1
0
mirror of https://sourceware.org/git/glibc.git synced 2025-07-28 00:21:52 +03:00

soft-fp: Fix comment formatting.

This patch fixes formatting of comments in soft-fp (in particular, the
normal style in glibc does not have a leading '*' on each line, and
comments should start with capital letters and end with ".  */").

Tested for powerpc-nofpu that the disassembly of installed shared
libraries is unchanged by this patch.

	* soft-fp/extended.h: Fix comment formatting.
	* soft-fp/op-1.h: Likewise.
	* soft-fp/op-2.h: Likewise.
	* soft-fp/op-4.h: Likewise.
	* soft-fp/op-8.h: Likewise.
	* soft-fp/op-common.h: Likewise.
	* soft-fp/soft-fp.h: Likewise.
This commit is contained in:
Joseph Myers
2014-09-17 22:20:45 +00:00
parent 4e8afe69e1
commit c4fe3ea7cf
8 changed files with 121 additions and 183 deletions

View File

@ -1,5 +1,13 @@
2014-09-17 Joseph Myers <joseph@codesourcery.com> 2014-09-17 Joseph Myers <joseph@codesourcery.com>
* soft-fp/extended.h: Fix comment formatting.
* soft-fp/op-1.h: Likewise.
* soft-fp/op-2.h: Likewise.
* soft-fp/op-4.h: Likewise.
* soft-fp/op-8.h: Likewise.
* soft-fp/op-common.h: Likewise.
* soft-fp/soft-fp.h: Likewise.
* soft-fp/op-common.h (_FP_TO_INT): Correct formatting. * soft-fp/op-common.h (_FP_TO_INT): Correct formatting.
2014-09-16 Joseph Myers <joseph@codesourcery.com> 2014-09-16 Joseph Myers <joseph@codesourcery.com>

View File

@ -232,16 +232,14 @@ union _FP_UNION_E
# define FP_SQRT_E(R, X) _FP_SQRT (E, 4, R, X) # define FP_SQRT_E(R, X) _FP_SQRT (E, 4, R, X)
# define FP_FMA_E(R, X, Y, Z) _FP_FMA (E, 4, 8, R, X, Y, Z) # define FP_FMA_E(R, X, Y, Z) _FP_FMA (E, 4, 8, R, X, Y, Z)
/* /* Square root algorithms:
* Square root algorithms: We have just one right now, maybe Newton approximation
* We have just one right now, maybe Newton approximation should be added for those machines where division is fast.
* should be added for those machines where division is fast. This has special _E version because standard _4 square
* This has special _E version because standard _4 square root would not work (it has to start normally with the
* root would not work (it has to start normally with the second word and not the first), but as we have to do it
* second word and not the first), but as we have to do it anyway, we optimize it by doing most of the calculations
* anyway, we optimize it by doing most of the calculations in two UWtype registers instead of four. */
* in two UWtype registers instead of four.
*/
# define _FP_SQRT_MEAT_E(R, S, T, X, q) \ # define _FP_SQRT_MEAT_E(R, S, T, X, q) \
do \ do \
@ -458,14 +456,12 @@ union _FP_UNION_E
# define FP_SQRT_E(R, X) _FP_SQRT (E, 2, R, X) # define FP_SQRT_E(R, X) _FP_SQRT (E, 2, R, X)
# define FP_FMA_E(R, X, Y, Z) _FP_FMA (E, 2, 4, R, X, Y, Z) # define FP_FMA_E(R, X, Y, Z) _FP_FMA (E, 2, 4, R, X, Y, Z)
/* /* Square root algorithms:
* Square root algorithms: We have just one right now, maybe Newton approximation
* We have just one right now, maybe Newton approximation should be added for those machines where division is fast.
* should be added for those machines where division is fast. We optimize it by doing most of the calculations
* We optimize it by doing most of the calculations in one UWtype registers instead of two, although we don't
* in one UWtype registers instead of two, although we don't have to. */
* have to.
*/
# define _FP_SQRT_MEAT_E(R, S, T, X, q) \ # define _FP_SQRT_MEAT_E(R, S, T, X, q) \
do \ do \
{ \ { \

