1
0
mirror of https://sourceware.org/git/glibc.git synced 2025-07-29 11:41:21 +03:00

Fix inaccuracy of clog, clog10 near |z| = 1 (bug 13629).

This commit is contained in:
Joseph Myers
2012-09-25 19:43:49 +00:00
parent c8cb2a5224
commit d032e0d29b
19 changed files with 1003 additions and 10 deletions

View File

@ -1,5 +1,27 @@
2012-09-25 Joseph Myers <joseph@codesourcery.com> 2012-09-25 Joseph Myers <joseph@codesourcery.com>
[BZ #13629]
* math/s_clog.c (__clog): Handle more values close to |z| = 1
specially.
* math/s_clog10.c (__clog10): Likewise.
* math/s_clog10f.c (__clog10f): Likewise.
* math/s_clog10l.c (__clog10l): Likewise.
* math/s_clogf.c (__clogf): Likewise.
* math/s_clogl.c (__clogl): Likewise.
* math/Makefile (libm-calls): Add x2y2m1.
* sysdeps/generic/math_private.h (__x2y2m1f): Declare.
(__x2y2m1): Likewise.
(__x2y2m1l): Likewise.
* sysdeps/ieee754/dbl-64/x2y2m1.c: New file.
* sysdeps/ieee754/dbl-64/x2y2m1f.c: Likewise.
* sysdeps/ieee754/ldbl-128/x2y2m1l.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/x2y2m1l.c: Likewise.
* sysdeps/ieee754/ldbl-96/x2y2m1.c: Likewise.
* sysdeps/ieee754/ldbl-96/x2y2m1l.c: Likewise.
* math/libm-test.inc (clog_test, clog10_test): Add more tests.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
[BZ #14621] [BZ #14621]
* posix/glob.c (next_brace_sub): Use size_t instead of unsigned * posix/glob.c (next_brace_sub): Use size_t instead of unsigned
int as type of variable DEPTH. int as type of variable DEPTH.

10
NEWS
View File

@ -10,11 +10,11 @@ Version 2.17
* The following bugs are resolved with this release: * The following bugs are resolved with this release:
1349, 3479, 5044, 5400, 6778, 6808, 9685, 9914, 10014, 10038, 11607, 1349, 3479, 5044, 5400, 6778, 6808, 9685, 9914, 10014, 10038, 11607,
13412, 13542, 13679, 13717, 13696, 13939, 13966, 14042, 14090, 14166, 13412, 13542, 13629, 13679, 13717, 13696, 13939, 13966, 14042, 14090,
14150, 14151, 14154, 14157, 14166, 14173, 14195, 14237, 14252, 14283, 14166, 14150, 14151, 14154, 14157, 14166, 14173, 14195, 14237, 14252,
14298, 14303, 14307, 14328, 14331, 14336, 14337, 14347, 14349, 14459, 14283, 14298, 14303, 14307, 14328, 14331, 14336, 14337, 14347, 14349,
14476, 14505, 14510, 14516, 14518, 14519, 14532, 14538, 14544, 14545, 14459, 14476, 14505, 14510, 14516, 14518, 14519, 14532, 14538, 14544,
14562, 14576, 14579, 14583, 14587, 14621. 14545, 14562, 14576, 14579, 14583, 14587, 14621.
* Support for STT_GNU_IFUNC symbols added for s390 and s390x. * Support for STT_GNU_IFUNC symbols added for s390 and s390x.
Optimized versions of memcpy, memset, and memcmp added for System z10 and Optimized versions of memcpy, memset, and memcmp added for System z10 and

View File

@ -58,7 +58,7 @@ libm-calls = e_acos e_acosh e_asin e_atan2 e_atanh e_cosh e_exp e_fmod \
s_catan s_casin s_ccos s_csin s_ctan s_ctanh s_cacos \ s_catan s_casin s_ccos s_csin s_ctan s_ctanh s_cacos \
s_casinh s_cacosh s_catanh s_csqrt s_cpow s_cproj s_clog10 \ s_casinh s_cacosh s_catanh s_csqrt s_cpow s_cproj s_clog10 \
s_fma s_lrint s_llrint s_lround s_llround e_exp10 w_log2 \ s_fma s_lrint s_llrint s_lround s_llround e_exp10 w_log2 \
s_isinf_ns $(calls:s_%=m_%) s_isinf_ns $(calls:s_%=m_%) x2y2m1
include ../Makeconfig include ../Makeconfig

