1
0
mirror of https://sourceware.org/git/glibc.git synced 2025-08-07 06:43:00 +03:00

AArch64: Implement AdvSIMD and SVE atanpi/f

Implement double and single precision variants of the C23 routine atanpi
for both AdvSIMD and SVE.

Reviewed-by: Wilco Dijkstra  <Wilco.Dijkstra@arm.com>
This commit is contained in:
Dylan Fleming
2025-05-19 12:44:20 +00:00
committed by Wilco Dijkstra
parent 0ef2cf44e7
commit edf6202815
15 changed files with 461 additions and 0 deletions

View File

@@ -395,4 +395,15 @@
#define __DECL_SIMD_asinpif32x #define __DECL_SIMD_asinpif32x
#define __DECL_SIMD_asinpif64x #define __DECL_SIMD_asinpif64x
#define __DECL_SIMD_asinpif128x #define __DECL_SIMD_asinpif128x
#define __DECL_SIMD_atanpi
#define __DECL_SIMD_atanpif
#define __DECL_SIMD_atanpil
#define __DECL_SIMD_atanpif16
#define __DECL_SIMD_atanpif32
#define __DECL_SIMD_atanpif64
#define __DECL_SIMD_atanpif128
#define __DECL_SIMD_atanpif32x
#define __DECL_SIMD_atanpif64x
#define __DECL_SIMD_atanpif128x
#endif #endif

View File

@@ -74,6 +74,7 @@ __MATHCALL (asinpi,, (_Mdouble_ __x));
__MATHCALL_VEC (asinpi,, (_Mdouble_ __x)); __MATHCALL_VEC (asinpi,, (_Mdouble_ __x));
/* Arc tangent of X, divided by pi. */ /* Arc tangent of X, divided by pi. */
__MATHCALL (atanpi,, (_Mdouble_ __x)); __MATHCALL (atanpi,, (_Mdouble_ __x));
__MATHCALL_VEC (atanpi,, (_Mdouble_ __x));
/* Arc tangent of Y/X, divided by pi. */ /* Arc tangent of Y/X, divided by pi. */
__MATHCALL (atan2pi,, (_Mdouble_ __y, _Mdouble_ __x)); __MATHCALL (atan2pi,, (_Mdouble_ __y, _Mdouble_ __x));

View File

@@ -6,6 +6,7 @@ libmvec-supported-funcs = acos \
asinpi \ asinpi \
atan \ atan \
atanh \ atanh \
atanpi \
atan2 \ atan2 \
cbrt \ cbrt \
cos \ cos \

View File

@@ -168,5 +168,10 @@ libmvec {
_ZGVnN4v_asinpif; _ZGVnN4v_asinpif;
_ZGVsMxv_asinpi; _ZGVsMxv_asinpi;
_ZGVsMxv_asinpif; _ZGVsMxv_asinpif;
_ZGVnN2v_atanpi;
_ZGVnN2v_atanpif;
_ZGVnN4v_atanpif;
_ZGVsMxv_atanpi;
_ZGVsMxv_atanpif;
} }
} }

View File

@@ -25,6 +25,7 @@ libmvec_hidden_proto (V_NAME_F1(asinh));
libmvec_hidden_proto (V_NAME_F1(asinpi)); libmvec_hidden_proto (V_NAME_F1(asinpi));
libmvec_hidden_proto (V_NAME_F1(atan)); libmvec_hidden_proto (V_NAME_F1(atan));
libmvec_hidden_proto (V_NAME_F1(atanh)); libmvec_hidden_proto (V_NAME_F1(atanh));
libmvec_hidden_proto (V_NAME_F1(atanpi));
libmvec_hidden_proto (V_NAME_F1(cbrt)); libmvec_hidden_proto (V_NAME_F1(cbrt));
libmvec_hidden_proto (V_NAME_F1(cos)); libmvec_hidden_proto (V_NAME_F1(cos));
libmvec_hidden_proto (V_NAME_F1(cosh)); libmvec_hidden_proto (V_NAME_F1(cosh));

