mirror of
https://sourceware.org/git/glibc.git
synced 2025-07-28 00:21:52 +03:00
initial import
This commit is contained in:
991
stdio/printf_fp.c
Normal file
991
stdio/printf_fp.c
Normal file
@ -0,0 +1,991 @@
|
||||
/* Floating point output for `printf'.
|
||||
Copyright (C) 1995 Free Software Foundation, Inc.
|
||||
Written by Ulrich Drepper.
|
||||
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Library General Public License as
|
||||
published by the Free Software Foundation; either version 2 of the
|
||||
License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Library General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Library General Public
|
||||
License along with the GNU C Library; see the file COPYING.LIB. If
|
||||
not, write to the Free Software Foundation, Inc., 675 Mass Ave,
|
||||
Cambridge, MA 02139, USA. */
|
||||
|
||||
#ifdef USE_IN_LIBIO
|
||||
# include <libioP.h>
|
||||
#else
|
||||
# include <stdio.h>
|
||||
#endif
|
||||
#include <alloca.h>
|
||||
#include <ansidecl.h>
|
||||
#include <ctype.h>
|
||||
#include <float.h>
|
||||
#include <gmp-mparam.h>
|
||||
#include <gmp.h>
|
||||
#include <gmp-impl.h>
|
||||
#include <longlong.h>
|
||||
#include <localeinfo.h>
|
||||
#include <math.h>
|
||||
#include <printf.h>
|
||||
#include <stdarg.h>
|
||||
#include <string.h>
|
||||
#include <unistd.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/* #define NDEBUG 1 */
|
||||
#include <assert.h>
|
||||
|
||||
/* This defines make it possible to use the same code for GNU C library and
|
||||
the GNU I/O library. */
|
||||
#ifdef USE_IN_LIBIO
|
||||
# define PUT(f, s, n) _IO_sputn (f, s, n)
|
||||
# define PAD(f, c, n) _IO_padn (f, c, n)
|
||||
/* We use this file GNU C library and GNU I/O library. So make
|
||||
names equal. */
|
||||
# undef putc
|
||||
# define putc(c, f) _IO_putc (c, f)
|
||||
# define size_t _IO_size_t
|
||||
# define FILE _IO_FILE
|
||||
#else /* ! USE_IN_LIBIO */
|
||||
# define PUT(f, s, n) fwrite (s, 1, n, f)
|
||||
# define PAD(f, c, n) __printf_pad (f, c, n)
|
||||
ssize_t __printf_pad __P ((FILE *, char pad, int n)); /* In vfprintf.c. */
|
||||
#endif /* USE_IN_LIBIO */
|
||||
|
||||
/* Macros for doing the actual output. */
|
||||
|
||||
#define outchar(ch) \
|
||||
do \
|
||||
{ \
|
||||
register CONST int outc = (ch); \
|
||||
if (putc (outc, fp) == EOF) \
|
||||
return -1; \
|
||||
++done; \
|
||||
} while (0)
|
||||
|
||||
#define PRINT(ptr, len) \
|
||||
do \
|
||||
{ \
|
||||
register size_t outlen = (len); \
|
||||
if (len > 20) \
|
||||
{ \
|
||||
if (PUT (fp, ptr, outlen) != outlen) \
|
||||
return -1; \
|
||||
ptr += outlen; \
|
||||
done += outlen; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
while (outlen-- > 0) \
|
||||
outchar (*ptr++); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define PADN(ch, len) \
|
||||
do \
|
||||
{ \
|
||||
if (PAD (fp, ch, len) != len) \
|
||||
return -1; \
|
||||
done += len; \
|
||||
} \
|
||||
while (0)
|
||||
|
||||
/* We use the GNU MP library to handle large numbers.