View File

@ -2495,6 +2495,66 @@ clog_test (void)
TEST_c_c (clog, 0x1.00000000000000123456789abcp0L, 0x1.23456789p-1000L, 9.868649107778739752403260515979017248596e-19L, 1.061846605795612822522063052130030717368e-301L); TEST_c_c (clog, 0x1.00000000000000123456789abcp0L, 0x1.23456789p-1000L, 9.868649107778739752403260515979017248596e-19L, 1.061846605795612822522063052130030717368e-301L);
#endif #endif
TEST_c_c (clog, 0x0.ffffffp0L, 0x0.ffffffp-100L, -5.960464655174753498633255797994360530379e-8L, 7.888609052210118054117285652827862296732e-31L);
#ifndef TEST_FLOAT
TEST_c_c (clog, 0x0.fffffffffffff8p0L, 0x0.fffffffffffff8p-1000L, -1.110223024625156602053389888482372171810e-16L, 9.332636185032188789900895447238171696171e-302L);
#endif
#if defined TEST_LDOUBLE && LDBL_MIN_EXP <= -16381
TEST_c_c (clog, 0x0.ffffffffffffffffp0L, 0x0.ffffffffffffffffp-15000L, -5.421010862427522170184200798202494495630e-20L, 3.548665303440282824232502561095699343814e-4516L);
#endif
TEST_c_c (clog, 0x1a6p-10L, 0x3a5p-10L, -1.4305135209763571252847059962654228661815e-06L, 1.1460277178115757370775644871674016684074L);
TEST_c_c (clog, 0xf2p-10L, 0x3e3p-10L, 6.1988446308070710970664736815277450078106e-06L, 1.3322126499153926210226335249558203898460L);
TEST_c_c (clog, 0x4d4ep-15L, 0x6605p-15L, -1.6298145321400412054744424587143483169412e-08L, 0.9223574537155056772124552172295398141249L);
TEST_c_c (clog, 0x2818p-15L, 0x798fp-15L, 1.5366822245016167178749091974664853785194e-08L, 1.2522014929038946066987318471922169174157L);
TEST_c_c (clog, 0x9b57bp-20L, 0xcb7b4p-20L, -3.9563019528687610863490232935890272740908e-11L, 0.9187593477446338910857133065497364950682L);
TEST_c_c (clog, 0x2731p-20L, 0xfffd0p-20L, 4.4110493034041283943115971658295280288115e-11L, 1.5612279663766352262688735061954290528838L);
TEST_c_c (clog, 0x2ede88p-23L, 0x771c3fp-23L, -4.4764192352906350039050902870893173560494e-13L, 1.1959106857549200806818600493552847793381L);
TEST_c_c (clog, 0x11682p-23L, 0x7ffed1p-23L, 1.1723955140027907954461000991619077811832e-12L, 1.5622968405332756349813737986164832897108L);
TEST_c_c (clog, 0xa1f2c1p-24L, 0xc643aep-24L, -1.0480505352462576151523512837107080269981e-13L, 0.8858771987699967480545613322309315260313L);
TEST_c_c (clog, 0x659feap-24L, 0xeaf6f9p-24L, 3.7303493627403868207597214252239749960738e-14L, 1.1625816408046866464773042283673653469061L);
#ifndef TEST_FLOAT
TEST_c_c (clog, 0x4447d7175p-35L, 0x6c445e00ap-35L, -1.4823076576950255933915367361099865652625e-20L, 1.0081311552703893116404606212158840190615L);
TEST_c_c (clog, 0x2dd46725bp-35L, 0x7783a1284p-35L, 4.4469229730850767799109418892826021157328e-20L, 1.2046235979300843056806465045930070146351L);
TEST_c_c (clog, 0x164c74eea876p-45L, 0x16f393482f77p-45L, -3.0292258760486853327810377824479932031744e-26L, 0.7998237934177411746093524982030330293980L);
TEST_c_c (clog, 0xfe961079616p-45L, 0x1bc37e09e6d1p-45L, 5.3718272201930019901317065495843842735179e-26L, 1.0503831592447830576186444373011142397404L);
TEST_c_c (clog, 0xa4722f19346cp-51L, 0x7f9631c5e7f07p-51L, -6.2122796286154679676173624516405339768606e-30L, 1.4904138780720095276446375492434049214172L);
TEST_c_c (clog, 0x10673dd0f2481p-51L, 0x7ef1d17cefbd2p-51L, 3.2047474274603604594851472963586149973093e-29L, 1.4422922682185099608731642353544207976604L);
TEST_c_c (clog, 0x8ecbf810c4ae6p-52L, 0xd479468b09a37p-52L, -9.7375017988218644730510244778042114638107e-30L, 0.9790637929494922564724108399524154766631L);
TEST_c_c (clog, 0x5b06b680ea2ccp-52L, 0xef452b965da9fp-52L, 8.3076914081087805757422664530653247447136e-30L, 1.2072712126771536614482822173033535043206L);
TEST_c_c (clog, 0x659b70ab7971bp-53L, 0x1f5d111e08abecp-53L, -2.5083311595699359750201056724289010648701e-30L, 1.3710185432462268491534742969536240564640L);
TEST_c_c (clog, 0x15cfbd1990d1ffp-53L, 0x176a3973e09a9ap-53L, 1.0168910106364605304135563536838075568606e-30L, 0.8208373755522359859870890246475340086663L);
TEST_c_c (clog, 0x1367a310575591p-54L, 0x3cfcc0a0541f60p-54L, 5.0844550531823026520677817684239496041087e-32L, 1.2627468605458094918919206628466016525397L);
TEST_c_c (clog, 0x55cb6d0c83af5p-55L, 0x7fe33c0c7c4e90p-55L, -5.2000108498455368032511404449795741611813e-32L, 1.5288921536982513453421343495466824420259L);
#endif
#if defined TEST_LDOUBLE && LDBL_MANT_DIG >= 64
TEST_c_c (clog, 0x298c62cb546588a7p-63L, 0x7911b1dfcc4ecdaep-63L, -1.1931267660846218205882675852805793644095e-36L, 1.2402109774337032400594953899784058127412L);
TEST_c_c (clog, 0x4d9c37e2b5cb4533p-63L, 0x65c98be2385a042ep-63L, 6.4064442119814669184296141278612389400075e-37L, 0.9193591364645830864185131402313014890145L);
TEST_c_c (clog, 0x602fd5037c4792efp-64L, 0xed3e2086dcca80b8p-64L, -2.3362950222592964220878638677292132852104e-37L, 1.1856121127236268105413184264288408265852L);
TEST_c_c (clog, 0x6b10b4f3520217b6p-64L, 0xe8893cbb449253a1p-64L, 2.4244570985709679851855191080208817099132e-37L, 1.1393074519572050614551047548718495655972L);
TEST_c_c (clog, 0x81b7efa81fc35ad1p-65L, 0x1ef4b835f1c79d812p-65L, -9.9182335850630508484862145328126979066934e-39L, 1.3146479888794807046338799047003947008804L);
#endif
#if defined TEST_LDOUBLE && LDBL_MANT_DIG >= 106
TEST_c_c (clog, 0x3f96469050f650869c2p-75L, 0x6f16b2c9c8b05988335p-75L, -1.0509738482436128031927971874674370984602e-45L, 1.0509191467640012308402149909370784281448L);
TEST_c_c (clog, 0x3157fc1d73233e580c8p-75L, 0x761b52ccd435d7c7f5fp-75L, 1.3487497719126364307640897239165442763573e-43L, 1.1750493008528425228929764149024375035382L);
TEST_c_c (clog, 0x155f8afc4c48685bf63610p-85L, 0x17d0cf2652cdbeb1294e19p-85L, -4.7775669192897997174762089350332738583822e-50L, 0.8393953487996880419413728440067635213372L);
TEST_c_c (clog, 0x13836d58a13448d750b4b9p-85L, 0x195ca7bc3ab4f9161edbe6p-85L, 2.8398125044729578740243199963484494962411e-50L, 0.9149964976334130461795060758257083099706L);
TEST_c_c (clog, 0x1df515eb171a808b9e400266p-95L, 0x7c71eb0cd4688dfe98581c77p-95L, -3.5048022044913950094635368750889659723004e-57L, 1.3345633256521815205858155673950177421079L);
TEST_c_c (clog, 0xe33f66c9542ca25cc43c867p-95L, 0x7f35a68ebd3704a43c465864p-95L, 4.1101771307217268747345114262406964584250e-56L, 1.4596065864518742494094402406719567059585L);
TEST_c_c (clog, 0x6771f22c64ed551b857c128b4cp-105L, 0x1f570e7a13cc3cf2f44fd793ea1p-105L, -1.4281333889622737316199756373421183559948e-62L, 1.3673546561165378090903506783353927980633L);
TEST_c_c (clog, 0x15d8ab6ed05ca514086ac3a1e84p-105L, 0x1761e480aa094c0b10b34b09ce9p-105L, 1.0027319539522347477331743836657426754857e-62L, 0.8193464073721167323313606647411269414759L);
TEST_c_c (clog, 0x187190c1a334497bdbde5a95f48p-106L, 0x3b25f08062d0a095c4cfbbc338dp-106L, -1.7471844652198029695350765775994001163767e-63L, 1.1789110097072986038243729592318526094314L);
TEST_c_c (clog, 0x6241ef0da53f539f02fad67dabp-106L, 0x3fb46641182f7efd9caa769dac0p-106L, 4.3299788920664682288477984749202524623248e-63L, 1.4746938237585656250866370987773473745867L);
#endif
#if defined TEST_LDOUBLE && LDBL_MANT_DIG >= 113
TEST_c_c (clog, 0x3e1d0a105ac4ebeacd9c6952d34cp-112L, 0xf859b3d1b06d005dcbb5516d5479p-112L, -1.1683999374665377365054966073875064467108e-66L, 1.3257197596350832748781065387304444940172L);
TEST_c_c (clog, 0x47017a2e36807acb1e5214b209dep-112L, 0xf5f4a550c9d75e3bb1839d865f0dp-112L, 1.5077923002544367932999503838191154621839e-65L, 1.2897445708311412721399861948957141824914L);
TEST_c_c (clog, 0x148f818cb7a9258fca942ade2a0cap-113L, 0x18854a34780b8333ec53310ad7001p-113L, -7.1865869169568789348552370692485515571497e-67L, 0.8730167479365994646287897223471819363668L);
TEST_c_c (clog, 0xfd95243681c055c2632286921092p-113L, 0x1bccabcd29ca2152860ec29e34ef7p-113L, 6.6255694866654064502633121109394710807528e-66L, 1.0526409614996288387567810726095850312049L);
TEST_c_c (clog, 0xdb85c467ee2aadd5f425fe0f4b8dp-114L, 0x3e83162a0f95f1dcbf97dddf410eap-114L, 4.6017338806965821566734340588575402712716e-67L, 1.3547418904611758959096647942223384691728L);
TEST_c_c (clog, 0x1415bcaf2105940d49a636e98ae59p-115L, 0x7e6a150adfcd1b0921d44b31f40f4p-115L, 2.5993421227864195179698176012564317527271e-67L, 1.4132318089683022770487383611430906982461L);
#endif
END (clog, complex); END (clog, complex);
} }
@ -2655,6 +2715,66 @@ clog10_test (void)