View File

@@ -0,0 +1,117 @@
/* Double-Precision vector (Advanced SIMD) inverse tanpi function
Copyright (C) 2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
static const struct data
{
double c2, c4, c6, c8, c10, c12, c14, c16, c18, c20;
float64x2_t c0, c1, c3, c5, c7, c9, c11, c13, c15, c17, c19;
} data = {
/* Coefficients of polynomial P such that atanpi(x)~x*P(x^2) on
[2^-1022, 1.0]. */
.c0 = V2 (0x1.45f306dc9c883p-2), .c1 = V2 (-0x1.b2995e7b7ba4ap-4),
.c2 = 0x1.04c26be3d2c1p-4, .c3 = V2 (-0x1.7483759c17ea1p-5),
.c4 = 0x1.21bb95c315d57p-5, .c5 = V2 (-0x1.da1bdc3d453f3p-6),
.c6 = 0x1.912d20459b4bfp-6, .c7 = V2 (-0x1.5bbd4545cad1fp-6),
.c8 = 0x1.331b83bec30a1p-6, .c9 = V2 (-0x1.13d6457f44de3p-6),
.c10 = 0x1.f8e802974db94p-7, .c11 = V2 (-0x1.d7e173ab04a1ap-7),
.c12 = 0x1.bdfa47d6a4f28p-7, .c13 = V2 (-0x1.9ba78f3232ceep-7),
.c14 = 0x1.5e6044590ab4fp-7, .c15 = V2 (-0x1.01ccfdeb9f77fp-7),
.c16 = 0x1.345cf0d4eb1c1p-8, .c17 = V2 (-0x1.19e5f00f67e3ap-9),
.c18 = 0x1.6d3035ac7625bp-11, .c19 = V2 (-0x1.286bb9ae4ed79p-13),
.c20 = 0x1.c37ec36da0e1ap-17,
};
#define SignMask v_u64 (0x8000000000000000)
/* Fast implementation of vector atanpi.
atanpi(x) ~ shift + z * P(z^2) with reduction to [0,1] using
z=1/x and shift = +-1/2. Maximum observed error is 2.76 ulps:
_ZGVnN2v_atanpi(0x1.fa2d6912cd64fp-1) got 0x1.fc45a51bd497fp-3
want 0x1.fc45a51bd497cp-3. */
float64x2_t VPCS_ATTR V_NAME_D1 (atanpi) (float64x2_t x)
{
const struct data *d = ptr_barrier (&data);
uint64x2_t ix = vreinterpretq_u64_f64 (x);
uint64x2_t sign = vandq_u64 (ix, SignMask);
/* Argument Reduction:
y := arctanpi(x) for |x| < 1
y := arctanpi(-1/x) + 1/2 for x > 1
y := arctanpi(-1/x) - 1/2 for x < -1
Hence, use z=-1/a if |x|>=|-1|, otherwise z=a. */
uint64x2_t red = vcagtq_f64 (x, v_f64 (-1.0));
float64x2_t z = vbslq_f64 (red, vdivq_f64 (v_f64 (-1.0), x), x);
/* Shift is calculated as +1/2 or 0, depending on the argument case. */
float64x2_t shift = vreinterpretq_f64_u64 (
vandq_u64 (red, vreinterpretq_u64_f64 (v_f64 (0.5))));
/* Reinsert sign bit from argument into the shift value. */
shift = vreinterpretq_f64_u64 (
veorq_u64 (vreinterpretq_u64_f64 (shift), sign));
/* Calculate polynomial approximation P(z^2) with deg(P)=19. */
float64x2_t z2 = vmulq_f64 (z, z);
float64x2_t z4 = vmulq_f64 (z2, z2);
float64x2_t z8 = vmulq_f64 (z4, z4);
float64x2_t z16 = vmulq_f64 (z8, z8);
float64x2_t c24 = vld1q_f64 (&d->c2);
float64x2_t c68 = vld1q_f64 (&d->c6);
/* Order-7 Estrin. */
float64x2_t p12 = vfmaq_laneq_f64 (d->c1, z2, c24, 0);
float64x2_t p34 = vfmaq_laneq_f64 (d->c3, z2, c24, 1);
float64x2_t p56 = vfmaq_laneq_f64 (d->c5, z2, c68, 0);
float64x2_t p78 = vfmaq_laneq_f64 (d->c7, z2, c68, 1);
float64x2_t p14 = vfmaq_f64 (p12, z4, p34);
float64x2_t p58 = vfmaq_f64 (p56, z4, p78);
float64x2_t p18 = vfmaq_f64 (p14, z8, p58);
/* Order-11 Estrin. */
float64x2_t c1012 = vld1q_f64 (&d->c10);
float64x2_t c1416 = vld1q_f64 (&d->c14);
float64x2_t c1820 = vld1q_f64 (&d->c18);
float64x2_t p910 = vfmaq_laneq_f64 (d->c9, z2, c1012, 0);
float64x2_t p1112 = vfmaq_laneq_f64 (d->c11, z2, c1012, 1);
float64x2_t p912 = vfmaq_f64 (p910, z4, p1112);
float64x2_t p1314 = vfmaq_laneq_f64 (d->c13, z2, c1416, 0);
float64x2_t p1516 = vfmaq_laneq_f64 (d->c15, z2, c1416, 1);
float64x2_t p1316 = vfmaq_f64 (p1314, z4, p1516);
float64x2_t p1718 = vfmaq_laneq_f64 (d->c17, z2, c1820, 0);
float64x2_t p1920 = vfmaq_laneq_f64 (d->c19, z2, c1820, 1);
float64x2_t p1720 = vfmaq_f64 (p1718, z4, p1920);
float64x2_t p916 = vfmaq_f64 (p912, z8, p1316);
float64x2_t p920 = vfmaq_f64 (p916, z16, p1720);
float64x2_t y = vfmaq_f64 (p18, p920, z16);
y = vfmaq_f64 (d->c0, z2, y);
/* y = shift + z * p(z^2). */
return vfmaq_f64 (shift, z, y);
}