|
||||
|
||||
An MP variable occupies a varying number of entries in its array. We keep
|
||||
track of this number for efficiency reasons. Otherwise we would always
|
||||
have to process the whole array. */
|
||||
#define MPN_VAR(name) mp_limb *name; mp_size_t name##size
|
||||
|
||||
#define MPN_ASSIGN(dst,src) \
|
||||
memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb))
|
||||
#define MPN_GE(u,v) \
|
||||
(u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
|
||||
|
||||
extern int __isinfl (long double), __isnanl (long double);
|
||||
|
||||
extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
|
||||
int *expt, int *is_neg,
|
||||
double value);
|
||||
extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
|
||||
int *expt, int *is_neg,
|
||||
long double value);
|
||||
|
||||
#include "fpioconst.h"
|
||||
|
||||
|
||||
static unsigned int guess_grouping (unsigned int intdig_max,
|
||||
const char *grouping, wchar_t sepchar);
|
||||
static char *group_number (char *buf, char *bufend, unsigned int intdig_no,
|
||||
const char *grouping, wchar_t thousands_sep);
|
||||
|
||||
|
||||
int
|
||||
__printf_fp (fp, info, args)
|
||||
FILE *fp;
|
||||
const struct printf_info *info;
|
||||
va_list *args;
|
||||
{
|
||||
/* The floating-point value to output. */
|
||||
union
|
||||
{
|
||||
double dbl;
|
||||
LONG_DOUBLE ldbl;
|
||||
}
|
||||
fpnum;
|
||||
|
||||
/* Locale-dependent representation of decimal point. */
|
||||
wchar_t decimal;
|
||||
|
||||
/* Locale-dependent thousands separator and grouping specification. */
|
||||
wchar_t thousands_sep;
|
||||
const char *grouping;
|
||||
|
||||
/* "NaN" or "Inf" for the special cases. */
|
||||
CONST char *special = NULL;
|
||||
|
||||
/* We need just a few limbs for the input before shifting to the right
|
||||
position. */
|
||||
mp_limb fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
|
||||
/* We need to shift the contents of fp_input by this amount of bits. */
|
||||
int to_shift;
|
||||
|
||||
/* The significant of the floting-point value in question */
|
||||
MPN_VAR(frac);
|
||||
/* and the exponent. */
|
||||
int exponent;
|
||||
/* Sign of the exponent. */
|
||||
int expsign = 0;
|
||||
/* Sign of float number. */
|
||||
int is_neg = 0;
|
||||
|
||||
/* Scaling factor. */
|
||||
MPN_VAR(scale);
|
||||
|
||||
/* Temporary bignum value. */
|
||||
MPN_VAR(tmp);
|
||||
|
||||
/* Digit which is result of last hack_digit() call. */
|
||||
int digit;
|
||||
|
||||
/* The type of output format that will be used: 'e'/'E' or 'f'. */
|
||||
int type;
|
||||
|
||||
/* Counter for number of written characters. */
|
||||
int done = 0;
|
||||
|
||||
/* General helper (carry limb). */
|
||||
mp_limb cy;
|
||||
|
||||
char hack_digit (void)
|
||||
{
|
||||
mp_limb hi;
|
||||
|
||||
if (expsign != 0 && type == 'f' && exponent-- > 0)
|
||||
hi = 0;
|
||||
else if (scalesize == 0)
|
||||
{
|
||||
hi = frac[fracsize - 1];
|
||||
cy = __mpn_mul_1 (frac, frac, fracsize - 1, 10);
|
||||
frac[fracsize - 1] = cy;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (fracsize < scalesize)
|
||||
hi = 0;
|
||||
else
|
||||
{
|
||||
hi = __mpn_divmod (tmp, frac, fracsize, scale, scalesize);
|
||||
tmp[fracsize - scalesize] = hi;
|
||||
hi = tmp[0];
|
||||
|
||||
fracsize = __mpn_normal_size (frac, scalesize);
|
||||
if (fracsize == 0)
|
||||
{
|
||||
/* We're not prepared for an mpn variable with zero
|
||||
limbs. */
|
||||
fracsize = 1;
|
||||
return '0' + hi;
|
||||
}
|
||||
}
|
||||
|
||||
cy = __mpn_mul_1 (frac, frac, fracsize, 10);
|
||||
if (cy != 0)
|
||||
frac[fracsize++] = cy;
|
||||
}
|
||||
|
||||
return '0' + hi;
|
||||
}
|
||||
|
||||
|
||||
/* Figure out the decimal point character. */
|
||||