TEST_c_c (clog10, 0x1.00000000000000123456789abcp0L, 0x1.23456789p-1000L, 4.285899851347756186652871946325962330640e-19L, 4.611541215247321502041995872887317363241e-302L); TEST_c_c (clog10, 0x1.00000000000000123456789abcp0L, 0x1.23456789p-1000L, 4.285899851347756186652871946325962330640e-19L, 4.611541215247321502041995872887317363241e-302L);
#endif #endif
TEST_c_c (clog10, 0x0.ffffffp0L, 0x0.ffffffp-100L, -2.588596909321764128428416045209904492216e-8L, 3.425979381266895667295625489912064603415e-31L);
#ifndef TEST_FLOAT
TEST_c_c (clog10, 0x0.fffffffffffff8p0L, 0x0.fffffffffffff8p-1000L, -4.821637332766435821255375046554377090472e-17L, 4.053112396770095089737411317782466262176e-302L);
#endif
#if defined TEST_LDOUBLE && LDBL_MIN_EXP <= -16381
TEST_c_c (clog10, 0x0.ffffffffffffffffp0L, 0x0.ffffffffffffffffp-15000L, -2.354315103889861110220423157644627849164e-20L, 1.541165759405643564697852372112893034397e-4516L);
#endif
TEST_c_c (clog10, 0x1a6p-10L, 0x3a5p-10L, -6.2126412844802358329771948751248003038444e-07L, 0.4977135139537443711784513409096950995985L);
TEST_c_c (clog10, 0xf2p-10L, 0x3e3p-10L, 2.6921240173351112953324592659528481616879e-06L, 0.5785726025799636431142862788413361783862L);
TEST_c_c (clog10, 0x4d4ep-15L, 0x6605p-15L, -7.0781945783414996953799915941870192015212e-09L, 0.4005747524909781155537088181659175147564L);
TEST_c_c (clog10, 0x2818p-15L, 0x798fp-15L, 6.6737261053986614395049481326819059203910e-09L, 0.5438241985991753781478398141908629586460L);
TEST_c_c (clog10, 0x9b57bp-20L, 0xcb7b4p-20L, -1.7182001068739620267773842120965071561416e-11L, 0.3990121149225253562859800593935899629087L);
TEST_c_c (clog10, 0x2731p-20L, 0xfffd0p-20L, 1.9156943718715958194239364991329064049438e-11L, 0.6780326907904082601285090019969008967595L);
TEST_c_c (clog10, 0x2ede88p-23L, 0x771c3fp-23L, -1.9440841725722970687903291200493082253766e-13L, 0.5193774116724956222518530053006822210323L);
TEST_c_c (clog10, 0x11682p-23L, 0x7ffed1p-23L, 5.0916490233953865181284669870035717560498e-13L, 0.6784968969384861816694467029319146542069L);
TEST_c_c (clog10, 0xa1f2c1p-24L, 0xc643aep-24L, -4.5516256421319921959681423447271490869664e-14L, 0.3847315790697197749315054516562206543710L);
TEST_c_c (clog10, 0x659feap-24L, 0xeaf6f9p-24L, 1.6200701438094619117335617123525612051457e-14L, 0.5049027913635038013499728086604870749732L);
#ifndef TEST_FLOAT
TEST_c_c (clog10, 0x4447d7175p-35L, 0x6c445e00ap-35L, -6.4375803621988389731799033530075237868110e-21L, 0.4378257977686804492768642780897650927167L);
TEST_c_c (clog10, 0x2dd46725bp-35L, 0x7783a1284p-35L, 1.9312741086596516918394613098872836703188e-20L, 0.5231613813514771042838490538484014771862L);
TEST_c_c (clog10, 0x164c74eea876p-45L, 0x16f393482f77p-45L, -1.3155760824064879362415202279780039150764e-26L, 0.3473590599762514228227328130640352044313L);
TEST_c_c (clog10, 0xfe961079616p-45L, 0x1bc37e09e6d1p-45L, 2.3329549194675052736016290082882121135546e-26L, 0.4561756099441139182878993697611751382976L);
TEST_c_c (clog10, 0xa4722f19346cp-51L, 0x7f9631c5e7f07p-51L, -2.6979587627476803379953050733225113494503e-30L, 0.6472785229986997177606324374555347813105L);
TEST_c_c (clog10, 0x10673dd0f2481p-51L, 0x7ef1d17cefbd2p-51L, 1.3918041236396763648388478552321724382899e-29L, 0.6263795733790237053262025311642907438291L);
TEST_c_c (clog10, 0x8ecbf810c4ae6p-52L, 0xd479468b09a37p-52L, -4.2289432987513243393180377141513840878196e-30L, 0.4252020027092323591068799049905597805296L);
TEST_c_c (clog10, 0x5b06b680ea2ccp-52L, 0xef452b965da9fp-52L, 3.6079845358966994996207055940336690133424e-30L, 0.5243112258263349992771652393178033846555L);
TEST_c_c (clog10, 0x659b70ab7971bp-53L, 0x1f5d111e08abecp-53L, -1.0893543813872082317104059174982092534059e-30L, 0.5954257879188711495921161433751775633232L);
TEST_c_c (clog10, 0x15cfbd1990d1ffp-53L, 0x176a3973e09a9ap-53L, 4.4163015461643576961232672330852798804976e-31L, 0.3564851427422832755956993418877523303529L);
TEST_c_c (clog10, 0x1367a310575591p-54L, 0x3cfcc0a0541f60p-54L, 2.2081507730821788480616336165447731164865e-32L, 0.5484039935757001196548030312819898864760L);
TEST_c_c (clog10, 0x55cb6d0c83af5p-55L, 0x7fe33c0c7c4e90p-55L, -2.2583360179249556400630343805573865814771e-32L, 0.6639894257763289307423302343317622430835L);
#endif
#if defined TEST_LDOUBLE && LDBL_MANT_DIG >= 64
TEST_c_c (clog10, 0x298c62cb546588a7p-63L, 0x7911b1dfcc4ecdaep-63L, -5.1816837072162316773907242302011632570857e-37L, 0.5386167838952956925896424154370364458140L);
TEST_c_c (clog10, 0x4d9c37e2b5cb4533p-63L, 0x65c98be2385a042ep-63L, 2.7822833698845776001753149807484078521508e-37L, 0.3992725998539071066769046272515417679815L);
TEST_c_c (clog10, 0x602fd5037c4792efp-64L, 0xed3e2086dcca80b8p-64L, -1.0146400362652473358437501879334790111898e-37L, 0.5149047982335273098246594109614460842099L);
TEST_c_c (clog10, 0x6b10b4f3520217b6p-64L, 0xe8893cbb449253a1p-64L, 1.0529283395205396881397407610630442563938e-37L, 0.4947949395762683446121140513971996916447L);
TEST_c_c (clog10, 0x81b7efa81fc35ad1p-65L, 0x1ef4b835f1c79d812p-65L, -4.3074341162203896332989394770760901408798e-39L, 0.5709443672155660428417571212549720987784L);
#endif
#if defined TEST_LDOUBLE && LDBL_MANT_DIG >= 106
TEST_c_c (clog10, 0x3f96469050f650869c2p-75L, 0x6f16b2c9c8b05988335p-75L, -4.5643214291682663316715446865040356750881e-46L, 0.4564083863660793840592614609053162690362L);
TEST_c_c (clog10, 0x3157fc1d73233e580c8p-75L, 0x761b52ccd435d7c7f5fp-75L, 5.8575458340992751256451490143468457830297e-44L, 0.5103174273246635294300470585396890237265L);
TEST_c_c (clog10, 0x155f8afc4c48685bf63610p-85L, 0x17d0cf2652cdbeb1294e19p-85L, -2.0748709499710785084693619097712106753591e-50L, 0.3645447681189598740620098186365764884771L);
TEST_c_c (clog10, 0x13836d58a13448d750b4b9p-85L, 0x195ca7bc3ab4f9161edbe6p-85L, 1.2333149003324592532859843519619084433953e-50L, 0.3973779298829931059309198145608711073016L);
TEST_c_c (clog10, 0x1df515eb171a808b9e400266p-95L, 0x7c71eb0cd4688dfe98581c77p-95L, -1.5221162575729652613635150540947625639689e-57L, 0.5795934880811949230121092882659698986043L);
TEST_c_c (clog10, 0xe33f66c9542ca25cc43c867p-95L, 0x7f35a68ebd3704a43c465864p-95L, 1.7850272475173865337808494725293124613817e-56L, 0.6338990862456906754888183278564382516852L);
TEST_c_c (clog10, 0x6771f22c64ed551b857c128b4cp-105L, 0x1f570e7a13cc3cf2f44fd793ea1p-105L, -6.2023045024810589256360494043570293518879e-63L, 0.5938345819561308555003145899438513900776L);
TEST_c_c (clog10, 0x15d8ab6ed05ca514086ac3a1e84p-105L, 0x1761e480aa094c0b10b34b09ce9p-105L, 4.3548095442952115860848857519953610343042e-63L, 0.3558376234889641500775150477035448866763L);
TEST_c_c (clog10, 0x187190c1a334497bdbde5a95f48p-106L, 0x3b25f08062d0a095c4cfbbc338dp-106L, -7.5879257211204444302994221436282805900756e-64L, 0.5119945461708707332160859198685423099187L);
TEST_c_c (clog10, 0x6241ef0da53f539f02fad67dabp-106L, 0x3fb46641182f7efd9caa769dac0p-106L, 1.8804859395820231849002915747252695375405e-63L, 0.6404513901551516189871978418046651877394L);
#endif
#if defined TEST_LDOUBLE && LDBL_MANT_DIG >= 113
TEST_c_c (clog10, 0x3e1d0a105ac4ebeacd9c6952d34cp-112L, 0xf859b3d1b06d005dcbb5516d5479p-112L, -5.0742964549782184008668435276046798273476e-67L, 0.5757527761596220360985719127090110408283L);
TEST_c_c (clog10, 0x47017a2e36807acb1e5214b209dep-112L, 0xf5f4a550c9d75e3bb1839d865f0dp-112L, 6.5482587585671294601662599808612773010057e-66L, 0.5601289501766423782280643144987875760229L);
TEST_c_c (clog10, 0x148f818cb7a9258fca942ade2a0cap-113L, 0x18854a34780b8333ec53310ad7001p-113L, -3.1210950417524756037077807411854181477733e-67L, 0.3791463562379872585396164879981280044658L);
TEST_c_c (clog10, 0xfd95243681c055c2632286921092p-113L, 0x1bccabcd29ca2152860ec29e34ef7p-113L, 2.8774482675253468630312378575186855052697e-66L, 0.4571561610046221605554903008571429975493L);
TEST_c_c (clog10, 0xdb85c467ee2aadd5f425fe0f4b8dp-114L, 0x3e83162a0f95f1dcbf97dddf410eap-114L, 1.9985076315737626043096596036300177494613e-67L, 0.5883569274304683249184005177865521205198L);
TEST_c_c (clog10, 0x1415bcaf2105940d49a636e98ae59p-115L, 0x7e6a150adfcd1b0921d44b31f40f4p-115L, 1.1288799405048268615023706955013387413519e-67L, 0.6137587762850841972073301550420510507903L);
#endif
END (clog10, complex); END (clog10, complex);
} }