View File

@@ -0,0 +1,127 @@
/* Double-Precision vector (SVE) inverse tanpi function
Copyright (C) 2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "sv_math.h"
static const struct data
{
float64_t c2, c4, c6, c8, c10, c12, c14, c16, c18, c20;
float64_t c0, c1, c3, c5, c7, c9, c11, c13, c15, c17, c19;
float64_t shift_val, neg_one;
} data = {
/* Coefficients of polnomial P such that atan(x)~x+x*P(x^2) on
[2^-1022, 1.0]. */
.c0 = 0x1.45f306dc9c883p-2,
.c1 = -0x1.b2995e7b7ba4ap-4,
.c2 = 0x1.04c26be3d2c1p-4,
.c3 = -0x1.7483759c17ea1p-5,
.c4 = 0x1.21bb95c315d57p-5,
.c5 = -0x1.da1bdc3d453f3p-6,
.c6 = 0x1.912d20459b4bfp-6,
.c7 = -0x1.5bbd4545cad1fp-6,
.c8 = 0x1.331b83bec30a1p-6,
.c9 = -0x1.13d6457f44de3p-6,
.c10 = 0x1.f8e802974db94p-7,
.c11 = -0x1.d7e173ab04a1ap-7,
.c12 = 0x1.bdfa47d6a4f28p-7,
.c13 = -0x1.9ba78f3232ceep-7,
.c14 = 0x1.5e6044590ab4fp-7,
.c15 = -0x1.01ccfdeb9f77fp-7,
.c16 = 0x1.345cf0d4eb1c1p-8,
.c17 = -0x1.19e5f00f67e3ap-9,
.c18 = 0x1.6d3035ac7625bp-11,
.c19 = -0x1.286bb9ae4ed79p-13,
.c20 = 0x1.c37ec36da0e1ap-17,
.shift_val = 1.5,
.neg_one = -1,
};
/* Fast implementation of SVE atan.
Based on atan(x) ~ shift + z + z^3 * P(z^2) with reduction to 0,1 using
z=1/x and shift = pi/2. Largest errors are close to 1. The maximum observed
error is 2.80 ulps:
_ZGVsMxv_atanpi(0x1.f19587d63c76fp-1) got 0x1.f6b1304817d02p-3
want 0x1.f6b1304817d05p-3. */
svfloat64_t SV_NAME_D1 (atanpi) (svfloat64_t x, const svbool_t pg)
{
const struct data *d = ptr_barrier (&data);
svbool_t ptrue = svptrue_b64 ();
svuint64_t ix = svreinterpret_u64 (x);
svuint64_t sign = svand_x (pg, ix, 0x8000000000000000);
/* Argument reduction:
y := arctan(x) for x < 1
y := pi/2 + arctan(-1/x) for x > 1
Hence, use z=-1/a if x>=1, otherwise z=a. */
svbool_t red = svacgt (pg, x, d->neg_one);
svfloat64_t z = svsel (red, svdiv_x (pg, sv_f64 (d->neg_one), x), x);
/* Reuse of -1.0f to reduce constant loads,
