1
0
mirror of https://sourceware.org/git/glibc.git synced 2025-08-08 17:42:12 +03:00

AArch64: Implement AdvSIMD and SVE asinpi/f

Implement double and single precision variants of the C23 routine asinpi
for both AdvSIMD and SVE.

Reviewed-by: Wilco Dijkstra  <Wilco.Dijkstra@arm.com>
This commit is contained in:
Dylan Fleming
2025-05-19 12:39:51 +00:00
committed by Wilco Dijkstra
parent 993997ca1b
commit 0ef2cf44e7
15 changed files with 435 additions and 0 deletions

View File

@@ -384,4 +384,15 @@
#define __DECL_SIMD_acospif32x
#define __DECL_SIMD_acospif64x
#define __DECL_SIMD_acospif128x
#define __DECL_SIMD_asinpi
#define __DECL_SIMD_asinpif
#define __DECL_SIMD_asinpil
#define __DECL_SIMD_asinpif16
#define __DECL_SIMD_asinpif32
#define __DECL_SIMD_asinpif64
#define __DECL_SIMD_asinpif128
#define __DECL_SIMD_asinpif32x
#define __DECL_SIMD_asinpif64x
#define __DECL_SIMD_asinpif128x
#endif

View File

@@ -71,6 +71,7 @@ __MATHCALL (acospi,, (_Mdouble_ __x));
__MATHCALL_VEC (acospi,, (_Mdouble_ __x));
/* Arc sine of X, divided by pi. */
__MATHCALL (asinpi,, (_Mdouble_ __x));
__MATHCALL_VEC (asinpi,, (_Mdouble_ __x));
/* Arc tangent of X, divided by pi. */
__MATHCALL (atanpi,, (_Mdouble_ __x));
/* Arc tangent of Y/X, divided by pi. */

View File

@@ -3,6 +3,7 @@ libmvec-supported-funcs = acos \
acospi \
asin \
asinh \
asinpi \
atan \
atanh \
atan2 \

View File

@@ -163,5 +163,10 @@ libmvec {
_ZGVnN4v_acospif;
_ZGVsMxv_acospi;
_ZGVsMxv_acospif;
_ZGVnN2v_asinpi;
_ZGVnN2v_asinpif;
_ZGVnN4v_asinpif;
_ZGVsMxv_asinpi;
_ZGVsMxv_asinpif;
}
}

View File

@@ -22,6 +22,7 @@ libmvec_hidden_proto (V_NAME_F1(acosh));
libmvec_hidden_proto (V_NAME_F1(acospi));
libmvec_hidden_proto (V_NAME_F1(asin));
libmvec_hidden_proto (V_NAME_F1(asinh));
libmvec_hidden_proto (V_NAME_F1(asinpi));
libmvec_hidden_proto (V_NAME_F1(atan));
libmvec_hidden_proto (V_NAME_F1(atanh));
libmvec_hidden_proto (V_NAME_F1(cbrt));