View File

@ -85,6 +85,19 @@ __clog (__complex__ double x)
d2m1 += absy * absy; d2m1 += absy * absy;
__real__ result = __log1p (d2m1) / 2.0; __real__ result = __log1p (d2m1) / 2.0;
} }
else if (absx < 1.0
&& absx >= 0.75
&& absy < DBL_EPSILON / 2.0
&& scale == 0)
{
double d2m1 = (absx - 1.0) * (absx + 1.0);
__real__ result = __log1p (d2m1) / 2.0;
}
else if (absx < 1.0 && (absx >= 0.75 || absy >= 0.5) && scale == 0)
{
double d2m1 = __x2y2m1 (absx, absy);
__real__ result = __log1p (d2m1) / 2.0;
}
else else
{ {
double d = __ieee754_hypot (absx, absy); double d = __ieee754_hypot (absx, absy);

View File

@ -88,6 +88,19 @@ __clog10 (__complex__ double x)
d2m1 += absy * absy; d2m1 += absy * absy;
__real__ result = __log1p (d2m1) * (M_LOG10E / 2.0); __real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
} }
else if (absx < 1.0
&& absx >= 0.75
&& absy < DBL_EPSILON / 2.0
&& scale == 0)
{
double d2m1 = (absx - 1.0) * (absx + 1.0);
__real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
}
else if (absx < 1.0 && (absx >= 0.75 || absy >= 0.5) && scale == 0)
{
double d2m1 = __x2y2m1 (absx, absy);
__real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
}
else else
{ {
double d = __ieee754_hypot (absx, absy); double d = __ieee754_hypot (absx, absy);

View File

@ -90,6 +90,19 @@ __clog10f (__complex__ float x)
d2m1 += absy * absy; d2m1 += absy * absy;
__real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f); __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
} }
else if (absx < 1.0f
&& absx >= 0.75f
&& absy < FLT_EPSILON / 2.0f
&& scale == 0)
{
float d2m1 = (absx - 1.0f) * (absx + 1.0f);
__real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
}
else if (absx < 1.0f && (absx >= 0.75f || absy >= 0.5f) && scale == 0)
{
float d2m1 = __x2y2m1f (absx, absy);
__real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
}
else else
{ {
float d = __ieee754_hypotf (absx, absy); float d = __ieee754_hypotf (absx, absy);

View File

@ -89,6 +89,19 @@ __clog10l (__complex__ long double x)
d2m1 += absy * absy; d2m1 += absy * absy;
__real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L); __real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L);
} }
else if (absx < 1.0L
&& absx >= 0.75L
&& absy < LDBL_EPSILON / 2.0L
&& scale == 0)
{
long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
__real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L);
}
else if (absx < 1.0L && (absx >= 0.75L || absy >= 0.5L) && scale == 0)
{
long double d2m1 = __x2y2m1l (absx, absy);
__real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L);
}
else else
{ {
long double d = __ieee754_hypotl (absx, absy); long double d = __ieee754_hypotl (absx, absy);

View File

@ -85,6 +85,19 @@ __clogf (__complex__ float x)
d2m1 += absy * absy; d2m1 += absy * absy;
__real__ result = __log1pf (d2m1) / 2.0f; __real__ result = __log1pf (d2m1) / 2.0f;
} }
else if (absx < 1.0f
&& absx >= 0.75f
&& absy < FLT_EPSILON / 2.0f
&& scale == 0)
{
float d2m1 = (absx - 1.0f) * (absx + 1.0f);
__real__ result = __log1pf (d2m1) / 2.0f;
}
else if (absx < 1.0f && (absx >= 0.75f || absy >= 0.5f) && scale == 0)
{
float d2m1 = __x2y2m1f (absx, absy);
__real__ result = __log1pf (d2m1) / 2.0f;
}
else else
{ {
float d = __ieee754_hypotf (absx, absy); float d = __ieee754_hypotf (absx, absy);

View File

@ -85,6 +85,19 @@ __clogl (__complex__ long double x)
d2m1 += absy * absy; d2m1 += absy * absy;
__real__ result = __log1pl (d2m1) / 2.0L; __real__ result = __log1pl (d2m1) / 2.0L;
} }
else if (absx < 1.0L
&& absx >= 0.75L
&& absy < LDBL_EPSILON / 2.0L
&& scale == 0)
{
long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
__real__ result = __log1pl (d2m1) / 2.0L;
}
else if (absx < 1.0L && (absx >= 0.75L || absy >= 0.5L) && scale == 0)
{
long double d2m1 = __x2y2m1l (absx, absy);
__real__ result = __log1pl (d2m1) / 2.0L;
}
else else
{ {
long double d = __ieee754_hypotl (absx, absy); long double d = __ieee754_hypotl (absx, absy);

View File

@ -364,6 +364,13 @@ extern double __slowexp (double __x);
extern double __slowpow (double __x, double __y, double __z); extern double __slowpow (double __x, double __y, double __z);
extern void __docos (double __x, double __dx, double __v[]); extern void __docos (double __x, double __dx, double __v[]);
/* Return X^2 + Y^2 - 1, computed without large cancellation error.
It is given that 1 > X >= Y >= epsilon / 2, and that either X >=
0.75 or Y >= 0.5. */
extern float __x2y2m1f (float x, float y);
extern double __x2y2m1 (double x, double y);
extern long double __x2y2m1l (long double x, long double y);
#ifndef math_opt_barrier #ifndef math_opt_barrier
# define math_opt_barrier(x) \ # define math_opt_barrier(x) \
({ __typeof (x) __x = (x); __asm ("" : "+m" (__x)); __x; }) ({ __typeof (x) __x = (x); __asm ("" : "+m" (__x)); __x; })