if (mbtowc (&decimal, _numeric_info->decimal_point,
|
||||
strlen (_numeric_info->decimal_point)) <= 0)
|
||||
decimal = (wchar_t) *_numeric_info->decimal_point;
|
||||
|
||||
|
||||
if (info->group)
|
||||
{
|
||||
grouping = _numeric_info->grouping; /* Cache the grouping info array. */
|
||||
if (*grouping <= 0 || *grouping == CHAR_MAX)
|
||||
grouping = NULL;
|
||||
else
|
||||
{
|
||||
/* Figure out the thousands seperator character. */
|
||||
if (mbtowc (&thousands_sep, _numeric_info->thousands_sep,
|
||||
strlen (_numeric_info->thousands_sep)) <= 0)
|
||||
thousands_sep = (wchar_t) *_numeric_info->thousands_sep;
|
||||
if (thousands_sep == L'\0')
|
||||
grouping = NULL;
|
||||
}
|
||||
}
|
||||
else
|
||||
grouping = NULL;
|
||||
|
||||
/* Fetch the argument value. */
|
||||
if (info->is_long_double && sizeof (long double) > sizeof (double))
|
||||
{
|
||||
fpnum.ldbl = va_arg (*args, LONG_DOUBLE);
|
||||
|
||||
/* Check for special values: not a number or infinity. */
|
||||
if (__isnanl (fpnum.ldbl))
|
||||
{
|
||||
special = "NaN";
|
||||
is_neg = 0;
|
||||
}
|
||||
else if (__isinfl (fpnum.ldbl))
|
||||
{
|
||||
special = "Inf";
|
||||
is_neg = fpnum.ldbl < 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
fracsize = __mpn_extract_long_double (fp_input,
|
||||
(sizeof (fp_input) /
|
||||
sizeof (fp_input[0])),
|
||||
&exponent, &is_neg,
|
||||
fpnum.ldbl);
|
||||
to_shift = 1 + fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
fpnum.dbl = va_arg (*args, double);
|
||||
|
||||
/* Check for special values: not a number or infinity. */
|
||||
if (__isnan (fpnum.dbl))
|
||||
{
|
||||
special = "NaN";
|
||||
is_neg = 0;
|
||||
}
|
||||
else if (__isinf (fpnum.dbl))
|
||||
{
|
||||
special = "Inf";
|
||||
is_neg = fpnum.dbl < 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
fracsize = __mpn_extract_double (fp_input,
|
||||
(sizeof (fp_input)
|
||||
/ sizeof (fp_input[0])),
|
||||
&exponent, &is_neg, fpnum.dbl);
|
||||
to_shift = 1 + fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
|
||||
}
|
||||
}
|
||||
|
||||
if (special)
|
||||
{
|
||||
int width = info->prec > info->width ? info->prec : info->width;
|
||||
|
||||
if (is_neg || info->showsign || info->space)
|
||||
--width;
|
||||
width -= 3;
|
||||
|
||||
if (!info->left && width > 0)
|
||||
PADN (' ', width);
|
||||
|
||||
if (is_neg)
|
||||
outchar ('-');
|
||||
else if (info->showsign)
|
||||
outchar ('+');
|
||||
else if (info->space)
|
||||
outchar (' ');
|
||||
|
||||
PRINT (special, 3);
|
||||
|
||||
if (info->left && width > 0)
|
||||
PADN (' ', width);
|
||||
|
||||
return done;
|
||||
}
|
||||
|
||||
|
||||
/* We need three multiprecision variables. Now that we have the exponent
|
||||
of the number we can allocate the needed memory. It would be more
|
||||
efficient to use variables of the fixed maximum size but because this
|
||||
would be really big it could lead to memory problems. */
|
||||
{
|
||||
mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
|
||||
/ BITS_PER_MP_LIMB + 3) * sizeof (mp_limb);
|
||||
frac = (mp_limb *) alloca (bignum_size);
|
||||
tmp = (mp_limb *) alloca (bignum_size);
|
||||
scale = (mp_limb *) alloca (bignum_size);
|
||||
}
|
||||
|
||||
/* We now have to distinguish between numbers with positive and negative
|
||||
exponents because the method used for the one is not applicable/efficient
|
||||
for the other. */
|
||||
scalesize = 0;
|
||||
if (exponent > 2)
|
||||
{
|
||||
/* |FP| >= 1.0. */
|
||||
int scaleexpo = 0;
|
||||
int explog = LDBL_MAX_10_EXP_LOG;
|
||||
int exp10 = 0;
|
||||
const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
|
||||
int cnt_h, cnt_l, i;
|
||||
|
||||
if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
|
||||
{