We need a shift value of 1/2, which is created via -1 + (1 + 1/2). */
svfloat64_t shift
= svadd_z (red, sv_f64 (d->neg_one), sv_f64 (d->shift_val));
/* Reinserts the sign bit of the argument to handle the case of x < -1. */
shift = svreinterpret_f64 (sveor_x (pg, svreinterpret_u64 (shift), sign));
/* Use split Estrin scheme for P(z^2) with deg(P)=19. */
svfloat64_t z2 = svmul_x (ptrue, z, z);
svfloat64_t z4 = svmul_x (ptrue, z2, z2);
svfloat64_t z8 = svmul_x (ptrue, z4, z4);
svfloat64_t z16 = svmul_x (ptrue, z8, z8);
/* Order-7 Estrin. */
svfloat64_t c24 = svld1rq (ptrue, &d->c2);
svfloat64_t c68 = svld1rq (ptrue, &d->c6);
svfloat64_t p12 = svmla_lane (sv_f64 (d->c1), z2, c24, 0);
svfloat64_t p34 = svmla_lane (sv_f64 (d->c3), z2, c24, 1);
svfloat64_t p56 = svmla_lane (sv_f64 (d->c5), z2, c68, 0);
svfloat64_t p78 = svmla_lane (sv_f64 (d->c7), z2, c68, 1);
svfloat64_t p14 = svmla_x (pg, p12, z4, p34);
svfloat64_t p58 = svmla_x (pg, p56, z4, p78);
svfloat64_t p18 = svmla_x (pg, p14, z8, p58);
/* Order-11 Estrin. */
svfloat64_t c1012 = svld1rq (ptrue, &d->c10);
svfloat64_t c1416 = svld1rq (ptrue, &d->c14);
svfloat64_t c1820 = svld1rq (ptrue, &d->c18);
svfloat64_t p910 = svmla_lane (sv_f64 (d->c9), z2, c1012, 0);
svfloat64_t p1112 = svmla_lane (sv_f64 (d->c11), z2, c1012, 1);
svfloat64_t p912 = svmla_x (pg, p910, z4, p1112);
svfloat64_t p1314 = svmla_lane (sv_f64 (d->c13), z2, c1416, 0);
svfloat64_t p1516 = svmla_lane (sv_f64 (d->c15), z2, c1416, 1);
svfloat64_t p1316 = svmla_x (pg, p1314, z4, p1516);
svfloat64_t p1718 = svmla_lane (sv_f64 (d->c17), z2, c1820, 0);
svfloat64_t p1920 = svmla_lane (sv_f64 (d->c19), z2, c1820, 1);
svfloat64_t p1720 = svmla_x (pg, p1718, z4, p1920);
svfloat64_t p916 = svmla_x (pg, p912, z8, p1316);
svfloat64_t p920 = svmla_x (pg, p916, z16, p1720);
svfloat64_t y = svmla_x (pg, p18, z16, p920);
y = svmla_x (pg, sv_f64 (d->c0), z2, y);
return svmla_x (pg, shift, z, y);
}