View File

@ -880,6 +880,12 @@ float: 1
ifloat: 1 ifloat: 1
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
Test "Real part of: clog (0x0.ffffffffffffffffp0 + 0x0.ffffffffffffffffp-15000 i) == -5.421010862427522170184200798202494495630e-20 + 3.548665303440282824232502561095699343814e-4516 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog (0x0.ffffffp0 + 0x0.ffffffp-100 i) == -5.960464655174753498633255797994360530379e-8 + 7.888609052210118054117285652827862296732e-31 i":
float: 1
ifloat: 1
Test "Real part of: clog (0x1.000566p0 + 0x1.234p-10 i) == 8.298731898331237038231468223024422855654e-5 + 1.110938609507128729312743251313024793990e-3 i": Test "Real part of: clog (0x1.000566p0 + 0x1.234p-10 i) == 8.298731898331237038231468223024422855654e-5 + 1.110938609507128729312743251313024793990e-3 i":
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
@ -904,6 +910,9 @@ ldouble: 1
Test "Real part of: clog (0x1.fp+16383 - 0x1p-16445 i) == 11356.49165759582936919077408168801636572 - 0 i": Test "Real part of: clog (0x1.fp+16383 - 0x1p-16445 i) == 11356.49165759582936919077408168801636572 - 0 i":
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
Test "Imaginary part of: clog (0x1367a310575591p-54 + 0x3cfcc0a0541f60p-54 i) == 5.0844550531823026520677817684239496041087e-32 + 1.2627468605458094918919206628466016525397 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog (0x1p-1074 + 0x1p-1074 i) == -744.0934983311012896593986823853525458290 + pi/4 i": Test "Real part of: clog (0x1p-1074 + 0x1p-1074 i) == -744.0934983311012896593986823853525458290 + pi/4 i":
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
@ -922,6 +931,9 @@ ldouble: 1
Test "Real part of: clog (0x1p-16445 - 0x1.fp+16383 i) == 11356.49165759582936919077408168801636572 - pi/2 i": Test "Real part of: clog (0x1p-16445 - 0x1.fp+16383 i) == 11356.49165759582936919077408168801636572 - pi/2 i":
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
Test "Real part of: clog (0x2dd46725bp-35 + 0x7783a1284p-35 i) == 4.4469229730850767799109418892826021157328e-20 + 1.2046235979300843056806465045930070146351 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog (1.0 + 0x1.234566p-10 i) == 6.172834701221959432440126967147726538097e-7 + 1.111110564353742042376451655136933182201e-3 i": Test "Real part of: clog (1.0 + 0x1.234566p-10 i) == 6.172834701221959432440126967147726538097e-7 + 1.111110564353742042376451655136933182201e-3 i":
float: 1 float: 1
ifloat: 1 ifloat: 1
@ -1068,6 +1080,17 @@ idouble: 1
ifloat: 1 ifloat: 1
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
Test "Real part of: clog10 (0x0.fffffffffffff8p0 + 0x0.fffffffffffff8p-1000 i) == -4.821637332766435821255375046554377090472e-17 + 4.053112396770095089737411317782466262176e-302 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x0.ffffffffffffffffp0 + 0x0.ffffffffffffffffp-15000 i) == -2.354315103889861110220423157644627849164e-20 + 1.541165759405643564697852372112893034397e-4516 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x0.ffffffp0 + 0x0.ffffffp-100 i) == -2.588596909321764128428416045209904492216e-8 + 3.425979381266895667295625489912064603415e-31 i":
float: 1
ifloat: 1
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x1.000566p0 + 0x1.234p-10 i) == 3.604093470239754109961125085078190708674e-5 + 4.824745078422174667425851670822596859720e-4 i": Test "Real part of: clog10 (0x1.000566p0 + 0x1.234p-10 i) == 3.604093470239754109961125085078190708674e-5 + 4.824745078422174667425851670822596859720e-4 i":
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
@ -1119,6 +1142,29 @@ ldouble: 1
Test "Real part of: clog10 (0x1.fp+16383 - 0x1p-16445 i) == 4932.061660674182269085496060792589701158 - 0 i": Test "Real part of: clog10 (0x1.fp+16383 - 0x1p-16445 i) == 4932.061660674182269085496060792589701158 - 0 i":
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
Test "Real part of: clog10 (0x10673dd0f2481p-51 + 0x7ef1d17cefbd2p-51 i) == 1.3918041236396763648388478552321724382899e-29 + 0.6263795733790237053262025311642907438291 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (0x11682p-23 + 0x7ffed1p-23 i) == 5.0916490233953865181284669870035717560498e-13 + 0.6784968969384861816694467029319146542069 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x1367a310575591p-54 + 0x3cfcc0a0541f60p-54 i) == 2.2081507730821788480616336165447731164865e-32 + 0.5484039935757001196548030312819898864760 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (0x1367a310575591p-54 + 0x3cfcc0a0541f60p-54 i) == 2.2081507730821788480616336165447731164865e-32 + 0.5484039935757001196548030312819898864760 i":
double: 1
idouble: 1
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x164c74eea876p-45 + 0x16f393482f77p-45 i) == -1.3155760824064879362415202279780039150764e-26 + 0.3473590599762514228227328130640352044313 i":
double: 1
idouble: 1
Test "Real part of: clog10 (0x1a6p-10 + 0x3a5p-10 i) == -6.2126412844802358329771948751248003038444e-07 + 0.4977135139537443711784513409096950995985 i":
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x1a6p-10 + 0x3a5p-10 i) == -6.2126412844802358329771948751248003038444e-07 + 0.4977135139537443711784513409096950995985 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (0x1p-1073 + 0x1p-1073 i) == -322.8546703496198318667349645920187712089 + pi/4*log10(e) i": Test "Imaginary part of: clog10 (0x1p-1073 + 0x1p-1073 i) == -322.8546703496198318667349645920187712089 + pi/4*log10(e) i":
double: 1 double: 1
idouble: 1 idouble: 1
@ -1199,6 +1245,73 @@ ifloat: 1
Test "Real part of: clog10 (0x1p-8190 + 1.0 i) == 2.920285685286322365786846845062520925172e-4932 + 6.821881769209206737428918127156778851051e-1 i": Test "Real part of: clog10 (0x1p-8190 + 1.0 i) == 2.920285685286322365786846845062520925172e-4932 + 6.821881769209206737428918127156778851051e-1 i":
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
Test "Real part of: clog10 (0x2818p-15 + 0x798fp-15 i) == 6.6737261053986614395049481326819059203910e-09 + 0.5438241985991753781478398141908629586460 i":
float: 1
ifloat: 1
Test "Imaginary part of: clog10 (0x2818p-15 + 0x798fp-15 i) == 6.6737261053986614395049481326819059203910e-09 + 0.5438241985991753781478398141908629586460 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x2dd46725bp-35 + 0x7783a1284p-35 i) == 1.9312741086596516918394613098872836703188e-20 + 0.5231613813514771042838490538484014771862 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (0x2dd46725bp-35 + 0x7783a1284p-35 i) == 1.9312741086596516918394613098872836703188e-20 + 0.5231613813514771042838490538484014771862 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x2ede88p-23 + 0x771c3fp-23 i) == -1.9440841725722970687903291200493082253766e-13 + 0.5193774116724956222518530053006822210323 i":
float: 1
ifloat: 1
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x2ede88p-23 + 0x771c3fp-23 i) == -1.9440841725722970687903291200493082253766e-13 + 0.5193774116724956222518530053006822210323 i":
double: 1
idouble: 1
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x4447d7175p-35 + 0x6c445e00ap-35 i) == -6.4375803621988389731799033530075237868110e-21 + 0.4378257977686804492768642780897650927167 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (0x4447d7175p-35 + 0x6c445e00ap-35 i) == -6.4375803621988389731799033530075237868110e-21 + 0.4378257977686804492768642780897650927167 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x4d4ep-15 + 0x6605p-15 i) == -7.0781945783414996953799915941870192015212e-09 + 0.4005747524909781155537088181659175147564 i":
float: 1
ifloat: 1
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x5b06b680ea2ccp-52 + 0xef452b965da9fp-52 i) == 3.6079845358966994996207055940336690133424e-30 + 0.5243112258263349992771652393178033846555 i":
double: 1
idouble: 1
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x659b70ab7971bp-53 + 0x1f5d111e08abecp-53 i) == -1.0893543813872082317104059174982092534059e-30 + 0.5954257879188711495921161433751775633232 i":
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x659feap-24 + 0xeaf6f9p-24 i) == 1.6200701438094619117335617123525612051457e-14 + 0.5049027913635038013499728086604870749732 i":
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x6b10b4f3520217b6p-64 + 0xe8893cbb449253a1p-64 i) == 1.0529283395205396881397407610630442563938e-37 + 0.4947949395762683446121140513971996916447 i":
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x81b7efa81fc35ad1p-65 + 0x1ef4b835f1c79d812p-65 i) == -4.3074341162203896332989394770760901408798e-39 + 0.5709443672155660428417571212549720987784 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x8ecbf810c4ae6p-52 + 0xd479468b09a37p-52 i) == -4.2289432987513243393180377141513840878196e-30 + 0.4252020027092323591068799049905597805296 i":
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x9b57bp-20 + 0xcb7b4p-20 i) == -1.7182001068739620267773842120965071561416e-11 + 0.3990121149225253562859800593935899629087 i":
double: 1
idouble: 1
Test "Real part of: clog10 (0xf2p-10 + 0x3e3p-10 i) == 2.6921240173351112953324592659528481616879e-06 + 0.5785726025799636431142862788413361783862 i":
double: 1
idouble: 1
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0xf2p-10 + 0x3e3p-10 i) == 2.6921240173351112953324592659528481616879e-06 + 0.5785726025799636431142862788413361783862 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (0xfe961079616p-45 + 0x1bc37e09e6d1p-45 i) == 2.3329549194675052736016290082882121135546e-26 + 0.4561756099441139182878993697611751382976 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (1.0 + 0x1.234566p-10 i) == 2.680828048441605163181684680300513080769e-7 + 4.825491868832381486767558728169977751564e-4 i": Test "Imaginary part of: clog10 (1.0 + 0x1.234566p-10 i) == 2.680828048441605163181684680300513080769e-7 + 4.825491868832381486767558728169977751564e-4 i":
double: 1 double: 1
idouble: 1 idouble: 1
@ -3271,6 +3384,10 @@ ifloat: 1
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
Function: Imaginary part of "clog":
ildouble: 1
ldouble: 1
Function: Real part of "clog10": Function: Real part of "clog10":
double: 1 double: 1
float: 1 float: 1