|
||||
MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
|
||||
fp_input, fracsize);
|
||||
fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
|
||||
}
|
||||
else
|
||||
{
|
||||
cy = __mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
|
||||
fp_input, fracsize,
|
||||
(exponent + to_shift) % BITS_PER_MP_LIMB);
|
||||
fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
|
||||
if (cy)
|
||||
frac[fracsize++] = cy;
|
||||
}
|
||||
MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
|
||||
|
||||
assert (tens > &_fpioconst_pow10[0]);
|
||||
do
|
||||
{
|
||||
--tens;
|
||||
|
||||
/* The number of the product of two binary numbers with n and m
|
||||
bits respectively has m+n or m+n-1 bits. */
|
||||
if (exponent >= scaleexpo + tens->p_expo - 1)
|
||||
{
|
||||
if (scalesize == 0)
|
||||
MPN_ASSIGN (tmp, tens->array);
|
||||
else
|
||||
{
|
||||
cy = __mpn_mul (tmp, scale, scalesize,
|
||||
tens->array + 2, tens->arraysize - 2);
|
||||
tmpsize = scalesize + tens->arraysize - 2;
|
||||
if (cy == 0)
|
||||
--tmpsize;
|
||||
}
|
||||
|
||||
if (MPN_GE (frac, tmp))
|
||||
{
|
||||
int cnt;
|
||||
MPN_ASSIGN (scale, tmp);
|
||||
count_leading_zeros (cnt, scale[scalesize - 1]);
|
||||
scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
|
||||
exp10 |= 1 << explog;
|
||||
}
|
||||
}
|
||||
--explog;
|
||||
}
|
||||
while (tens > &_fpioconst_pow10[0]);
|
||||
exponent = exp10;
|
||||
|
||||
/* Optimize number representations. We want to represent the numbers
|
||||
with the lowest number of bytes possible without losing any
|
||||
bytes. Also the highest bit in the scaling factor has to be set
|
||||
(this is a requirement of the MPN division routines). */
|
||||
if (scalesize > 0)
|
||||
{
|
||||
/* Determine minimum number of zero bits at the end of
|
||||
both numbers. */
|
||||
for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
|
||||
;
|
||||
|
||||
/* Determine number of bits the scaling factor is misplaced. */
|
||||
count_leading_zeros (cnt_h, scale[scalesize - 1]);
|
||||
|
||||
if (cnt_h == 0)
|
||||
{
|
||||
/* The highest bit of the scaling factor is already set. So
|
||||
we only have to remove the trailing empty limbs. */
|
||||
if (i > 0)
|
||||
{
|
||||
MPN_COPY_INCR (scale, scale + i, scalesize - i);
|
||||
scalesize -= i;
|
||||
MPN_COPY_INCR (frac, frac + i, fracsize - i);
|
||||
fracsize -= i;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (scale[i] != 0)
|
||||
{
|
||||
count_trailing_zeros (cnt_l, scale[i]);
|
||||
if (frac[i] != 0)
|
||||
{
|
||||
int cnt_l2;
|
||||
count_trailing_zeros (cnt_l2, frac[i]);
|
||||
if (cnt_l2 < cnt_l)
|
||||
cnt_l = cnt_l2;
|
||||
}
|
||||
}
|
||||
else
|
||||
count_trailing_zeros (cnt_l, frac[i]);
|
||||
|
||||
/* Now shift the numbers to their optimal position. */
|
||||
if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
|
||||
{
|
||||
/* We cannot save any memory. So just roll both numbers
|
||||
so that the scaling factor has its highest bit set. */
|
||||
|
||||
(void) __mpn_lshift (scale, scale, scalesize, cnt_h);
|
||||
cy = __mpn_lshift (frac, frac, fracsize, cnt_h);
|
||||
if (cy != 0)
|
||||
frac[fracsize++] = cy;
|
||||
}
|
||||
else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
|
||||
{
|
||||
/* We can save memory by removing the trailing zero limbs
|
||||
and by packing the non-zero limbs which gain another
|
||||
free one. */
|
||||
|
||||
(void) __mpn_rshift (scale, scale + i, scalesize - i,
|
||||
BITS_PER_MP_LIMB - cnt_h);
|
||||
scalesize -= i + 1;
|
||||
(void) __mpn_rshift (frac, frac + i, fracsize - i,
|
||||
BITS_PER_MP_LIMB - cnt_h);
|
||||
fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* We can only save the memory of the limbs which are zero.