View File

@@ -0,0 +1,109 @@
/* Double-Precision vector (Advanced SIMD) inverse sinpi function
Copyright (C) 2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
static const struct data
{
float64x2_t c0, c2, c4, c6, c8, c10;
float64x2_t pi_over_2, inv_pi;
uint64x2_t abs_mask;
double c1, c3, c5, c7, c9, c11;
} data = {
/* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x))
on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */
.c0 = V2 (0x1.555555555554ep-3), .c1 = 0x1.3333333337233p-4,
.c2 = V2 (0x1.6db6db67f6d9fp-5), .c3 = 0x1.f1c71fbd29fbbp-6,
.c4 = V2 (0x1.6e8b264d467d6p-6), .c5 = 0x1.1c5997c357e9dp-6,
.c6 = V2 (0x1.c86a22cd9389dp-7), .c7 = 0x1.856073c22ebbep-7,
.c8 = V2 (0x1.fd1151acb6bedp-8), .c9 = 0x1.087182f799c1dp-6,
.c10 = V2 (-0x1.6602748120927p-7), .c11 = 0x1.cfa0dd1f9478p-6,
.pi_over_2 = V2 (0x1.921fb54442d18p+0), .abs_mask = V2 (0x7fffffffffffffff),
.inv_pi = V2 (0x1.45f306dc9c883p-2),
};
/* Double-precision implementation of vector asinpi(x).
For |x| in [0, 0.5], use an order 11 polynomial P such that the final
approximation is an odd polynomial: asin(x) ~ x + x^3 P(x^2).
asinpi(x) = asin(x) * 1/pi.
The largest observed error in this region is 1.63 ulps,
_ZGVnN2v_asinpi (0x1.9125919fa617p-19) got 0x1.fec183497ea53p-21
want 0x1.fec183497ea51p-21.
For |x| in [0.5, 1.0], use same approximation with a change of variable
asin(x) = pi/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z).
The largest observed error in this region is 3.04 ulps,
_ZGVnN2v_asinpi (0x1.0479b7bd98553p-1) got 0x1.5beebec797326p-3
want 0x1.5beebec797329p-3. */
float64x2_t VPCS_ATTR V_NAME_D1 (asinpi) (float64x2_t x)
{
const struct data *d = ptr_barrier (&data);
float64x2_t ax = vabsq_f64 (x);
uint64x2_t a_lt_half = vcaltq_f64 (x, v_f64 (0.5));
/* Evaluate polynomial Q(x) = y + y * z * P(z) with
z = x ^ 2 and y = |x| , if |x| < 0.5
z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */
float64x2_t z2 = vbslq_f64 (a_lt_half, vmulq_f64 (x, x),
vfmsq_n_f64 (v_f64 (0.5), ax, 0.5));
float64x2_t z = vbslq_f64 (a_lt_half, ax, vsqrtq_f64 (z2));
/* Use a single polynomial approximation P for both intervals. */
float64x2_t z4 = vmulq_f64 (z2, z2);
float64x2_t z8 = vmulq_f64 (z4, z4);
float64x2_t z16 = vmulq_f64 (z8, z8);
/* order-11 Estrin. */
float64x2_t c13 = vld1q_f64 (&d->c1);
float64x2_t c57 = vld1q_f64 (&d->c5);
float64x2_t c911 = vld1q_f64 (&d->c9);
float64x2_t p01 = vfmaq_laneq_f64 (d->c0, z2, c13, 0);
float64x2_t p23 = vfmaq_laneq_f64 (d->c2, z2, c13, 1);
float64x2_t p03 = vfmaq_f64 (p01, z4, p23);
float64x2_t p45 = vfmaq_laneq_f64 (d->c4, z2, c57, 0);
float64x2_t p67 = vfmaq_laneq_f64 (d->c6, z2, c57, 1);
float64x2_t p47 = vfmaq_f64 (p45, z4, p67);
float64x2_t p89 = vfmaq_laneq_f64 (d->c8, z2, c911, 0);
float64x2_t p1011 = vfmaq_laneq_f64 (d->c10, z2, c911, 1);
float64x2_t p811 = vfmaq_f64 (p89, z4, p1011);
float64x2_t p07 = vfmaq_f64 (p03, z8, p47);
float64x2_t p = vfmaq_f64 (p07, z16, p811);
/* Finalize polynomial: z + z * z2 * P(z2). */
p = vfmaq_f64 (z, vmulq_f64 (z, z2), p);
/* asin(|x|) = Q(|x|) , for |x| < 0.5
= pi/2 - 2 Q(|x|), for |x| >= 0.5. */
float64x2_t y = vbslq_f64 (a_lt_half, p, vfmsq_n_f64 (d->pi_over_2, p, 2.0));
/* asinpi(|x|) = asin(|x|) /pi. */
y = vmulq_f64 (y, d->inv_pi);
/* Copy sign. */
return vbslq_f64 (d->abs_mask, y, x);
}