View File

@@ -0,0 +1,92 @@
/* Single-Precision vector (Advanced SIMD) inverse tanpi function
Copyright (C) 2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
static const struct data
{
uint32x4_t half;
float32x4_t neg_one;
float32x4_t c0, c1, c3, c5, c7;
float c2, c4, c6, c8;
} data = {
/* Polynomial coefficients generated using Remez algorithm,
see atanpi.sollya for details. */
.c0 = V4 (0x1.45f306p-2), .c1 = V4 (-0x1.b2975ep-4),
.c2 = 0x1.0490e4p-4, .c3 = V4 (-0x1.70c272p-5),
.c4 = 0x1.0eef52p-5, .c5 = V4 (-0x1.6abbbap-6),
.c6 = 0x1.78157p-7, .c7 = V4 (-0x1.f0b406p-9),
.c8 = 0x1.2ae7fep-11, .half = V4 (0x3f000000),
.neg_one = V4 (-1.0f),
};
#define SignMask v_u32 (0x80000000)
/* Fast implementation of vector atanpif based on
atanpi(x) ~ shift + z * P(z^2) with reduction to [0,1]
using z=-1/x and shift = +-1/2.
Maximum observed error is 2.59ulps:
_ZGVnN4v_atanpif (0x1.f2a89cp-1) got 0x1.f76524p-3
want 0x1.f7651ep-3. */
float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (atanpi) (float32x4_t x)
{
const struct data *d = ptr_barrier (&data);
uint32x4_t ix = vreinterpretq_u32_f32 (x);
uint32x4_t sign = vandq_u32 (ix, SignMask);
/* Argument Reduction:
y := arctanpi(x) for |x| < 1
y := arctanpi(-1/x) + 1/2 for x > 1
y := arctanpi(-1/x) - 1/2 for x < -1
Hence, use z=-1/a if |x|>=|-1|, otherwise z=a. */
uint32x4_t red = vcagtq_f32 (x, d->neg_one);
float32x4_t z = vbslq_f32 (red, vdivq_f32 (d->neg_one, x), x);
/* Shift is calculated as +1/2 or 0, depending on the argument case. */
float32x4_t shift = vreinterpretq_f32_u32 (vandq_u32 (red, d->half));
/* Reinsert sign bit from argument into the shift value. */
shift = vreinterpretq_f32_u32 (
veorq_u32 (vreinterpretq_u32_f32 (shift), sign));
/* Uses an Estrin scheme for polynomial approximation. */
float32x4_t z2 = vmulq_f32 (z, z);
float32x4_t z4 = vmulq_f32 (z2, z2);
float32x4_t z8 = vmulq_f32 (z4, z4);
float32x4_t even_coeffs = vld1q_f32 (&d->c2);
float32x4_t p12 = vfmaq_laneq_f32 (d->c1, z2, even_coeffs, 0);
float32x4_t p34 = vfmaq_laneq_f32 (d->c3, z2, even_coeffs, 1);
float32x4_t p56 = vfmaq_laneq_f32 (d->c5, z2, even_coeffs, 2);
float32x4_t p78 = vfmaq_laneq_f32 (d->c7, z2, even_coeffs, 3);
float32x4_t p14 = vfmaq_f32 (p12, z4, p34);
float32x4_t p58 = vfmaq_f32 (p56, z4, p78);
float32x4_t y = vfmaq_f32 (p14, z8, p58);
y = vfmaq_f32 (d->c0, z2, y);
/* y = shift + z * P(z^2). */
return vfmaq_f32 (shift, z, y);
}
libmvec_hidden_def (V_NAME_F1 (atanpi))
HALF_WIDTH_ALIAS_F1 (atanpi)