|
||||
The non-zero parts occupy the same number of limbs. */
|
||||
|
||||
(void) __mpn_rshift (scale, scale + (i - 1),
|
||||
scalesize - (i - 1),
|
||||
BITS_PER_MP_LIMB - cnt_h);
|
||||
scalesize -= i;
|
||||
(void) __mpn_rshift (frac, frac + (i - 1),
|
||||
fracsize - (i - 1),
|
||||
BITS_PER_MP_LIMB - cnt_h);
|
||||
fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (exponent < 0)
|
||||
{
|
||||
/* |FP| < 1.0. */
|
||||
int exp10 = 0;
|
||||
int explog = LDBL_MAX_10_EXP_LOG;
|
||||
const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
|
||||
mp_size_t used_limbs = fracsize - 1;
|
||||
|
||||
/* Now shift the input value to its right place. */
|
||||
cy = __mpn_lshift (frac, fp_input, fracsize, to_shift);
|
||||
frac[fracsize++] = cy;
|
||||
assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
|
||||
|
||||
expsign = 1;
|
||||
exponent = -exponent;
|
||||
|
||||
assert (tens != &_fpioconst_pow10[0]);
|
||||
do
|
||||
{
|
||||
--tens;
|
||||
|
||||
if (exponent >= tens->m_expo)
|
||||
{
|
||||
int i, incr, cnt_h, cnt_l;
|
||||
mp_limb topval[2];
|
||||
|
||||
/* The __mpn_mul function expects the first argument to be
|
||||
bigger than the second. */
|
||||
if (fracsize < tens->arraysize - 2)
|
||||
cy = __mpn_mul (tmp, &tens->array[2], tens->arraysize - 2,
|
||||
frac, fracsize);
|
||||
else
|
||||
cy = __mpn_mul (tmp, frac, fracsize,
|
||||
&tens->array[2], tens->arraysize - 2);
|
||||
tmpsize = fracsize + tens->arraysize - 2;
|
||||
if (cy == 0)
|
||||
--tmpsize;
|
||||
|
||||
count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
|
||||
incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
|
||||
+ BITS_PER_MP_LIMB - 1 - cnt_h;
|
||||
|
||||
assert (incr <= tens->p_expo);
|
||||
|
||||
/* If we increased the exponent by exactly 3 we have to test
|
||||
for overflow. This is done by comparing with 10 shifted
|
||||
to the right position. */
|
||||
if (incr == exponent + 3)
|
||||
if (cnt_h <= BITS_PER_MP_LIMB - 4)
|
||||
{
|
||||
topval[0] = 0;
|
||||
topval[1] = 10 << (BITS_PER_MP_LIMB - 4 - cnt_h);
|
||||
}
|
||||
else
|
||||
{
|
||||
topval[0] = 10 << (BITS_PER_MP_LIMB - 4);
|
||||
topval[1] = 0;
|
||||
(void) __mpn_lshift (topval, topval, 2,
|
||||
BITS_PER_MP_LIMB - cnt_h);
|
||||
}
|
||||
|
||||
/* We have to be careful when multiplying the last factor.
|
||||
If the result is greater than 1.0 be have to test it
|
||||
against 10.0. If it is greater or equal to 10.0 the
|
||||
multiplication was not valid. This is because we cannot
|
||||
determine the number of bits in the result in advance. */
|
||||
if (incr < exponent + 3
|
||||
|| (incr == exponent + 3 &&
|
||||
(tmp[tmpsize - 1] < topval[1]
|
||||
|| (tmp[tmpsize - 1] == topval[1]
|
||||
&& tmp[tmpsize - 2] < topval[0]))))
|
||||
{
|
||||
/* The factor is right. Adapt binary and decimal
|
||||
exponents. */
|
||||
exponent -= incr;
|
||||
exp10 |= 1 << explog;
|
||||
|
||||
/* If this factor yields a number greater or equal to
|
||||
1.0, we must not shift the non-fractional digits down. */
|
||||
if (exponent < 0)
|
||||
cnt_h += -exponent;
|
||||
|
||||
/* Now we optimize the number representation. */
|
||||
for (i = 0; tmp[i] == 0; ++i);
|
||||
if (cnt_h == BITS_PER_MP_LIMB - 1)
|
||||
{
|
||||
MPN_COPY (frac, tmp + i, tmpsize - i);
|
||||
fracsize = tmpsize - i;
|
||||
}
|
||||
else
|
||||
{
|
||||
count_trailing_zeros (cnt_l, tmp[i]);
|
||||
|
||||
/* Now shift the numbers to their optimal position. */
|
||||
if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
|
||||
{
|
||||
/* We cannot save any memory. Just roll the
|
||||
number so that the leading digit is in a
|
||||
seperate limb. */
|
||||
|
||||
cy = __mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
|
||||
fracsize = tmpsize + 1;
|
||||
frac[fracsize - 1] = cy;
|
||||
}
|
||||
else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
|
||||
{
|
||||
(void) __mpn_rshift (frac, tmp + i, tmpsize - i,
|
||||
BITS_PER_MP_LIMB - 1 - cnt_h);
|
||||
fracsize = tmpsize - i;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* We can only save the memory of the limbs which
|
||||
are zero. The non-zero parts occupy the same
|
||||
number of limbs. */
|
||||
|
||||
(void) __mpn_rshift (frac, tmp + (i - 1),
|
||||
tmpsize - (i - 1),