View File

@@ -0,0 +1,107 @@
/* Double-Precision vector (SVE) inverse sinpi function
Copyright (C) 2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "sv_math.h"
static const struct data
{
float64_t c1, c3, c5, c7, c9, c11;
float64_t c0, c2, c4, c6, c8, c10;
float64_t pi_over_2, inv_pi;
} data = {
/* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x))
on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */
.c0 = 0x1.555555555554ep-3, .c1 = 0x1.3333333337233p-4,
.c2 = 0x1.6db6db67f6d9fp-5, .c3 = 0x1.f1c71fbd29fbbp-6,
.c4 = 0x1.6e8b264d467d6p-6, .c5 = 0x1.1c5997c357e9dp-6,
.c6 = 0x1.c86a22cd9389dp-7, .c7 = 0x1.856073c22ebbep-7,
.c8 = 0x1.fd1151acb6bedp-8, .c9 = 0x1.087182f799c1dp-6,
.c10 = -0x1.6602748120927p-7, .c11 = 0x1.cfa0dd1f9478p-6,
.pi_over_2 = 0x1.921fb54442d18p+0, .inv_pi = 0x1.45f306dc9c883p-2,
};
/* Double-precision SVE implementation of vector asinpi(x).
For |x| in [0, 0.5], use an order 11 polynomial P such that the final
approximation is an odd polynomial: asin(x) ~ x + x^3 P(x^2).
The largest observed error in this region is 1.32 ulp:
_ZGVsMxv_asinpi (0x1.fc12356dbdefbp-2) got 0x1.5272e9658ba66p-3
want 0x1.5272e9658ba64p-3
For |x| in [0.5, 1.0], use same approximation with a change of variable:
asin(x) = pi/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z).
The largest observed error in this region is 3.48 ulp:
_ZGVsMxv_asinpi (0x1.03da0c2295424p-1) got 0x1.5b02b3dcafaefp-3
want 0x1.5b02b3dcafaf2p-3. */
svfloat64_t SV_NAME_D1 (asinpi) (svfloat64_t x, const svbool_t pg)
{
const struct data *d = ptr_barrier (&data);
svbool_t ptrue = svptrue_b64 ();
svuint64_t sign = svand_x (pg, svreinterpret_u64 (x), 0x8000000000000000);
svfloat64_t ax = svabs_x (pg, x);
svbool_t a_ge_half = svacge (pg, x, 0.5);
/* Evaluate polynomial Q(x) = y + y * z * P(z) with
z = x ^ 2 and y = |x| , if |x| < 0.5
z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */
svfloat64_t z2 = svsel (a_ge_half, svmls_x (pg, sv_f64 (0.5), ax, 0.5),
svmul_x (ptrue, x, x));
svfloat64_t z = svsqrt_m (ax, a_ge_half, z2);
/* Use a single polynomial approximation P for both intervals. */
svfloat64_t z3 = svmul_x (pg, z2, z);
svfloat64_t z4 = svmul_x (pg, z2, z2);
svfloat64_t z8 = svmul_x (pg, z4, z4);
svfloat64_t c13 = svld1rq (ptrue, &d->c1);
svfloat64_t c57 = svld1rq (ptrue, &d->c5);
svfloat64_t c911 = svld1rq (ptrue, &d->c9);
/* Order-11 Estrin scheme. */
svfloat64_t p01 = svmla_lane (sv_f64 (d->c0), z2, c13, 0);
svfloat64_t p23 = svmla_lane (sv_f64 (d->c2), z2, c13, 1);
svfloat64_t p03 = svmla_x (pg, p01, z4, p23);
svfloat64_t p45 = svmla_lane (sv_f64 (d->c4), z2, c57, 0);
svfloat64_t p67 = svmla_lane (sv_f64 (d->c6), z2, c57, 1);
svfloat64_t p47 = svmla_x (pg, p45, z4, p67);
svfloat64_t p89 = svmla_lane (sv_f64 (d->c8), z2, c911, 0);
svfloat64_t p1011 = svmla_lane (sv_f64 (d->c10), z2, c911, 1);
svfloat64_t p811 = svmla_x (pg, p89, z4, p1011);
svfloat64_t p411 = svmla_x (pg, p47, z8, p811);
svfloat64_t p = svmla_x (pg, p03, z8, p411);
/* Finalize polynomial: z + z3 * P(z2). */
p = svmla_x (pg, z, z3, p);
/* asin(|x|) = Q(|x|) , for |x| < 0.5
= pi/2 - 2 Q(|x|), for |x| >= 0.5. */
svfloat64_t y = svmad_m (a_ge_half, p, sv_f64 (-2.0), d->pi_over_2);
/* Reinsert the sign from the argument. */
svfloat64_t inv_pi = svreinterpret_f64 (
svorr_x (pg, svreinterpret_u64 (sv_f64 (d->inv_pi)), sign));
return svmul_x (pg, y, inv_pi);
}