View File

@ -73,7 +73,7 @@
#define _FP_FRAC_DEC_1(X, Y) (X##_f -= Y##_f) #define _FP_FRAC_DEC_1(X, Y) (X##_f -= Y##_f)
#define _FP_FRAC_CLZ_1(z, X) __FP_CLZ (z, X##_f) #define _FP_FRAC_CLZ_1(z, X) __FP_CLZ (z, X##_f)
/* Predicates */ /* Predicates. */
#define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE) X##_f < 0) #define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE) X##_f < 0)
#define _FP_FRAC_ZEROP_1(X) (X##_f == 0) #define _FP_FRAC_ZEROP_1(X) (X##_f == 0)
#define _FP_FRAC_OVERP_1(fs, X) (X##_f & _FP_OVERFLOW_##fs) #define _FP_FRAC_OVERP_1(fs, X) (X##_f & _FP_OVERFLOW_##fs)
@ -87,10 +87,8 @@
#define _FP_MINFRAC_1 1 #define _FP_MINFRAC_1 1
#define _FP_MAXFRAC_1 (~(_FP_WS_TYPE) 0) #define _FP_MAXFRAC_1 (~(_FP_WS_TYPE) 0)
/* /* Unpack the raw bits of a native fp value. Do not classify or
* Unpack the raw bits of a native fp value. Do not classify or normalize the data. */
* normalize the data.
*/
#define _FP_UNPACK_RAW_1(fs, X, val) \ #define _FP_UNPACK_RAW_1(fs, X, val) \
do \ do \
@ -116,9 +114,7 @@
} \ } \
while (0) while (0)
/* /* Repack the raw bits of a native fp value. */
* Repack the raw bits of a native fp value.
*/
#define _FP_PACK_RAW_1(fs, val, X) \ #define _FP_PACK_RAW_1(fs, val, X) \
do \ do \
@ -146,9 +142,7 @@
while (0) while (0)
/* /* Multiplication algorithms: */
* Multiplication algorithms:
*/
/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
multiplication immediately. */ multiplication immediately. */
@ -203,7 +197,7 @@
_FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_yh, _FP_MUL_MEAT_DW_1_hard_yl; \ _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_yh, _FP_MUL_MEAT_DW_1_hard_yl; \
_FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_1_hard_a); \ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_1_hard_a); \
\ \
/* split the words in half */ \ /* Split the words in half. */ \
_FP_MUL_MEAT_DW_1_hard_xh = X##_f >> (_FP_W_TYPE_SIZE/2); \ _FP_MUL_MEAT_DW_1_hard_xh = X##_f >> (_FP_W_TYPE_SIZE/2); \
_FP_MUL_MEAT_DW_1_hard_xl \ _FP_MUL_MEAT_DW_1_hard_xl \
= X##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \ = X##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \
@ -211,7 +205,7 @@
_FP_MUL_MEAT_DW_1_hard_yl \ _FP_MUL_MEAT_DW_1_hard_yl \
= Y##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \ = Y##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \
\ \
/* multiply the pieces */ \ /* Multiply the pieces. */ \
R##_f0 = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yl; \ R##_f0 = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yl; \
_FP_MUL_MEAT_DW_1_hard_a_f0 \ _FP_MUL_MEAT_DW_1_hard_a_f0 \
= _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yl; \ = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yl; \
@ -219,7 +213,7 @@
= _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yh; \ = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yh; \
R##_f1 = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yh; \ R##_f1 = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yh; \
\ \
/* reassemble into two full words */ \ /* Reassemble into two full words. */ \
if ((_FP_MUL_MEAT_DW_1_hard_a_f0 += _FP_MUL_MEAT_DW_1_hard_a_f1) \ if ((_FP_MUL_MEAT_DW_1_hard_a_f0 += _FP_MUL_MEAT_DW_1_hard_a_f1) \
< _FP_MUL_MEAT_DW_1_hard_a_f1) \ < _FP_MUL_MEAT_DW_1_hard_a_f1) \
R##_f1 += (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2); \ R##_f1 += (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2); \
@ -237,7 +231,7 @@
_FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_hard_z); \ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_hard_z); \
_FP_MUL_MEAT_DW_1_hard (wfracbits, _FP_MUL_MEAT_1_hard_z, X, Y); \ _FP_MUL_MEAT_DW_1_hard (wfracbits, _FP_MUL_MEAT_1_hard_z, X, Y); \
\ \
/* normalize */ \ /* Normalize. */ \
_FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_hard_z, \ _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_hard_z, \
wfracbits - 1, 2*wfracbits); \ wfracbits - 1, 2*wfracbits); \
R##_f = _FP_MUL_MEAT_1_hard_z_f0; \ R##_f = _FP_MUL_MEAT_1_hard_z_f0; \
@ -245,9 +239,7 @@
while (0) while (0)
/* /* Division algorithms: */
* Division algorithms:
*/
/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
division immediately. Give this macro either _FP_DIV_HELP_imm for division immediately. Give this macro either _FP_DIV_HELP_imm for
@ -330,11 +322,9 @@
while (0) while (0)
/* /* Square root algorithms:
* Square root algorithms: We have just one right now, maybe Newton approximation
* We have just one right now, maybe Newton approximation should be added for those machines where division is fast. */
* should be added for those machines where division is fast.
*/
#define _FP_SQRT_MEAT_1(R, S, T, X, q) \ #define _FP_SQRT_MEAT_1(R, S, T, X, q) \
do \ do \
@ -360,17 +350,13 @@
} \ } \
while (0) while (0)
/* /* Assembly/disassembly for converting to/from integral types.
* Assembly/disassembly for converting to/from integral types. No shifting or overflow handled here. */
* No shifting or overflow handled here.
*/
#define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f) #define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f)
#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r) #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r)
/* /* Convert FP values between word sizes. */
* Convert FP values between word sizes
*/
#define _FP_FRAC_COPY_1_1(D, S) (D##_f = S##_f) #define _FP_FRAC_COPY_1_1(D, S) (D##_f = S##_f)