View File

@@ -0,0 +1,89 @@
/* Single-Precision vector (SVE) inverse tanpi function
Copyright (C) 2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "sv_math.h"
static const struct data
{
float32_t c2, c4, c6, c8;
float32_t c0, c1, c3, c5, c7;
float32_t shift_val, neg_one;
} data = {
/* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
[2**-128, 1.0]. */
.c0 = 0x1.45f306p-2, .c1 = -0x1.b2975ep-4, .c2 = 0x1.0490e4p-4,
.c3 = -0x1.70c272p-5, .c4 = 0x1.0eef52p-5, .c5 = -0x1.6abbbap-6,
.c6 = 0x1.78157p-7, .c7 = -0x1.f0b406p-9, .c8 = 0x1.2ae7fep-11,
.shift_val = 1.5f, .neg_one = -1.0f,
};
#define SignMask (0x80000000)
/* Fast implementation of SVE atanpif based on
atan(x) ~ shift + z * P(z^2) with reduction to [0,1] using
z=-1/x and shift = 1/2.
Largest observed error is 2.59 ULP, close to +/-1.0:
_ZGVsMxv_atanpif(0x1.f2a89cp-1) got 0x1.f76524p-3
want 0x1.f7651ep-3. */
svfloat32_t SV_NAME_F1 (atanpi) (svfloat32_t x, const svbool_t pg)
{
const struct data *d = ptr_barrier (&data);
svbool_t ptrue = svptrue_b32 ();
/* No need to trigger special case. Small cases, infs and nans
are supported by our approximation technique. */
svuint32_t ix = svreinterpret_u32 (x);
svuint32_t sign = svand_x (pg, ix, SignMask);
/* Argument reduction:
y := arctan(x) for x < 1
y := arctan(-1/x) + 1/2 for x > +1
y := arctan(-1/x) - 1/2 for x < -1
Hence, use z=-1/a if |x|>=|-1|, otherwise z=a. */
svbool_t red = svacgt (pg, x, d->neg_one);
svfloat32_t z = svsel (red, svdiv_x (ptrue, sv_f32 (d->neg_one), x), x);
/* Reuse of -1.0f to reduce constant loads,
We need a shift value of 1/2, which is created via -1 + (1 + 1/2). */
svfloat32_t shift
= svadd_z (red, sv_f32 (d->neg_one), sv_f32 (d->shift_val));
/* Reinserts the sign bit of the argument to handle the case of x < -1. */
shift = svreinterpret_f32 (sveor_x (pg, svreinterpret_u32 (shift), sign));
svfloat32_t z2 = svmul_x (ptrue, z, z);
svfloat32_t z4 = svmul_x (ptrue, z2, z2);
svfloat32_t z8 = svmul_x (ptrue, z4, z4);
svfloat32_t even_coeffs = svld1rq (ptrue, &d->c2);
svfloat32_t p12 = svmla_lane (sv_f32 (d->c1), z2, even_coeffs, 0);
svfloat32_t p34 = svmla_lane (sv_f32 (d->c3), z2, even_coeffs, 1);
svfloat32_t p56 = svmla_lane (sv_f32 (d->c5), z2, even_coeffs, 2);
svfloat32_t p78 = svmla_lane (sv_f32 (d->c7), z2, even_coeffs, 3);
svfloat32_t p14 = svmad_x (pg, z4, p34, p12);
svfloat32_t p58 = svmad_x (pg, z4, p78, p56);
svfloat32_t p18 = svmad_x (pg, z8, p58, p14);
svfloat32_t y = svmad_x (pg, z2, p18, d->c0);
/* shift + z * P(z^2). */
return svmad_x (pg, y, z, shift);
}

View File

@@ -61,6 +61,10 @@
# define __DECL_SIMD_atanh __DECL_SIMD_aarch64 # define __DECL_SIMD_atanh __DECL_SIMD_aarch64
# undef __DECL_SIMD_atanhf # undef __DECL_SIMD_atanhf
# define __DECL_SIMD_atanhf __DECL_SIMD_aarch64 # define __DECL_SIMD_atanhf __DECL_SIMD_aarch64
# undef __DECL_SIMD_atanpi
# define __DECL_SIMD_atanpi __DECL_SIMD_aarch64
# undef __DECL_SIMD_atanpif
# define __DECL_SIMD_atanpif __DECL_SIMD_aarch64
# undef __DECL_SIMD_atan2 # undef __DECL_SIMD_atan2
# define __DECL_SIMD_atan2 __DECL_SIMD_aarch64 # define __DECL_SIMD_atan2 __DECL_SIMD_aarch64
# undef __DECL_SIMD_atan2f # undef __DECL_SIMD_atan2f
@@ -192,6 +196,7 @@ __vpcs __f32x4_t _ZGVnN4v_asinhf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_asinpif (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_asinpif (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_atanf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_atanf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_atanhf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_atanhf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_atanpif (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_cbrtf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_cbrtf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_cosf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_cosf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_coshf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_coshf (__f32x4_t);
@@ -225,6 +230,7 @@ __vpcs __f64x2_t _ZGVnN2v_asinh (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_asinpi (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_asinpi (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_atan (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_atan (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_atanh (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_atanh (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_atanpi (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_cbrt (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_cbrt (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_cos (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_cos (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_cosh (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_cosh (__f64x2_t);
@@ -263,6 +269,7 @@ __sv_f32_t _ZGVsMxv_asinhf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_asinpif (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_asinpif (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_atanf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_atanf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_atanhf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_atanhf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_atanpif (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_cbrtf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_cbrtf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_cosf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_cosf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_coshf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_coshf (__sv_f32_t, __sv_bool_t);
@@ -296,6 +303,7 @@ __sv_f64_t _ZGVsMxv_asinh (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_asinpi (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_asinpi (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_atan (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_atan (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_atanh (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_atanh (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_atanpi (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_cbrt (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_cbrt (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_cos (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_cos (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_cosh (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_cosh (__sv_f64_t, __sv_bool_t);