View File

@@ -0,0 +1,95 @@
/* Single-Precision vector (Advanced SIMD) inverse sinpi function
Copyright (C) 2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
static const struct data
{
float32x4_t c0, c2, c4, inv_pi;
float c1, c3, c5, null;
} data = {
/* Coefficients of polynomial P such that asin(x)/pi~ x/pi + x^3 * poly(x^2)
on [ 0x1p-126 0x1p-2 ]. rel error: 0x1.ef9f94b1p-33. Generated using
iterative approach for minimisation of relative error in Sollya file. */
.c0 = V4 (0x1.b2995ep-5f), .c1 = 0x1.8724ep-6f,
.c2 = V4 (0x1.d1301ep-7f), .c3 = 0x1.446d3cp-7f,
.c4 = V4 (0x1.654848p-8f), .c5 = 0x1.5fdaa8p-7f,
.inv_pi = V4 (0x1.45f306p-2f),
};
#define AbsMask 0x7fffffff
/* Single-precision implementation of vector asinpi(x).
For |x| < 0.5, use order 5 polynomial P such that the final
approximation is an odd polynomial: asinpif(x) ~ x/pi + x^3 P(x^2).
The largest observed error in this region is 1.68 ulps,
_ZGVnN4v_asinpif (0x1.86e514p-2) got 0x1.fea8c8p-4 want 0x1.fea8ccp-4.
For |x| in [0.5, 1.0], use same approximation with a change of variable
asin(x) = pi/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z).
The largest observed error in this region is 3.49 ulps,
_ZGVnN4v_asinpif(0x1.0d93fep-1) got 0x1.697aap-3 want 0x1.697a9ap-3. */
float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (asinpi) (float32x4_t x)
{
const struct data *d = ptr_barrier (&data);
uint32x4_t ix = vreinterpretq_u32_f32 (x);
uint32x4_t ia = vandq_u32 (ix, v_u32 (AbsMask));
float32x4_t ax = vreinterpretq_f32_u32 (ia);
uint32x4_t a_lt_half = vcaltq_f32 (x, v_f32 (0.5f));
/* Evaluate polynomial Q(x) = y/pi + y * z * P(z) with
z = x ^ 2 and y = |x| , if |x| < 0.5
z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */
float32x4_t z2 = vbslq_f32 (a_lt_half, vmulq_f32 (x, x),
vfmsq_n_f32 (v_f32 (0.5f), ax, 0.5f));
float32x4_t z = vbslq_f32 (a_lt_half, ax, vsqrtq_f32 (z2));
/* Use a single polynomial approximation P for both intervals. */
/* Order-5 Estrin evaluation scheme. */
float32x4_t z4 = vmulq_f32 (z2, z2);
float32x4_t z8 = vmulq_f32 (z4, z4);
float32x4_t c135 = vld1q_f32 (&d->c1);
float32x4_t p01 = vfmaq_laneq_f32 (d->c0, z2, c135, 0);
float32x4_t p23 = vfmaq_laneq_f32 (d->c2, z2, c135, 1);
float32x4_t p03 = vfmaq_f32 (p01, z4, p23);
float32x4_t p45 = vfmaq_laneq_f32 (d->c4, z2, c135, 2);
float32x4_t p = vfmaq_f32 (p03, z8, p45);
/* Add 1/pi as final coeff. */
p = vfmaq_f32 (d->inv_pi, z2, p);
/* Finalize polynomial: z * P(z2). */
p = vmulq_f32 (z, p);
/* asinpi(|x|) = Q(|x|), for |x| < 0.5
= 1/2 - 2 Q(|x|), for |x| >= 0.5. */
float32x4_t y
= vbslq_f32 (a_lt_half, p, vfmsq_n_f32 (v_f32 (0.5f), p, 2.0f));
/* Copy sign. */
return vbslq_f32 (v_u32 (AbsMask), y, x);
}
libmvec_hidden_def (V_NAME_F1 (asinpi))
HALF_WIDTH_ALIAS_F1 (asinpi)