View File

@ -131,7 +131,7 @@
} \ } \
while (0) while (0)
/* Predicates */ /* Predicates. */
#define _FP_FRAC_NEGP_2(X) ((_FP_WS_TYPE) X##_f1 < 0) #define _FP_FRAC_NEGP_2(X) ((_FP_WS_TYPE) X##_f1 < 0)
#define _FP_FRAC_ZEROP_2(X) ((X##_f1 | X##_f0) == 0) #define _FP_FRAC_ZEROP_2(X) ((X##_f1 | X##_f0) == 0)
#define _FP_FRAC_OVERP_2(fs, X) (_FP_FRAC_HIGH_##fs (X) & _FP_OVERFLOW_##fs) #define _FP_FRAC_OVERP_2(fs, X) (_FP_FRAC_HIGH_##fs (X) & _FP_OVERFLOW_##fs)
@ -148,9 +148,7 @@
#define _FP_MINFRAC_2 0, 1 #define _FP_MINFRAC_2 0, 1
#define _FP_MAXFRAC_2 (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0) #define _FP_MAXFRAC_2 (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0)
/* /* Internals. */
* Internals
*/
#define __FP_FRAC_SET_2(X, I1, I0) (X##_f0 = I0, X##_f1 = I1) #define __FP_FRAC_SET_2(X, I1, I0) (X##_f0 = I0, X##_f1 = I1)
@ -205,10 +203,8 @@
#endif #endif
/* /* Unpack the raw bits of a native fp value. Do not classify or
* Unpack the raw bits of a native fp value. Do not classify or normalize the data. */
* normalize the data.
*/
#define _FP_UNPACK_RAW_2(fs, X, val) \ #define _FP_UNPACK_RAW_2(fs, X, val) \
do \ do \
@ -237,9 +233,7 @@
while (0) while (0)
/* /* Repack the raw bits of a native fp value. */
* Repack the raw bits of a native fp value.
*/
#define _FP_PACK_RAW_2(fs, val, X) \ #define _FP_PACK_RAW_2(fs, val, X) \
do \ do \
@ -269,9 +263,7 @@
while (0) while (0)
/* /* Multiplication algorithms: */
* Multiplication algorithms:
*/
/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
@ -532,9 +524,7 @@
} \ } \
while (0) while (0)
/* /* Division algorithms: */
* Division algorithms:
*/
#define _FP_DIV_MEAT_2_udiv(fs, R, X, Y) \ #define _FP_DIV_MEAT_2_udiv(fs, R, X, Y) \
do \ do \
@ -563,7 +553,7 @@
} \ } \
\ \
/* Normalize, i.e. make the most significant bit of the \ /* Normalize, i.e. make the most significant bit of the \
denominator set. */ \ denominator set. */ \
_FP_FRAC_SLL_2 (Y, _FP_WFRACXBITS_##fs); \ _FP_FRAC_SLL_2 (Y, _FP_WFRACXBITS_##fs); \
\ \
udiv_qrnnd (R##_f1, _FP_DIV_MEAT_2_udiv_r_f1, \ udiv_qrnnd (R##_f1, _FP_DIV_MEAT_2_udiv_r_f1, \
@ -630,11 +620,9 @@
while (0) while (0)
/* /* Square root algorithms:
* Square root algorithms: We have just one right now, maybe Newton approximation
* We have just one right now, maybe Newton approximation should be added for those machines where division is fast. */
* should be added for those machines where division is fast.
*/
#define _FP_SQRT_MEAT_2(R, S, T, X, q) \ #define _FP_SQRT_MEAT_2(R, S, T, X, q) \
do \ do \
@ -678,10 +666,8 @@
while (0) while (0)
/* /* Assembly/disassembly for converting to/from integral types.
* Assembly/disassembly for converting to/from integral types. No shifting or overflow handled here. */
* No shifting or overflow handled here.
*/
#define _FP_FRAC_ASSEMBLE_2(r, X, rsize) \ #define _FP_FRAC_ASSEMBLE_2(r, X, rsize) \
(void) ((rsize <= _FP_W_TYPE_SIZE) \ (void) ((rsize <= _FP_W_TYPE_SIZE) \
@ -700,9 +686,7 @@
} \ } \
while (0) while (0)
/* /* Convert FP values between word sizes. */
* Convert FP values between word sizes
*/
#define _FP_FRAC_COPY_1_2(D, S) (D##_f = S##_f0) #define _FP_FRAC_COPY_1_2(D, S) (D##_f = S##_f0)