View File

@@ -31,6 +31,7 @@ VPCS_VECTOR_WRAPPER (asinh_advsimd, _ZGVnN2v_asinh)
VPCS_VECTOR_WRAPPER (asinpi_advsimd, _ZGVnN2v_asinpi) VPCS_VECTOR_WRAPPER (asinpi_advsimd, _ZGVnN2v_asinpi)
VPCS_VECTOR_WRAPPER (atan_advsimd, _ZGVnN2v_atan) VPCS_VECTOR_WRAPPER (atan_advsimd, _ZGVnN2v_atan)
VPCS_VECTOR_WRAPPER (atanh_advsimd, _ZGVnN2v_atanh) VPCS_VECTOR_WRAPPER (atanh_advsimd, _ZGVnN2v_atanh)
VPCS_VECTOR_WRAPPER (atanpi_advsimd, _ZGVnN2v_atanpi)
VPCS_VECTOR_WRAPPER_ff (atan2_advsimd, _ZGVnN2vv_atan2) VPCS_VECTOR_WRAPPER_ff (atan2_advsimd, _ZGVnN2vv_atan2)
VPCS_VECTOR_WRAPPER (cbrt_advsimd, _ZGVnN2v_cbrt) VPCS_VECTOR_WRAPPER (cbrt_advsimd, _ZGVnN2v_cbrt)
VPCS_VECTOR_WRAPPER (cos_advsimd, _ZGVnN2v_cos) VPCS_VECTOR_WRAPPER (cos_advsimd, _ZGVnN2v_cos)

View File

@@ -50,6 +50,7 @@ SVE_VECTOR_WRAPPER (asinh_sve, _ZGVsMxv_asinh)
SVE_VECTOR_WRAPPER (asinpi_sve, _ZGVsMxv_asinpi) SVE_VECTOR_WRAPPER (asinpi_sve, _ZGVsMxv_asinpi)
SVE_VECTOR_WRAPPER (atan_sve, _ZGVsMxv_atan) SVE_VECTOR_WRAPPER (atan_sve, _ZGVsMxv_atan)
SVE_VECTOR_WRAPPER (atanh_sve, _ZGVsMxv_atanh) SVE_VECTOR_WRAPPER (atanh_sve, _ZGVsMxv_atanh)
SVE_VECTOR_WRAPPER (atanpi_sve, _ZGVsMxv_atanpi)
SVE_VECTOR_WRAPPER_ff (atan2_sve, _ZGVsMxvv_atan2) SVE_VECTOR_WRAPPER_ff (atan2_sve, _ZGVsMxvv_atan2)
SVE_VECTOR_WRAPPER (cbrt_sve, _ZGVsMxv_cbrt) SVE_VECTOR_WRAPPER (cbrt_sve, _ZGVsMxv_cbrt)
SVE_VECTOR_WRAPPER (cos_sve, _ZGVsMxv_cos) SVE_VECTOR_WRAPPER (cos_sve, _ZGVsMxv_cos)