View File

@ -0,0 +1,111 @@
/* Compute x^2 + y^2 - 1, without large cancellation error.
Copyright (C) 2012 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <float.h>
#include <stdlib.h>
/* Calculate X + Y exactly and store the result in *HI + *LO. It is
given that |X| >= |Y| and the values are small enough that no
overflow occurs. */
static inline void
add_split (double *hi, double *lo, double x, double y)
{
/* Apply Dekker's algorithm. */
*hi = x + y;
*lo = (x - *hi) + y;
}
/* Calculate X * Y exactly and store the result in *HI + *LO. It is
given that the values are small enough that no overflow occurs and
large enough (or zero) that no underflow occurs. */
static inline void
mul_split (double *hi, double *lo, double x, double y)
{
#ifdef __FP_FAST_FMA
/* Fast built-in fused multiply-add. */
*hi = x * y;
*lo = __builtin_fma (x, y, -*hi);
#elif defined FP_FAST_FMA
/* Fast library fused multiply-add, compiler before GCC 4.6. */
*hi = x * y;
*lo = __fma (x, y, -*hi);
#else
/* Apply Dekker's algorithm. */
*hi = x * y;
# define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1)
double x1 = x * C;
double y1 = y * C;
# undef C
x1 = (x - x1) + x1;
y1 = (y - y1) + y1;
double x2 = x - x1;
double y2 = y - y1;
*lo = (((x1 * y1 - *hi) + x1 * y2) + x2 * y1) + x2 * y2;
#endif
}
/* Compare absolute values of floating-point values pointed to by P
and Q for qsort. */
static int
compare (const void *p, const void *q)
{
double pd = fabs (*(const double *) p);
double qd = fabs (*(const double *) q);
if (pd < qd)
return -1;
else if (pd == qd)
return 0;
else
return 1;
}
/* Return X^2 + Y^2 - 1, computed without large cancellation error.
It is given that 1 > X >= Y >= epsilon / 2, and that either X >=
0.75 or Y >= 0.5. */
double
__x2y2m1 (double x, double y)
{
double vals[4];
SET_RESTORE_ROUND (FE_TONEAREST);
mul_split (&vals[1], &vals[0], x, x);
mul_split (&vals[3], &vals[2], y, y);
if (x >= 0.75)
vals[1] -= 1.0;
else
{
vals[1] -= 0.5;
vals[3] -= 0.5;
}
qsort (vals, 4, sizeof (double), compare);
/* Add up the values so that each element of VALS has absolute value
at most equal to the last set bit of the next nonzero
element. */
for (size_t i = 0; i <= 2; i++)
{
add_split (&vals[i + 1], &vals[i], vals[i + 1], vals[i]);
qsort (vals + i + 1, 3 - i, sizeof (double), compare);
}
/* Now any error from this addition will be small. */
return vals[3] + vals[2] + vals[1] + vals[0];
}

View File

@ -0,0 +1,32 @@
/* Compute x^2 + y^2 - 1, without large cancellation error.
Copyright (C) 2012 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <float.h>
/* Return X^2 + Y^2 - 1, computed without large cancellation error.
It is given that 1 > X >= Y >= epsilon / 2, and that either X >=
0.75 or Y >= 0.5. */
float
__x2y2m1f (float x, float y)
{
double dx = x, dy = y;
return (float) ((dx - 1) * (dx + 1) + dy * dy);
}

View File

@ -0,0 +1,111 @@
/* Compute x^2 + y^2 - 1, without large cancellation error.
Copyright (C) 2012 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <float.h>
#include <stdlib.h>
/* Calculate X + Y exactly and store the result in *HI + *LO. It is
given that |X| >= |Y| and the values are small enough that no
overflow occurs. */
static inline void
add_split (long double *hi, long double *lo, long double x, long double y)
{
/* Apply Dekker's algorithm. */
*hi = x + y;
*lo = (x - *hi) + y;
}
/* Calculate X * Y exactly and store the result in *HI + *LO. It is
given that the values are small enough that no overflow occurs and
large enough (or zero) that no underflow occurs. */
static inline void
mul_split (long double *hi, long double *lo, long double x, long double y)
{
#ifdef __FP_FAST_FMAL
/* Fast built-in fused multiply-add. */
*hi = x * y;
*lo = __builtin_fmal (x, y, -*hi);
#elif defined FP_FAST_FMAL
/* Fast library fused multiply-add, compiler before GCC 4.6. */
*hi = x * y;
*lo = __fmal (x, y, -*hi);
#else
/* Apply Dekker's algorithm. */
*hi = x * y;
# define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1)
long double x1 = x * C;
long double y1 = y * C;
# undef C
x1 = (x - x1) + x1;
y1 = (y - y1) + y1;
long double x2 = x - x1;
long double y2 = y - y1;
*lo = (((x1 * y1 - *hi) + x1 * y2) + x2 * y1) + x2 * y2;
#endif
}
/* Compare absolute values of floating-point values pointed to by P
and Q for qsort. */
static int
compare (const void *p, const void *q)
{
long double pld = fabsl (*(const long double *) p);
long double qld = fabsl (*(const long double *) q);
if (pld < qld)
return -1;
else if (pld == qld)
return 0;
else
return 1;
}
/* Return X^2 + Y^2 - 1, computed without large cancellation error.
It is given that 1 > X >= Y >= epsilon / 2, and that either X >=
0.75 or Y >= 0.5. */
long double
__x2y2m1l (long double x, long double y)
{
long double vals[4];
SET_RESTORE_ROUNDL (FE_TONEAREST);
mul_split (&vals[1], &vals[0], x, x);
mul_split (&vals[3], &vals[2], y, y);
if (x >= 0.75L)
vals[1] -= 1.0L;
else
{
vals[1] -= 0.5L;
vals[3] -= 0.5L;
}
qsort (vals, 4, sizeof (long double), compare);
/* Add up the values so that each element of VALS has absolute value
at most equal to the last set bit of the next nonzero
element. */
for (size_t i = 0; i <= 2; i++)
{
add_split (&vals[i + 1], &vals[i], vals[i + 1], vals[i]);
qsort (vals + i + 1, 3 - i, sizeof (long double), compare);
}
/* Now any error from this addition will be small. */
return vals[3] + vals[2] + vals[1] + vals[0];
}