View File

@ -70,7 +70,7 @@
} \ } \
while (0) while (0)
/* This one was broken too */ /* This one was broken too. */
#define _FP_FRAC_SRL_4(X, N) \ #define _FP_FRAC_SRL_4(X, N) \
do \ do \
{ \ { \
@ -104,10 +104,9 @@
/* Right shift with sticky-lsb. /* Right shift with sticky-lsb.
* What this actually means is that we do a standard right-shift, What this actually means is that we do a standard right-shift,
* but that if any of the bits that fall off the right hand side but that if any of the bits that fall off the right hand side
* were one then we always set the LSbit. were one then we always set the LSbit. */
*/
#define _FP_FRAC_SRST_4(X, S, N, size) \ #define _FP_FRAC_SRST_4(X, S, N, size) \
do \ do \
{ \ { \
@ -290,9 +289,7 @@
} \ } \
while (0) while (0)
/* /* Multiplication algorithms: */
* Multiplication algorithms:
*/
/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
@ -467,10 +464,8 @@
} \ } \
while (0) while (0)
/* /* Helper utility for _FP_DIV_MEAT_4_udiv:
* Helper utility for _FP_DIV_MEAT_4_udiv: * pppp = m * nnn. */
* pppp = m * nnn
*/
#define umul_ppppmnnn(p3, p2, p1, p0, m, n2, n1, n0) \ #define umul_ppppmnnn(p3, p2, p1, p0, m, n2, n1, n0) \
do \ do \
{ \ { \
@ -483,9 +478,7 @@
} \ } \
while (0) while (0)
/* /* Division algorithms: */
* Division algorithms:
*/
#define _FP_DIV_MEAT_4_udiv(fs, R, X, Y) \ #define _FP_DIV_MEAT_4_udiv(fs, R, X, Y) \
do \ do \
@ -504,7 +497,7 @@
R##_e--; \ R##_e--; \
\ \
/* Normalize, i.e. make the most significant bit of the \ /* Normalize, i.e. make the most significant bit of the \
denominator set. */ \ denominator set. */ \
_FP_FRAC_SLL_4 (Y, _FP_WFRACXBITS_##fs); \ _FP_FRAC_SLL_4 (Y, _FP_WFRACXBITS_##fs); \
\ \
for (_FP_DIV_MEAT_4_udiv_i = 3; ; _FP_DIV_MEAT_4_udiv_i--) \ for (_FP_DIV_MEAT_4_udiv_i = 3; ; _FP_DIV_MEAT_4_udiv_i--) \
@ -568,11 +561,9 @@
while (0) while (0)
/* /* Square root algorithms:
* Square root algorithms: We have just one right now, maybe Newton approximation
* We have just one right now, maybe Newton approximation should be added for those machines where division is fast. */
* should be added for those machines where division is fast.
*/
#define _FP_SQRT_MEAT_4(R, S, T, X, q) \ #define _FP_SQRT_MEAT_4(R, S, T, X, q) \
do \ do \
@ -657,9 +648,7 @@
while (0) while (0)
/* /* Internals. */
* Internals
*/
#define __FP_FRAC_SET_4(X, I3, I2, I1, I0) \ #define __FP_FRAC_SET_4(X, I3, I2, I1, I0) \
(X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0) (X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0)
@ -787,12 +776,11 @@
#endif #endif
/* Convert FP values between word sizes. This appears to be more /* Convert FP values between word sizes. This appears to be more
* complicated than I'd have expected it to be, so these might be complicated than I'd have expected it to be, so these might be
* wrong... These macros are in any case somewhat bogus because they wrong... These macros are in any case somewhat bogus because they
* use information about what various FRAC_n variables look like use information about what various FRAC_n variables look like
* internally [eg, that 2 word vars are X_f0 and x_f1]. But so do internally [eg, that 2 word vars are X_f0 and x_f1]. But so do
* the ones in op-2.h and op-1.h. the ones in op-2.h and op-1.h. */
*/
#define _FP_FRAC_COPY_1_4(D, S) (D##_f = S##_f[0]) #define _FP_FRAC_COPY_1_4(D, S) (D##_f = S##_f[0])
#define _FP_FRAC_COPY_2_4(D, S) \ #define _FP_FRAC_COPY_2_4(D, S) \
@ -804,9 +792,8 @@
while (0) while (0)
/* Assembly/disassembly for converting to/from integral types. /* Assembly/disassembly for converting to/from integral types.
* No shifting or overflow handled here. No shifting or overflow handled here. */
*/ /* Put the FP value X into r, which is an integer of size rsize. */
/* Put the FP value X into r, which is an integer of size rsize. */
#define _FP_FRAC_ASSEMBLE_4(r, X, rsize) \ #define _FP_FRAC_ASSEMBLE_4(r, X, rsize) \
do \ do \
{ \ { \
@ -820,8 +807,8 @@
} \ } \
else \ else \
{ \ { \
/* I'm feeling lazy so we deal with int == 3words (implausible)*/ \ /* I'm feeling lazy so we deal with int == 3words \
/* and int == 4words as a single case. */ \ (implausible) and int == 4words as a single case. */ \
r = X##_f[3]; \ r = X##_f[3]; \
r = (rsize <= _FP_W_TYPE_SIZE ? 0 : r << _FP_W_TYPE_SIZE); \ r = (rsize <= _FP_W_TYPE_SIZE ? 0 : r << _FP_W_TYPE_SIZE); \
r += X##_f[2]; \ r += X##_f[2]; \
@ -834,10 +821,9 @@
while (0) while (0)
/* "No disassemble Number Five!" */ /* "No disassemble Number Five!" */
/* move an integer of size rsize into X's fractional part. We rely on /* Move an integer of size rsize into X's fractional part. We rely on
* the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid
* having to mask the values we store into it. having to mask the values we store into it. */
*/
#define _FP_FRAC_DISASSEMBLE_4(X, r, rsize) \ #define _FP_FRAC_DISASSEMBLE_4(X, r, rsize) \
do \ do \
{ \ { \

