mirror of
https://sourceware.org/git/glibc.git
synced 2025-08-08 17:42:12 +03:00
Convert remaining complex function to generated files
Convert cpow, clog, clog10, cexp, csqrt, and cproj functions into generated templates. Note, ldbl-opt still retains s_clog10l.c as the aliasing rules are non-trivial.
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
/* Return value of complex exponential function for double complex value.
|
||||
/* Return value of complex exponential function for a float type.
|
||||
Copyright (C) 1997-2016 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
||||
@@ -23,10 +23,10 @@
|
||||
#include <math_private.h>
|
||||
#include <float.h>
|
||||
|
||||
__complex__ double
|
||||
__cexp (__complex__ double x)
|
||||
CFLOAT
|
||||
M_DECL_FUNC (__cexp) (CFLOAT x)
|
||||
{
|
||||
__complex__ double retval;
|
||||
CFLOAT retval;
|
||||
int rcls = fpclassify (__real__ x);
|
||||
int icls = fpclassify (__imag__ x);
|
||||
|
||||
@@ -36,22 +36,22 @@ __cexp (__complex__ double x)
|
||||
if (__glibc_likely (icls >= FP_ZERO))
|
||||
{
|
||||
/* Imaginary part is finite. */
|
||||
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2);
|
||||
double sinix, cosix;
|
||||
const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
|
||||
FLOAT sinix, cosix;
|
||||
|
||||
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
|
||||
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
|
||||
{
|
||||
__sincos (__imag__ x, &sinix, &cosix);
|
||||
M_SINCOS (__imag__ x, &sinix, &cosix);
|
||||
}
|
||||
else
|
||||
{
|
||||
sinix = __imag__ x;
|
||||
cosix = 1.0;
|
||||
cosix = 1;
|
||||
}
|
||||
|
||||
if (__real__ x > t)
|
||||
{
|
||||
double exp_t = __ieee754_exp (t);
|
||||
FLOAT exp_t = M_EXP (t);
|
||||
__real__ x -= t;
|
||||
sinix *= exp_t;
|
||||
cosix *= exp_t;
|
||||
@@ -65,12 +65,12 @@ __cexp (__complex__ double x)
|
||||
if (__real__ x > t)
|
||||
{
|
||||
/* Overflow (original real part of x > 3t). */
|
||||
__real__ retval = DBL_MAX * cosix;
|
||||
__imag__ retval = DBL_MAX * sinix;
|
||||
__real__ retval = M_MAX * cosix;
|
||||
__imag__ retval = M_MAX * sinix;
|
||||
}
|
||||
else
|
||||
{
|
||||
double exp_val = __ieee754_exp (__real__ x);
|
||||
FLOAT exp_val = M_EXP (__real__ x);
|
||||
__real__ retval = exp_val * cosix;
|
||||
__imag__ retval = exp_val * sinix;
|
||||
}
|
||||
@@ -80,8 +80,8 @@ __cexp (__complex__ double x)
|
||||
{
|
||||
/* If the imaginary part is +-inf or NaN and the real part
|
||||
is not +-inf the result is NaN + iNaN. */
|
||||
__real__ retval = __nan ("");
|
||||
__imag__ retval = __nan ("");
|
||||
__real__ retval = M_NAN;
|
||||
__imag__ retval = M_NAN;
|
||||
|
||||
feraiseexcept (FE_INVALID);
|
||||
}
|
||||
@@ -92,7 +92,7 @@ __cexp (__complex__ double x)
|
||||
if (__glibc_likely (icls >= FP_ZERO))
|
||||
{
|
||||
/* Imaginary part is finite. */
|
||||
double value = signbit (__real__ x) ? 0.0 : HUGE_VAL;
|
||||
FLOAT value = signbit (__real__ x) ? 0 : M_HUGE_VAL;
|
||||
|
||||
if (icls == FP_ZERO)
|
||||
{
|
||||
@@ -102,46 +102,46 @@ __cexp (__complex__ double x)
|
||||
}
|
||||
else
|
||||
{
|
||||
double sinix, cosix;
|
||||
FLOAT sinix, cosix;
|
||||
|
||||
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
|
||||
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
|
||||
{
|
||||
__sincos (__imag__ x, &sinix, &cosix);
|
||||
M_SINCOS (__imag__ x, &sinix, &cosix);
|
||||
}
|
||||
else
|
||||
{
|
||||
sinix = __imag__ x;
|
||||
cosix = 1.0;
|
||||
cosix = 1;
|
||||
}
|
||||
|
||||
__real__ retval = __copysign (value, cosix);
|
||||
__imag__ retval = __copysign (value, sinix);
|
||||
__real__ retval = M_COPYSIGN (value, cosix);
|
||||
__imag__ retval = M_COPYSIGN (value, sinix);
|
||||
}
|
||||
}
|
||||
else if (signbit (__real__ x) == 0)
|
||||
{
|
||||
__real__ retval = HUGE_VAL;
|
||||
__imag__ retval = __nan ("");
|
||||
__real__ retval = M_HUGE_VAL;
|
||||
__imag__ retval = M_NAN;
|
||||
|
||||
if (icls == FP_INFINITE)
|
||||
feraiseexcept (FE_INVALID);
|
||||
}
|
||||
else
|
||||
{
|
||||
__real__ retval = 0.0;
|
||||
__imag__ retval = __copysign (0.0, __imag__ x);
|
||||
__real__ retval = 0;
|
||||
__imag__ retval = M_COPYSIGN (0, __imag__ x);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* If the real part is NaN the result is NaN + iNaN unless the
|
||||
imaginary part is zero. */
|
||||
__real__ retval = __nan ("");
|
||||
__real__ retval = M_NAN;
|
||||
if (icls == FP_ZERO)
|
||||
__imag__ retval = __imag__ x;
|
||||
else
|
||||
{
|
||||
__imag__ retval = __nan ("");
|
||||
__imag__ retval = M_NAN;
|
||||
|
||||
if (rcls != FP_NAN || icls != FP_NAN)
|
||||
feraiseexcept (FE_INVALID);
|
||||
@@ -150,8 +150,8 @@ __cexp (__complex__ double x)
|
||||
|
||||
return retval;
|
||||
}
|
||||
weak_alias (__cexp, cexp)
|
||||
#ifdef NO_LONG_DOUBLE
|
||||
strong_alias (__cexp, __cexpl)
|
||||
weak_alias (__cexp, cexpl)
|
||||
declare_mgen_alias (__cexp, cexp)
|
||||
|
||||
#if M_LIBM_NEED_COMPAT (cexp)
|
||||
declare_mgen_libm_compat (__cexp, cexp)
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user