View File

@ -0,0 +1,128 @@
/* Compute x^2 + y^2 - 1, without large cancellation error.
Copyright (C) 2012 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <float.h>
/* Calculate X + Y exactly and store the result in *HI + *LO. It is
given that |X| >= |Y| and the values are small enough that no
overflow occurs. */
static inline void
add_split (double *hi, double *lo, double x, double y)
{
/* Apply Dekker's algorithm. */
*hi = x + y;
*lo = (x - *hi) + y;
}
/* Calculate X * Y exactly and store the result in *HI + *LO. It is
given that the values are small enough that no overflow occurs and
large enough (or zero) that no underflow occurs. */
static inline void
mul_split (double *hi, double *lo, double x, double y)
{
#ifdef __FP_FAST_FMA
/* Fast built-in fused multiply-add. */
*hi = x * y;
*lo = __builtin_fma (x, y, -*hi);
#elif defined FP_FAST_FMA
/* Fast library fused multiply-add, compiler before GCC 4.6. */
*hi = x * y;
*lo = __fma (x, y, -*hi);
#else
/* Apply Dekker's algorithm. */
*hi = x * y;
# define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1)
double x1 = x * C;
double y1 = y * C;
# undef C
x1 = (x - x1) + x1;
y1 = (y - y1) + y1;
double x2 = x - x1;
double y2 = y - y1;
*lo = (((x1 * y1 - *hi) + x1 * y2) + x2 * y1) + x2 * y2;
#endif
}
/* Compare absolute values of floating-point values pointed to by P
and Q for qsort. */
static int
compare (const void *p, const void *q)
{
double pd = fabs (*(const double *) p);
double qd = fabs (*(const double *) q);
if (pd < qd)
return -1;
else if (pd == qd)
return 0;
else
return 1;
}
/* Return X^2 + Y^2 - 1, computed without large cancellation error.
It is given that 1 > X >= Y >= epsilon / 2, and that either X >=
0.75 or Y >= 0.5. */
long double
__x2y2m1l (long double x, long double y)
{
double vals[12];
SET_RESTORE_ROUND (FE_TONEAREST);
union ibm_extended_long_double xu, yu;
xu.d = x;
yu.d = y;
if (fabs (xu.dd[1]) < 0x1p-500)
xu.dd[1] = 0.0;
if (fabs (yu.dd[1]) < 0x1p-500)
yu.dd[1] = 0.0;
mul_split (&vals[1], &vals[0], xu.dd[0], xu.dd[0]);
mul_split (&vals[3], &vals[2], xu.dd[0], xu.dd[1]);
vals[2] *= 2.0;
vals[3] *= 2.0;
mul_split (&vals[5], &vals[4], xu.dd[1], xu.dd[1]);
mul_split (&vals[7], &vals[6], yu.dd[0], yu.dd[0]);
mul_split (&vals[9], &vals[8], yu.dd[0], yu.dd[1]);
vals[8] *= 2.0;
vals[9] *= 2.0;
mul_split (&vals[11], &vals[10], yu.dd[1], yu.dd[1]);
if (xu.dd[0] >= 0.75)
vals[1] -= 1.0;
else
{
vals[1] -= 0.5;
vals[7] -= 0.5;
}
qsort (vals, 12, sizeof (double), compare);
/* Add up the values so that each element of VALS has absolute value
at most equal to the last set bit of the next nonzero
element. */
for (size_t i = 0; i <= 10; i++)
{
add_split (&vals[i + 1], &vals[i], vals[i + 1], vals[i]);
qsort (vals + i + 1, 11 - i, sizeof (double), compare);
}
/* Now any error from this addition will be small. */
long double retval = (long double) vals[11];
for (size_t i = 10; i != (size_t) -1; i--)
retval += (long double) vals[i];
return retval;
}

View File

@ -0,0 +1,39 @@
/* Compute x^2 + y^2 - 1, without large cancellation error.
Copyright (C) 2012 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <float.h>
#if FLT_EVAL_METHOD == 0
# include <sysdeps/ieee754/dbl-64/x2y2m1.c>
#else
/* Return X^2 + Y^2 - 1, computed without large cancellation error.
It is given that 1 > X >= Y >= epsilon / 2, and that either X >=
0.75 or Y >= 0.5. */
double
__x2y2m1 (double x, double y)
{
return (double) __x2y2m1l (x, y);
}
#endif

View File

@ -0,0 +1,111 @@
/* Compute x^2 + y^2 - 1, without large cancellation error.
Copyright (C) 2012 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <float.h>
#include <stdlib.h>
/* Calculate X + Y exactly and store the result in *HI + *LO. It is
given that |X| >= |Y| and the values are small enough that no
overflow occurs. */
static inline void
add_split (long double *hi, long double *lo, long double x, long double y)
{
/* Apply Dekker's algorithm. */
*hi = x + y;
*lo = (x - *hi) + y;
}
/* Calculate X * Y exactly and store the result in *HI + *LO. It is
given that the values are small enough that no overflow occurs and
large enough (or zero) that no underflow occurs. */
static inline void
mul_split (long double *hi, long double *lo, long double x, long double y)
{
#ifdef __FP_FAST_FMAL
/* Fast built-in fused multiply-add. */
*hi = x * y;
*lo = __builtin_fmal (x, y, -*hi);
#elif defined FP_FAST_FMAL
/* Fast library fused multiply-add, compiler before GCC 4.6. */
*hi = x * y;
*lo = __fmal (x, y, -*hi);
#else
/* Apply Dekker's algorithm. */
*hi = x * y;
# define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1)
long double x1 = x * C;
long double y1 = y * C;
# undef C
x1 = (x - x1) + x1;
y1 = (y - y1) + y1;
long double x2 = x - x1;
long double y2 = y - y1;
*lo = (((x1 * y1 - *hi) + x1 * y2) + x2 * y1) + x2 * y2;
#endif
}
/* Compare absolute values of floating-point values pointed to by P
and Q for qsort. */
static int
compare (const void *p, const void *q)
{
long double pld = fabsl (*(const long double *) p);
long double qld = fabsl (*(const long double *) q);
if (pld < qld)
return -1;
else if (pld == qld)
return 0;
else
return 1;
}
/* Return X^2 + Y^2 - 1, computed without large cancellation error.
It is given that 1 > X >= Y >= epsilon / 2, and that either X >=
0.75 or Y >= 0.5. */
long double
__x2y2m1l (long double x, long double y)
{
long double vals[4];
SET_RESTORE_ROUNDL (FE_TONEAREST);
mul_split (&vals[1], &vals[0], x, x);
mul_split (&vals[3], &vals[2], y, y);
if (x >= 0.75L)
vals[1] -= 1.0L;
else
{
vals[1] -= 0.5L;
vals[3] -= 0.5L;
}
qsort (vals, 4, sizeof (long double), compare);
/* Add up the values so that each element of VALS has absolute value
at most equal to the last set bit of the next nonzero
element. */
for (size_t i = 0; i <= 2; i++)
{
add_split (&vals[i + 1], &vals[i], vals[i + 1], vals[i]);
qsort (vals + i + 1, 3 - i, sizeof (long double), compare);
}
/* Now any error from this addition will be small. */
return vals[3] + vals[2] + vals[1] + vals[0];
}