View File

@ -30,7 +30,7 @@
<http://www.gnu.org/licenses/>. */ <http://www.gnu.org/licenses/>. */
/* We need just a few things from here for op-4, if we ever need some /* We need just a few things from here for op-4, if we ever need some
other macros, they can be added. */ other macros, they can be added. */
#define _FP_FRAC_DECL_8(X) _FP_W_TYPE X##_f[8] #define _FP_FRAC_DECL_8(X) _FP_W_TYPE X##_f[8]
#define _FP_FRAC_HIGH_8(X) (X##_f[7]) #define _FP_FRAC_HIGH_8(X) (X##_f[7])
#define _FP_FRAC_LOW_8(X) (X##_f[0]) #define _FP_FRAC_LOW_8(X) (X##_f[0])
@ -100,10 +100,9 @@
/* Right shift with sticky-lsb. /* Right shift with sticky-lsb.
* What this actually means is that we do a standard right-shift, What this actually means is that we do a standard right-shift,
* but that if any of the bits that fall off the right hand side but that if any of the bits that fall off the right hand side
* were one then we always set the LSbit. were one then we always set the LSbit. */
*/
#define _FP_FRAC_SRS_8(X, N, size) \ #define _FP_FRAC_SRS_8(X, N, size) \
do \ do \
{ \ { \
@ -139,8 +138,8 @@
} \ } \
for (; _FP_FRAC_SRS_8_i < 8; ++_FP_FRAC_SRS_8_i) \ for (; _FP_FRAC_SRS_8_i < 8; ++_FP_FRAC_SRS_8_i) \
X##_f[_FP_FRAC_SRS_8_i] = 0; \ X##_f[_FP_FRAC_SRS_8_i] = 0; \
/* don't fix the LSB until the very end when we're sure f[0] is \ /* Don't fix the LSB until the very end when we're sure f[0] is \
stable */ \ stable. */ \
X##_f[0] |= (_FP_FRAC_SRS_8_s != 0); \ X##_f[0] |= (_FP_FRAC_SRS_8_s != 0); \
} \ } \
while (0) while (0)

