mirror of
https://sourceware.org/git/glibc.git
synced 2025-09-02 16:01:20 +03:00
Correct IBM long double nextafterl.
Fix for values near a power of two, and some tidies. [BZ #16739] * sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c (__nextafterl): Correct output when value is near a power of two. Use int64_t for lx and remove casts. Use decimal rather than hex exponent constants. Don't use long double multiplication when double will suffice. * math/libm-test.inc (nextafter_test_data): Add tests. * NEWS: Add 16739 and 16786 to bug list.
This commit is contained in:
@@ -30,8 +30,7 @@ static char rcsid[] = "$NetBSD: $";
|
||||
|
||||
long double __nextafterl(long double x, long double y)
|
||||
{
|
||||
int64_t hx,hy,ihx,ihy;
|
||||
uint64_t lx;
|
||||
int64_t hx, hy, ihx, ihy, lx;
|
||||
double xhi, xlo, yhi;
|
||||
|
||||
ldbl_unpack (x, &xhi, &xlo);
|
||||
@@ -79,19 +78,28 @@ long double __nextafterl(long double x, long double y)
|
||||
u = math_opt_barrier (x);
|
||||
x -= __LDBL_DENORM_MIN__;
|
||||
if (ihx < 0x0360000000000000LL
|
||||
|| (hx > 0 && (int64_t) lx <= 0)
|
||||
|| (hx < 0 && (int64_t) lx > 1)) {
|
||||
|| (hx > 0 && lx <= 0)
|
||||
|| (hx < 0 && lx > 1)) {
|
||||
u = u * u;
|
||||
math_force_eval (u); /* raise underflow flag */
|
||||
}
|
||||
return x;
|
||||
}
|
||||
if (ihx < 0x06a0000000000000LL) { /* ulp will denormal */
|
||||
INSERT_WORDS64 (yhi, hx & (0x7ffLL<<52));
|
||||
u = yhi;
|
||||
u *= 0x1.0000000000000p-105L;
|
||||
/* If the high double is an exact power of two and the low
|
||||
double is the opposite sign, then 1ulp is one less than
|
||||
what we might determine from the high double. Similarly
|
||||
if X is an exact power of two, and positive, because
|
||||
making it a little smaller will result in the exponent
|
||||
decreasing by one and normalisation of the mantissa. */
|
||||
if ((hx & 0x000fffffffffffffLL) == 0
|
||||
&& ((lx != 0 && (hx ^ lx) < 0)
|
||||
|| (lx == 0 && hx >= 0)))
|
||||
ihx -= 1LL << 52;
|
||||
if (ihx < (106LL << 52)) { /* ulp will denormal */
|
||||
INSERT_WORDS64 (yhi, ihx & (0x7ffLL<<52));
|
||||
u = yhi * 0x1p-105;
|
||||
} else {
|
||||
INSERT_WORDS64 (yhi, (hx & (0x7ffLL<<52))-(0x069LL<<52));
|
||||
INSERT_WORDS64 (yhi, (ihx & (0x7ffLL<<52))-(105LL<<52));
|
||||
u = yhi;
|
||||
}
|
||||
return x - u;
|
||||
@@ -109,8 +117,8 @@ long double __nextafterl(long double x, long double y)
|
||||
u = math_opt_barrier (x);
|
||||
x += __LDBL_DENORM_MIN__;
|
||||
if (ihx < 0x0360000000000000LL
|
||||
|| (hx > 0 && (int64_t) lx < 0 && lx != 0x8000000000000001LL)
|
||||
|| (hx < 0 && (int64_t) lx >= 0)) {
|
||||
|| (hx > 0 && lx < 0 && lx != 0x8000000000000001LL)
|
||||
|| (hx < 0 && lx >= 0)) {
|
||||
u = u * u;
|
||||
math_force_eval (u); /* raise underflow flag */
|
||||
}
|
||||
@@ -118,12 +126,21 @@ long double __nextafterl(long double x, long double y)
|
||||
x = -0.0L;
|
||||
return x;
|
||||
}
|
||||
if (ihx < 0x06a0000000000000LL) { /* ulp will denormal */
|
||||
INSERT_WORDS64 (yhi, hx & (0x7ffLL<<52));
|
||||
u = yhi;
|
||||
u *= 0x1.0000000000000p-105L;
|
||||
/* If the high double is an exact power of two and the low
|
||||
double is the opposite sign, then 1ulp is one less than
|
||||
what we might determine from the high double. Similarly
|
||||
if X is an exact power of two, and negative, because
|
||||
making it a little larger will result in the exponent
|
||||
decreasing by one and normalisation of the mantissa. */
|
||||
if ((hx & 0x000fffffffffffffLL) == 0
|
||||
&& ((lx != 0 && (hx ^ lx) < 0)
|
||||
|| (lx == 0 && hx < 0)))
|
||||
ihx -= 1LL << 52;
|
||||
if (ihx < (106LL << 52)) { /* ulp will denormal */
|
||||
INSERT_WORDS64 (yhi, ihx & (0x7ffLL<<52));
|
||||
u = yhi * 0x1p-105;
|
||||
} else {
|
||||
INSERT_WORDS64 (yhi, (hx & (0x7ffLL<<52))-(0x069LL<<52));
|
||||
INSERT_WORDS64 (yhi, (ihx & (0x7ffLL<<52))-(105LL<<52));
|
||||
u = yhi;
|
||||
}
|
||||
return x + u;
|
||||
|
Reference in New Issue
Block a user