|
||||
BITS_PER_MP_LIMB - 1 - cnt_h);
|
||||
fracsize = tmpsize - (i - 1);
|
||||
}
|
||||
}
|
||||
used_limbs = fracsize - 1;
|
||||
}
|
||||
}
|
||||
--explog;
|
||||
}
|
||||
while (tens != &_fpioconst_pow10[1] && exponent > 0);
|
||||
/* All factors but 10^-1 are tested now. */
|
||||
if (exponent > 0)
|
||||
{
|
||||
cy = __mpn_mul_1 (tmp, frac, fracsize, 10);
|
||||
tmpsize = fracsize;
|
||||
assert (cy == 0 || tmp[tmpsize - 1] < 20);
|
||||
|
||||
(void) __mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
|
||||
fracsize = tmpsize;
|
||||
exp10 |= 1;
|
||||
assert (frac[fracsize - 1] < 10);
|
||||
}
|
||||
exponent = exp10;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* This is a special case. We don't need a factor because the
|
||||
numbers are in the range of 0.0 <= fp < 8.0. We simply
|
||||
shift it to the right place and divide it by 1.0 to get the
|
||||
leading digit. (Of course this division is not really made.) */
|
||||
assert (0 <= exponent && exponent < 3 &&
|
||||
exponent + to_shift < BITS_PER_MP_LIMB);
|
||||
|
||||
/* Now shift the input value to its right place. */
|
||||
cy = __mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
|
||||
frac[fracsize++] = cy;
|
||||
exponent = 0;
|
||||
}
|
||||
|
||||
{
|
||||
int width = info->width;
|
||||
char *buffer, *startp, *cp;
|
||||
int chars_needed;
|
||||
int expscale;
|
||||
int intdig_max, intdig_no = 0;
|
||||
int fracdig_min, fracdig_max, fracdig_no = 0;
|
||||
int dig_max;
|
||||
int significant;
|
||||
|
||||
if (tolower (info->spec) == 'e')
|
||||
{
|
||||
type = info->spec;
|
||||
intdig_max = 1;
|
||||
fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
|
||||
chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
|
||||
/* d . ddd e +- ddd */
|
||||
dig_max = INT_MAX; /* Unlimited. */
|
||||
significant = 1; /* Does not matter here. */
|
||||
}
|
||||
else if (info->spec == 'f')
|
||||
{
|
||||
type = 'f';
|
||||
fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
|
||||
if (expsign == 0)
|
||||
{
|
||||
intdig_max = exponent + 1;
|
||||
/* This can be really big! */ /* XXX Maybe malloc if too big? */
|
||||
chars_needed = exponent + 1 + 1 + fracdig_max;
|
||||
}
|
||||
else
|
||||
{
|
||||
intdig_max = 1;
|
||||
chars_needed = 1 + 1 + fracdig_max;
|
||||
}
|
||||
dig_max = INT_MAX; /* Unlimited. */
|
||||
significant = 1; /* Does not matter here. */
|
||||
}
|
||||
else
|
||||
{
|
||||
dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
|
||||
if ((expsign == 0 && exponent >= dig_max)
|
||||
|| (expsign != 0 && exponent > 4))
|
||||
{
|
||||
type = isupper (info->spec) ? 'E' : 'e';
|
||||
fracdig_max = dig_max - 1;
|
||||
intdig_max = 1;
|
||||
chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
|
||||
}
|
||||
else
|
||||
{
|
||||
type = 'f';
|
||||
intdig_max = expsign == 0 ? exponent + 1 : 0;
|
||||
fracdig_max = dig_max - intdig_max;
|
||||
/* We need space for the significant digits and perhaps for
|
||||
leading zeros when < 1.0. Pessimistic guess: dig_max. */
|
||||
chars_needed = dig_max + dig_max + 1;
|
||||
}
|
||||
fracdig_min = info->alt ? fracdig_max : 0;
|
||||
significant = 0; /* We count significant digits. */
|
||||
}
|
||||
|
||||
if (grouping)
|
||||
/* Guess the number of groups we will make, and thus how
|
||||
many spaces we need for separator characters. */
|
||||
chars_needed += guess_grouping (intdig_max, grouping, thousands_sep);
|
||||
|
||||
/* Allocate buffer for output. We need two more because while rounding
|
||||
it is possible that we need two more characters in front of all the
|
||||
other output. */
|
||||
buffer = alloca (2 + chars_needed);
|
||||
cp = startp = buffer + 2; /* Let room for rounding. */
|
||||
|
||||
/* Do the real work: put digits in allocated buffer. */
|
||||
if (expsign == 0 || type != 'f')
|
||||
{
|
||||
assert (expsign == 0 || intdig_max == 1);
|
||||
while (intdig_no < intdig_max)
|
||||
{
|
||||
++intdig_no;
|
||||
*cp++ = hack_digit ();
|
||||
}
|
||||
significant = 1;
|
||||
if (info->alt
|
||||
|| fracdig_min > 0
|
||||
|| (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
|
||||
*cp++ = decimal;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* |fp| < 1.0 and the selected type is 'f', so put "0."