View File

@ -45,10 +45,8 @@
? (_FP_FRAC_HIGH_##fs (X) & _FP_QNANBIT_SH_##fs) \ ? (_FP_FRAC_HIGH_##fs (X) & _FP_QNANBIT_SH_##fs) \
: !(_FP_FRAC_HIGH_##fs (X) & _FP_QNANBIT_SH_##fs)) : !(_FP_FRAC_HIGH_##fs (X) & _FP_QNANBIT_SH_##fs))
/* /* Finish truly unpacking a native fp value by classifying the kind
* Finish truly unpacking a native fp value by classifying the kind of fp value and normalizing both the exponent and the fraction. */
* of fp value and normalizing both the exponent and the fraction.
*/
#define _FP_UNPACK_CANONICAL(fs, wc, X) \ #define _FP_UNPACK_CANONICAL(fs, wc, X) \
do \ do \
@ -67,7 +65,7 @@
X##_c = FP_CLS_ZERO; \ X##_c = FP_CLS_ZERO; \
else \ else \
{ \ { \
/* a denormalized number */ \ /* A denormalized number. */ \
_FP_I_TYPE _FP_UNPACK_CANONICAL_shift; \ _FP_I_TYPE _FP_UNPACK_CANONICAL_shift; \
_FP_FRAC_CLZ_##wc (_FP_UNPACK_CANONICAL_shift, \ _FP_FRAC_CLZ_##wc (_FP_UNPACK_CANONICAL_shift, \
X); \ X); \
@ -87,7 +85,7 @@
else \ else \
{ \ { \
X##_c = FP_CLS_NAN; \ X##_c = FP_CLS_NAN; \
/* Check for signaling NaN */ \ /* Check for signaling NaN. */ \
if (_FP_FRAC_SNANP (fs, X)) \ if (_FP_FRAC_SNANP (fs, X)) \
FP_SET_EXCEPTION (FP_EX_INVALID); \ FP_SET_EXCEPTION (FP_EX_INVALID); \
} \ } \
@ -237,12 +235,10 @@
} \ } \
while (0) while (0)
/* /* Before packing the bits back into the native fp result, take care
* Before packing the bits back into the native fp result, take care of such mundane things as rounding and overflow. Also, for some
* of such mundane things as rounding and overflow. Also, for some kinds of fp values, the original parts may not have been fully
* kinds of fp values, the original parts may not have been fully extracted -- but that is ok, we can regenerate them now. */
* extracted -- but that is ok, we can regenerate them now.
*/
#define _FP_PACK_CANONICAL(fs, wc, X) \ #define _FP_PACK_CANONICAL(fs, wc, X) \
do \ do \
@ -262,7 +258,7 @@
_FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \ _FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
if (X##_e >= _FP_EXPMAX_##fs) \ if (X##_e >= _FP_EXPMAX_##fs) \
{ \ { \
/* overflow */ \ /* Overflow. */ \
switch (FP_ROUNDMODE) \ switch (FP_ROUNDMODE) \
{ \ { \
case FP_RND_NEAREST: \ case FP_RND_NEAREST: \
@ -279,13 +275,13 @@
} \ } \
if (X##_c == FP_CLS_INF) \ if (X##_c == FP_CLS_INF) \
{ \ { \
/* Overflow to infinity */ \ /* Overflow to infinity. */ \
X##_e = _FP_EXPMAX_##fs; \ X##_e = _FP_EXPMAX_##fs; \
_FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \ _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
} \ } \
else \ else \
{ \ { \
/* Overflow to maximum normal */ \ /* Overflow to maximum normal. */ \
X##_e = _FP_EXPMAX_##fs - 1; \ X##_e = _FP_EXPMAX_##fs - 1; \
_FP_FRAC_SET_##wc (X, _FP_MAXFRAC_##wc); \ _FP_FRAC_SET_##wc (X, _FP_MAXFRAC_##wc); \
} \ } \
@ -295,7 +291,7 @@
} \ } \
else \ else \
{ \ { \
/* we've got a denormalized number */ \ /* We've got a denormalized number. */ \
int _FP_PACK_CANONICAL_is_tiny = 1; \ int _FP_PACK_CANONICAL_is_tiny = 1; \
if (_FP_TININESS_AFTER_ROUNDING && X##_e == 0) \ if (_FP_TININESS_AFTER_ROUNDING && X##_e == 0) \
{ \ { \
@ -332,7 +328,7 @@
} \ } \
else \ else \
{ \ { \
/* underflow to zero */ \ /* Underflow to zero. */ \
X##_e = 0; \ X##_e = 0; \
if (!_FP_FRAC_ZEROP_##wc (X)) \ if (!_FP_FRAC_ZEROP_##wc (X)) \
{ \ { \
@ -370,8 +366,7 @@
while (0) while (0)
/* This one accepts raw argument and not cooked, returns /* This one accepts raw argument and not cooked, returns
* 1 if X is a signaling NaN. 1 if X is a signaling NaN. */
*/
#define _FP_ISSIGNAN(fs, wc, X) \ #define _FP_ISSIGNAN(fs, wc, X) \