View File

@@ -31,6 +31,7 @@ VPCS_VECTOR_WRAPPER (asinhf_advsimd, _ZGVnN4v_asinhf)
VPCS_VECTOR_WRAPPER (asinpif_advsimd, _ZGVnN4v_asinpif) VPCS_VECTOR_WRAPPER (asinpif_advsimd, _ZGVnN4v_asinpif)
VPCS_VECTOR_WRAPPER (atanf_advsimd, _ZGVnN4v_atanf) VPCS_VECTOR_WRAPPER (atanf_advsimd, _ZGVnN4v_atanf)
VPCS_VECTOR_WRAPPER (atanhf_advsimd, _ZGVnN4v_atanhf) VPCS_VECTOR_WRAPPER (atanhf_advsimd, _ZGVnN4v_atanhf)
VPCS_VECTOR_WRAPPER (atanpif_advsimd, _ZGVnN4v_atanpif)
VPCS_VECTOR_WRAPPER_ff (atan2f_advsimd, _ZGVnN4vv_atan2f) VPCS_VECTOR_WRAPPER_ff (atan2f_advsimd, _ZGVnN4vv_atan2f)
VPCS_VECTOR_WRAPPER (cbrtf_advsimd, _ZGVnN4v_cbrtf) VPCS_VECTOR_WRAPPER (cbrtf_advsimd, _ZGVnN4v_cbrtf)
VPCS_VECTOR_WRAPPER (cosf_advsimd, _ZGVnN4v_cosf) VPCS_VECTOR_WRAPPER (cosf_advsimd, _ZGVnN4v_cosf)

View File

@@ -50,6 +50,7 @@ SVE_VECTOR_WRAPPER (asinhf_sve, _ZGVsMxv_asinhf)
SVE_VECTOR_WRAPPER (asinpif_sve, _ZGVsMxv_asinpif) SVE_VECTOR_WRAPPER (asinpif_sve, _ZGVsMxv_asinpif)
SVE_VECTOR_WRAPPER (atanf_sve, _ZGVsMxv_atanf) SVE_VECTOR_WRAPPER (atanf_sve, _ZGVsMxv_atanf)
SVE_VECTOR_WRAPPER (atanhf_sve, _ZGVsMxv_atanhf) SVE_VECTOR_WRAPPER (atanhf_sve, _ZGVsMxv_atanhf)
SVE_VECTOR_WRAPPER (atanpif_sve, _ZGVsMxv_atanpif)
SVE_VECTOR_WRAPPER_ff (atan2f_sve, _ZGVsMxvv_atan2f) SVE_VECTOR_WRAPPER_ff (atan2f_sve, _ZGVsMxvv_atan2f)
SVE_VECTOR_WRAPPER (cbrtf_sve, _ZGVsMxv_cbrtf) SVE_VECTOR_WRAPPER (cbrtf_sve, _ZGVsMxv_cbrtf)
SVE_VECTOR_WRAPPER (cosf_sve, _ZGVsMxv_cosf) SVE_VECTOR_WRAPPER (cosf_sve, _ZGVsMxv_cosf)

View File

@@ -152,9 +152,14 @@ GLIBC_2.42 _ZGVnN2v_acospi F
GLIBC_2.42 _ZGVnN2v_acospif F GLIBC_2.42 _ZGVnN2v_acospif F
GLIBC_2.42 _ZGVnN2v_asinpi F GLIBC_2.42 _ZGVnN2v_asinpi F
GLIBC_2.42 _ZGVnN2v_asinpif F GLIBC_2.42 _ZGVnN2v_asinpif F
GLIBC_2.42 _ZGVnN2v_atanpi F
GLIBC_2.42 _ZGVnN2v_atanpif F
GLIBC_2.42 _ZGVnN4v_acospif F GLIBC_2.42 _ZGVnN4v_acospif F
GLIBC_2.42 _ZGVnN4v_asinpif F GLIBC_2.42 _ZGVnN4v_asinpif F
GLIBC_2.42 _ZGVnN4v_atanpif F
GLIBC_2.42 _ZGVsMxv_acospi F GLIBC_2.42 _ZGVsMxv_acospi F
GLIBC_2.42 _ZGVsMxv_acospif F GLIBC_2.42 _ZGVsMxv_acospif F
GLIBC_2.42 _ZGVsMxv_asinpi F GLIBC_2.42 _ZGVsMxv_asinpi F
GLIBC_2.42 _ZGVsMxv_asinpif F GLIBC_2.42 _ZGVsMxv_asinpif F
GLIBC_2.42 _ZGVsMxv_atanpi F
GLIBC_2.42 _ZGVsMxv_atanpif F