|
||||
in the buffer. */
|
||||
*cp++ = '0';
|
||||
--exponent;
|
||||
*cp++ = decimal;
|
||||
}
|
||||
|
||||
/* Generate the needed number of fractional digits. */
|
||||
while (fracdig_no < fracdig_min
|
||||
|| (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
|
||||
{
|
||||
++fracdig_no;
|
||||
*cp = hack_digit ();
|
||||
if (*cp != '0')
|
||||
significant = 1;
|
||||
else if (significant == 0)
|
||||
{
|
||||
++fracdig_max;
|
||||
if (fracdig_min > 0)
|
||||
++fracdig_min;
|
||||
}
|
||||
++cp;
|
||||
}
|
||||
|
||||
/* Do rounding. */
|
||||
digit = hack_digit ();
|
||||
if (digit > '4')
|
||||
{
|
||||
char *tp = cp;
|
||||
|
||||
if (digit == '5')
|
||||
/* This is the critical case. */
|
||||
if (fracsize == 1 && frac[0] == 0)
|
||||
/* Rest of the number is zero -> round to even.
|
||||
(IEEE 754-1985 4.1 says this is the default rounding.) */
|
||||
if ((*(cp - 1) & 1) == 0)
|
||||
goto do_expo;
|
||||
|
||||
if (fracdig_no > 0)
|
||||
{
|
||||
/* Process fractional digits. Terminate if not rounded or
|
||||
radix character is reached. */
|
||||
while (*--tp != decimal && *tp == '9')
|
||||
*tp = '0';
|
||||
if (*tp != decimal)
|
||||
/* Round up. */
|
||||
(*tp)++;
|
||||
}
|
||||
|
||||
if (fracdig_no == 0 || *tp == decimal)
|
||||
{
|
||||
/* Round the integer digits. */
|
||||
if (*(tp - 1) == decimal)
|
||||
--tp;
|
||||
|
||||
while (--tp >= startp && *tp == '9')
|
||||
*tp = '0';
|
||||
|
||||
if (tp >= startp)
|
||||
/* Round up. */
|
||||
(*tp)++;
|
||||
else
|
||||
/* It is more citical. All digits were 9's. */
|
||||
{
|
||||
if (type != 'f')
|
||||
{
|
||||
*startp = '1';
|
||||
exponent += expsign == 0 ? 1 : -1;
|
||||
}
|
||||
else if (intdig_no == dig_max)
|
||||
{
|
||||
/* This is the case where for type %g the number fits
|
||||
really in the range for %f output but after rounding
|
||||
the number of digits is too big. */
|
||||
*--startp = decimal;
|
||||
*--startp = '1';
|
||||
|
||||
if (info->alt || fracdig_no > 0)
|
||||
{
|
||||
/* Overwrite the old radix character. */
|
||||
startp[intdig_no + 2] = '0';
|
||||
++fracdig_no;
|
||||
}
|
||||
|
||||
fracdig_no += intdig_no;
|
||||
intdig_no = 1;
|
||||
fracdig_max = intdig_max - intdig_no;
|
||||
++exponent;
|
||||
/* Now we must print the exponent. */
|
||||
type = isupper (info->spec) ? 'E' : 'e';
|
||||
}
|
||||
else
|
||||
{
|
||||
/* We can simply add another another digit before the
|
||||
radix. */
|
||||
*--startp = '1';
|
||||
++intdig_no;
|
||||
}
|
||||
|
||||
/* While rounding the number of digits can change.