({ \ ({ \
int _FP_ISSIGNAN_ret = 0; \ int _FP_ISSIGNAN_ret = 0; \
@ -833,9 +828,7 @@
while (0) while (0)
/* /* Main negation routine. The input value is raw. */
* Main negation routine. The input value is raw.
*/
#define _FP_NEG(fs, wc, R, X) \ #define _FP_NEG(fs, wc, R, X) \
do \ do \
@ -847,9 +840,7 @@
while (0) while (0)
/* /* Main multiplication routine. The input values should be cooked. */
* Main multiplication routine. The input values should be cooked.
*/
#define _FP_MUL(fs, wc, R, X, Y) \ #define _FP_MUL(fs, wc, R, X, Y) \
do \ do \
@ -1132,9 +1123,7 @@
while (0) while (0)
/* /* Main division routine. The input values should be cooked. */
* Main division routine. The input values should be cooked.
*/
#define _FP_DIV(fs, wc, R, X, Y) \ #define _FP_DIV(fs, wc, R, X, Y) \
do \ do \
@ -1197,15 +1186,13 @@
while (0) while (0)
/* /* Main differential comparison routine. The inputs should be raw not
* Main differential comparison routine. The inputs should be raw not cooked. The return is -1,0,1 for normal values, 2 otherwise. */
* cooked. The return is -1,0,1 for normal values, 2 otherwise.
*/
#define _FP_CMP(fs, wc, ret, X, Y, un) \ #define _FP_CMP(fs, wc, ret, X, Y, un) \
do \ do \
{ \ { \
/* NANs are unordered */ \ /* NANs are unordered. */ \
if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \ if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \
|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))) \ || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))) \
{ \ { \
@ -1249,7 +1236,7 @@
#define _FP_CMP_EQ(fs, wc, ret, X, Y) \ #define _FP_CMP_EQ(fs, wc, ret, X, Y) \
do \ do \
{ \ { \
/* NANs are unordered */ \ /* NANs are unordered. */ \
if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \ if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \
|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))) \ || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))) \
{ \ { \
@ -1274,9 +1261,7 @@
} \ } \
while (0) while (0)
/* /* Main square root routine. The input value should be cooked. */
* Main square root routine. The input value should be cooked.
*/
#define _FP_SQRT(fs, wc, R, X) \ #define _FP_SQRT(fs, wc, R, X) \
do \ do \
@ -1332,21 +1317,18 @@
} \ } \
while (0) while (0)
/* /* Convert from FP to integer. Input is raw. */
* Convert from FP to integer. Input is raw.
*/
/* RSIGNED can have following values: /* RSIGNED can have following values:
* 0: the number is required to be 0..(2^rsize)-1, if not, NV is set plus 0: the number is required to be 0..(2^rsize)-1, if not, NV is set plus
* the result is either 0 or (2^rsize)-1 depending on the sign in such the result is either 0 or (2^rsize)-1 depending on the sign in such
* case. case.
* 1: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, 1: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not,
* NV is set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 NV is set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1
* depending on the sign in such case. depending on the sign in such case.
* -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
* set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1
* depending on the sign in such case. depending on the sign in such case. */
*/
#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \ #define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \
do \ do \
{ \ { \
@ -1656,9 +1638,7 @@
} \ } \
while (0) while (0)
/* /* Helper primitives. */
* Helper primitives.
*/
/* Count leading zeros in a word. */ /* Count leading zeros in a word. */