View File

@ -812,6 +812,12 @@ float: 1
ifloat: 1 ifloat: 1
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
Test "Real part of: clog (0x0.ffffffffffffffffp0 + 0x0.ffffffffffffffffp-15000 i) == -5.421010862427522170184200798202494495630e-20 + 3.548665303440282824232502561095699343814e-4516 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog (0x0.ffffffp0 + 0x0.ffffffp-100 i) == -5.960464655174753498633255797994360530379e-8 + 7.888609052210118054117285652827862296732e-31 i":
float: 1
ifloat: 1
Test "Real part of: clog (0x1.000566p0 + 0x1.234p-10 i) == 8.298731898331237038231468223024422855654e-5 + 1.110938609507128729312743251313024793990e-3 i": Test "Real part of: clog (0x1.000566p0 + 0x1.234p-10 i) == 8.298731898331237038231468223024422855654e-5 + 1.110938609507128729312743251313024793990e-3 i":
float: 1 float: 1
ifloat: 1 ifloat: 1
@ -868,6 +874,12 @@ ldouble: 1
Test "Real part of: clog (0x1p-16445 - 0x1.fp+16383 i) == 11356.49165759582936919077408168801636572 - pi/2 i": Test "Real part of: clog (0x1p-16445 - 0x1.fp+16383 i) == 11356.49165759582936919077408168801636572 - pi/2 i":
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
Test "Imaginary part of: clog (0x2818p-15 + 0x798fp-15 i) == 1.5366822245016167178749091974664853785194e-08 + 1.2522014929038946066987318471922169174157 i":
float: 1
ifloat: 1
Test "Real part of: clog (0x2dd46725bp-35 + 0x7783a1284p-35 i) == 4.4469229730850767799109418892826021157328e-20 + 1.2046235979300843056806465045930070146351 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog (1.0 + 0x1.234566p-10 i) == 6.172834701221959432440126967147726538097e-7 + 1.111110564353742042376451655136933182201e-3 i": Test "Real part of: clog (1.0 + 0x1.234566p-10 i) == 6.172834701221959432440126967147726538097e-7 + 1.111110564353742042376451655136933182201e-3 i":
float: 1 float: 1
ifloat: 1 ifloat: 1
@ -1009,6 +1021,21 @@ idouble: 1
ifloat: 1 ifloat: 1
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
Test "Real part of: clog10 (0x0.fffffffffffff8p0 + 0x0.fffffffffffff8p-1000 i) == -4.821637332766435821255375046554377090472e-17 + 4.053112396770095089737411317782466262176e-302 i":
double: 1
idouble: 1
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x0.ffffffffffffffffp0 + 0x0.ffffffffffffffffp-15000 i) == -2.354315103889861110220423157644627849164e-20 + 1.541165759405643564697852372112893034397e-4516 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x0.ffffffp0 + 0x0.ffffffp-100 i) == -2.588596909321764128428416045209904492216e-8 + 3.425979381266895667295625489912064603415e-31 i":
double: 1
float: 2
idouble: 1
ifloat: 2
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x1.000566p0 + 0x1.234p-10 i) == 3.604093470239754109961125085078190708674e-5 + 4.824745078422174667425851670822596859720e-4 i": Test "Real part of: clog10 (0x1.000566p0 + 0x1.234p-10 i) == 3.604093470239754109961125085078190708674e-5 + 4.824745078422174667425851670822596859720e-4 i":
float: 1 float: 1
ifloat: 1 ifloat: 1
@ -1068,6 +1095,27 @@ ldouble: 1
Test "Real part of: clog10 (0x1.fp+16383 - 0x1p-16445 i) == 4932.061660674182269085496060792589701158 - 0 i": Test "Real part of: clog10 (0x1.fp+16383 - 0x1p-16445 i) == 4932.061660674182269085496060792589701158 - 0 i":
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
Test "Real part of: clog10 (0x10673dd0f2481p-51 + 0x7ef1d17cefbd2p-51 i) == 1.3918041236396763648388478552321724382899e-29 + 0.6263795733790237053262025311642907438291 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (0x11682p-23 + 0x7ffed1p-23 i) == 5.0916490233953865181284669870035717560498e-13 + 0.6784968969384861816694467029319146542069 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x1367a310575591p-54 + 0x3cfcc0a0541f60p-54 i) == 2.2081507730821788480616336165447731164865e-32 + 0.5484039935757001196548030312819898864760 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (0x1367a310575591p-54 + 0x3cfcc0a0541f60p-54 i) == 2.2081507730821788480616336165447731164865e-32 + 0.5484039935757001196548030312819898864760 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (0x164c74eea876p-45 + 0x16f393482f77p-45 i) == -1.3155760824064879362415202279780039150764e-26 + 0.3473590599762514228227328130640352044313 i":
double: 1
idouble: 1
Test "Real part of: clog10 (0x1a6p-10 + 0x3a5p-10 i) == -6.2126412844802358329771948751248003038444e-07 + 0.4977135139537443711784513409096950995985 i":
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x1a6p-10 + 0x3a5p-10 i) == -6.2126412844802358329771948751248003038444e-07 + 0.4977135139537443711784513409096950995985 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (0x1p-1073 + 0x1p-1073 i) == -322.8546703496198318667349645920187712089 + pi/4*log10(e) i": Test "Imaginary part of: clog10 (0x1p-1073 + 0x1p-1073 i) == -322.8546703496198318667349645920187712089 + pi/4*log10(e) i":
double: 1 double: 1
idouble: 1 idouble: 1
@ -1151,6 +1199,75 @@ ifloat: 1
Test "Real part of: clog10 (0x1p-8190 + 1.0 i) == 2.920285685286322365786846845062520925172e-4932 + 6.821881769209206737428918127156778851051e-1 i": Test "Real part of: clog10 (0x1p-8190 + 1.0 i) == 2.920285685286322365786846845062520925172e-4932 + 6.821881769209206737428918127156778851051e-1 i":
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
Test "Real part of: clog10 (0x2818p-15 + 0x798fp-15 i) == 6.6737261053986614395049481326819059203910e-09 + 0.5438241985991753781478398141908629586460 i":
double: 1
float: 1
idouble: 1
ifloat: 1
Test "Imaginary part of: clog10 (0x2818p-15 + 0x798fp-15 i) == 6.6737261053986614395049481326819059203910e-09 + 0.5438241985991753781478398141908629586460 i":
float: 1
ifloat: 1
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x2dd46725bp-35 + 0x7783a1284p-35 i) == 1.9312741086596516918394613098872836703188e-20 + 0.5231613813514771042838490538484014771862 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (0x2dd46725bp-35 + 0x7783a1284p-35 i) == 1.9312741086596516918394613098872836703188e-20 + 0.5231613813514771042838490538484014771862 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x2ede88p-23 + 0x771c3fp-23 i) == -1.9440841725722970687903291200493082253766e-13 + 0.5193774116724956222518530053006822210323 i":
float: 1
ifloat: 1
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x2ede88p-23 + 0x771c3fp-23 i) == -1.9440841725722970687903291200493082253766e-13 + 0.5193774116724956222518530053006822210323 i":
double: 1
idouble: 1
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x4447d7175p-35 + 0x6c445e00ap-35 i) == -6.4375803621988389731799033530075237868110e-21 + 0.4378257977686804492768642780897650927167 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (0x4447d7175p-35 + 0x6c445e00ap-35 i) == -6.4375803621988389731799033530075237868110e-21 + 0.4378257977686804492768642780897650927167 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x4d4ep-15 + 0x6605p-15 i) == -7.0781945783414996953799915941870192015212e-09 + 0.4005747524909781155537088181659175147564 i":
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x5b06b680ea2ccp-52 + 0xef452b965da9fp-52 i) == 3.6079845358966994996207055940336690133424e-30 + 0.5243112258263349992771652393178033846555 i":
double: 1
idouble: 1
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x659b70ab7971bp-53 + 0x1f5d111e08abecp-53 i) == -1.0893543813872082317104059174982092534059e-30 + 0.5954257879188711495921161433751775633232 i":
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x659feap-24 + 0xeaf6f9p-24 i) == 1.6200701438094619117335617123525612051457e-14 + 0.5049027913635038013499728086604870749732 i":
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x6b10b4f3520217b6p-64 + 0xe8893cbb449253a1p-64 i) == 1.0529283395205396881397407610630442563938e-37 + 0.4947949395762683446121140513971996916447 i":
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x81b7efa81fc35ad1p-65 + 0x1ef4b835f1c79d812p-65 i) == -4.3074341162203896332989394770760901408798e-39 + 0.5709443672155660428417571212549720987784 i":
ildouble: 1
ldouble: 1
Test "Real part of: clog10 (0x8ecbf810c4ae6p-52 + 0xd479468b09a37p-52 i) == -4.2289432987513243393180377141513840878196e-30 + 0.4252020027092323591068799049905597805296 i":
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0x9b57bp-20 + 0xcb7b4p-20 i) == -1.7182001068739620267773842120965071561416e-11 + 0.3990121149225253562859800593935899629087 i":
double: 1
idouble: 1
Test "Real part of: clog10 (0xf2p-10 + 0x3e3p-10 i) == 2.6921240173351112953324592659528481616879e-06 + 0.5785726025799636431142862788413361783862 i":
double: 1
idouble: 1
ildouble: 1
ldouble: 1
Test "Imaginary part of: clog10 (0xf2p-10 + 0x3e3p-10 i) == 2.6921240173351112953324592659528481616879e-06 + 0.5785726025799636431142862788413361783862 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (0xfe961079616p-45 + 0x1bc37e09e6d1p-45 i) == 2.3329549194675052736016290082882121135546e-26 + 0.4561756099441139182878993697611751382976 i":
double: 1
idouble: 1
Test "Imaginary part of: clog10 (1.0 + 0x1.234566p-10 i) == 2.680828048441605163181684680300513080769e-7 + 4.825491868832381486767558728169977751564e-4 i": Test "Imaginary part of: clog10 (1.0 + 0x1.234566p-10 i) == 2.680828048441605163181684680300513080769e-7 + 4.825491868832381486767558728169977751564e-4 i":
double: 1 double: 1
idouble: 1 idouble: 1
@ -3050,17 +3167,17 @@ ifloat: 3
Function: Real part of "clog10": Function: Real part of "clog10":
double: 2 double: 2
float: 1 float: 2
idouble: 2 idouble: 2
ifloat: 1 ifloat: 2
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1
Function: Imaginary part of "clog10": Function: Imaginary part of "clog10":
double: 1 double: 1
float: 5 float: 1
idouble: 1 idouble: 1
ifloat: 5 ifloat: 1
ildouble: 1 ildouble: 1
ldouble: 1 ldouble: 1