@linux.vnet.ibm.com>

	* sysdeps/ieee754/ldbl-128ibm-compat/Versions: Add __strfromieee128,
	 __strtoieee128, __strtoieee128_l,__wcstoieee128 and __wcstoieee128_l.
	* sysdeps/ieee754/ldbl-128ibm-compat/strfromf128.c: New file.
	* sysdeps/ieee754/ldbl-128ibm-compat/strtof128.c: New file.
	* sysdeps/ieee754/ldbl-128ibm-compat/strtof128_l.c: New file.
	* sysdeps/ieee754/ldbl-128ibm-compat/wcstof128.c: New file.
	* sysdeps/ieee754/ldbl-128ibm-compat/wcstof128_l.c: New file.
2018-06-28 13:57:50 +05:30
Tulio Magno Quites Machado Filho
209ae17c60 ldbl-128ibm-compat: Create libm-alias-float128.h
Add a new libm-alias-float128.h in order to provide the __*ieee128
aliases for the existing *f128 that do not have a globally exported
symbol.

	* sysdeps/ieee754/ldbl-128ibm-compat/Versions: New file.
	* sysdeps/ieee754/ldbl-128ibm-compat/libm-alias-float128.h: New file.
2018-06-20 19:02:07 -03:00