View File

@ -38,7 +38,7 @@
# include "sfp-machine.h" # include "sfp-machine.h"
#endif #endif
/* Allow sfp-machine to have its own byte order definitions. */ /* Allow sfp-machine to have its own byte order definitions. */
#ifndef __BYTE_ORDER #ifndef __BYTE_ORDER
# ifdef _LIBC # ifdef _LIBC
# include <endian.h> # include <endian.h>
@ -63,7 +63,7 @@
# define FP_ROUNDMODE FP_RND_NEAREST # define FP_ROUNDMODE FP_RND_NEAREST
#endif #endif
/* By default don't care about exceptions. */ /* By default don't care about exceptions. */
#ifndef FP_EX_INVALID #ifndef FP_EX_INVALID
# define FP_EX_INVALID 0 # define FP_EX_INVALID 0
#endif #endif
@ -119,10 +119,9 @@
#ifndef FP_INHIBIT_RESULTS #ifndef FP_INHIBIT_RESULTS
/* By default we write the results always. /* By default we write the results always.
* sfp-machine may override this and e.g. sfp-machine may override this and e.g.
* check if some exceptions are unmasked check if some exceptions are unmasked
* and inhibit it in such a case. and inhibit it in such a case. */
*/
# define FP_INHIBIT_RESULTS 0 # define FP_INHIBIT_RESULTS 0
#endif #endif