|
||||
If the number now exceeds the limits remove some
|
||||
fractional digits. */
|
||||
if (intdig_no + fracdig_no > dig_max)
|
||||
{
|
||||
cp -= intdig_no + fracdig_no - dig_max;
|
||||
fracdig_no -= intdig_no + fracdig_no - dig_max;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
do_expo:
|
||||
/* Now remove unnecessary '0' at the end of the string. */
|
||||
while (fracdig_no > fracdig_min && *(cp - 1) == '0')
|
||||
{
|
||||
--cp;
|
||||
--fracdig_no;
|
||||
}
|
||||
/* If we eliminate all fractional digits we perhaps also can remove
|
||||
the radix character. */
|
||||
if (fracdig_no == 0 && !info->alt && *(cp - 1) == decimal)
|
||||
--cp;
|
||||
|
||||
if (grouping)
|
||||
/* Add in separator characters, overwriting the same buffer. */
|
||||
cp = group_number (startp, cp, intdig_no, grouping, thousands_sep);
|
||||
|
||||
/* Write the exponent if it is needed. */
|
||||
if (type != 'f')
|
||||
{
|
||||
*cp++ = type;
|
||||
*cp++ = expsign ? '-' : '+';
|
||||
|
||||
/* Find the magnitude of the exponent. */
|
||||
expscale = 10;
|
||||
while (expscale <= exponent)
|
||||
expscale *= 10;
|
||||
|
||||
if (exponent < 10)
|
||||
/* Exponent always has at least two digits. */
|
||||
*cp++ = '0';
|
||||
else
|
||||
do
|
||||
{
|
||||
expscale /= 10;
|
||||
*cp++ = '0' + (exponent / expscale);
|
||||
exponent %= expscale;
|
||||
}
|
||||
while (expscale > 10);
|
||||
*cp++ = '0' + exponent;
|
||||
}
|
||||
|
||||
/* Compute number of characters which must be filled with the padding
|
||||
character. */
|
||||
if (is_neg || info->showsign || info->space)
|
||||
--width;
|
||||
width -= cp - startp;
|
||||
|
||||
if (!info->left && info->pad != '0' && width > 0)
|
||||
PADN (info->pad, width);
|
||||
|
||||
if (is_neg)
|
||||
outchar ('-');
|
||||
else if (info->showsign)
|
||||
outchar ('+');
|
||||
else if (info->space)
|
||||
outchar (' ');
|
||||
|
||||
if (!info->left && info->pad == '0' && width > 0)
|
||||
PADN ('0', width);
|
||||
|
||||
PRINT (startp, cp - startp);
|
||||
|
||||
if (info->left && width > 0)
|
||||
PADN (info->pad, width);
|
||||
}
|
||||
return done;
|
||||
}
|
||||
|
||||
/* Return the number of extra grouping characters that will be inserted
|
||||
into a number with INTDIG_MAX integer digits. */
|
||||
|
||||
static unsigned int
|
||||
guess_grouping (unsigned int intdig_max, const char *grouping, wchar_t sepchar)
|
||||
{
|
||||
unsigned int groups;
|
||||
|
||||
/* We treat all negative values like CHAR_MAX. */
|
||||
|
||||
if (*grouping == CHAR_MAX || *grouping <= 0)
|
||||
/* No grouping should be done. */
|
||||
return 0;
|
||||
|
||||
groups = 0;
|
||||
while (intdig_max > *grouping)
|
||||
{
|
||||
++groups;
|
||||
intdig_max -= *grouping++;
|
||||
|
||||
if (*grouping == CHAR_MAX || *grouping < 0)
|
||||
/* No more grouping should be done. */
|
||||
break;
|
||||
else if (*grouping == 0)
|
||||
{
|
||||
/* Same grouping repeats. */
|
||||
groups += intdig_max / grouping[-1];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return groups;
|
||||
}
|
||||
|
||||
/* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
|
||||
There is guaranteed enough space past BUFEND to extend it.
|
||||
Return the new end of buffer. */
|
||||
|
||||
static char *
|
||||
group_number (char *buf, char *bufend, unsigned int intdig_no,
|
||||
const char *grouping, wchar_t thousands_sep)
|
||||
{
|
||||
unsigned int groups = guess_grouping (intdig_no, grouping, thousands_sep);
|
||||
char *p;
|
||||
|
||||
if (groups == 0)
|
||||
return bufend;
|
||||
|
||||
/* Move the fractional part down. */
|
||||
memmove (buf + intdig_no + groups, buf + intdig_no,
|
||||
bufend - (buf + intdig_no));
|
||||
|
||||
p = buf + intdig_no + groups - 1;
|
||||
do
|
||||
{
|
||||
unsigned int len = *grouping++;
|
||||
do
|
||||
*p-- = buf[--intdig_no];
|
||||
while (--len > 0);
|
||||
*p-- = thousands_sep;
|
||||
|
||||
if (*grouping == CHAR_MAX || *grouping < 0)
|
||||
/* No more grouping should be done. */
|
||||
break;
|
||||
else if (*grouping == 0)
|
||||
/* Same grouping repeats. */
|
||||
--grouping;
|
||||
} while (intdig_no > *grouping);
|
||||
|
||||
/* Copy the remaining ungrouped digits. */
|
||||
do
|
||||
*p-- = buf[--intdig_no];
|
||||
while (p > buf);
|
||||
|
||||
return bufend + groups;
|
||||
}
|
Reference in New Issue
Block a user