View File

@@ -0,0 +1,88 @@
/* Single-Precision vector (SVE) inverse sinpi function
Copyright (C) 2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "sv_math.h"
static const struct data
{
float32_t c1, c3, c5;
float32_t c0, c2, c4, inv_pi;
} data = {
/* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) on
[ 0x1p-24 0x1p-2 ] order = 4 rel error: 0x1.00a23bbp-29 . */
.c0 = 0x1.b2995ep-5f, .c1 = 0x1.8724ep-6f, .c2 = 0x1.d1301ep-7f,
.c3 = 0x1.446d3cp-7f, .c4 = 0x1.654848p-8f, .c5 = 0x1.5fdaa8p-7f,
.inv_pi = 0x1.45f306p-2f,
};
/* Single-precision SVE implementation of vector asin(x).
For |x| in [0, 0.5], use order 5 polynomial P such that the final
approximation is an odd polynomial: asinpi(x) ~ x/pi + x^3 P(x^2).
The largest observed error in this region is 1.96 ulps:
_ZGVsMxv_asinpif (0x1.8e534ep-3) got 0x1.fe6ab4p-5
want 0x1.fe6ab8p-5.
For |x| in [0.5, 1.0], use same approximation with a change of variable
asinpi(x) = 1/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z).
The largest observed error in this region is 3.46 ulps:
_ZGVsMxv_asinpif (0x1.0df892p-1) got 0x1.6a114cp-3
want 0x1.6a1146p-3. */
svfloat32_t SV_NAME_F1 (asinpi) (svfloat32_t x, const svbool_t pg)
{
const struct data *d = ptr_barrier (&data);
svbool_t ptrue = svptrue_b32 ();
svuint32_t sign = svand_x (pg, svreinterpret_u32 (x), 0x80000000);
svfloat32_t ax = svabs_x (pg, x);
svbool_t a_ge_half = svacge (pg, x, 0.5);
/* Evaluate polynomial Q(x) = y + y * z * P(z) with
z = x ^ 2 and y = |x| , if |x| < 0.5
z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */
svfloat32_t z2 = svsel (a_ge_half, svmls_x (pg, sv_f32 (0.5), ax, 0.5),
svmul_x (pg, x, x));
svfloat32_t z = svsqrt_m (ax, a_ge_half, z2);
svfloat32_t z4 = svmul_x (ptrue, z2, z2);
svfloat32_t c135_two = svld1rq (ptrue, &d->c1);
/* Order-5 Pairwise Horner evaluation scheme. */
svfloat32_t p01 = svmla_lane (sv_f32 (d->c0), z2, c135_two, 0);
svfloat32_t p23 = svmla_lane (sv_f32 (d->c2), z2, c135_two, 1);
svfloat32_t p45 = svmla_lane (sv_f32 (d->c4), z2, c135_two, 2);
svfloat32_t p25 = svmla_x (pg, p23, z4, p45);
svfloat32_t p = svmla_x (pg, p01, z4, p25);
/* Add 1/pi as final coeff. */
p = svmla_x (pg, sv_f32 (d->inv_pi), z2, p);
p = svmul_x (pg, p, z);
/* asinpi(|x|) = Q(|x|), for |x| < 0.5
= 1/2 - 2 Q(|x|), for |x| >= 0.5. */
svfloat32_t y = svmsb_m (a_ge_half, p, sv_f32 (2.0), 0.5);
/* Reinsert sign from argument. */
return svreinterpret_f32 (sveor_x (pg, svreinterpret_u32 (y), sign));
}

View File

@@ -49,6 +49,10 @@
# define __DECL_SIMD_asinh __DECL_SIMD_aarch64
# undef __DECL_SIMD_asinhf
# define __DECL_SIMD_asinhf __DECL_SIMD_aarch64
# undef __DECL_SIMD_asinpi
# define __DECL_SIMD_asinpi __DECL_SIMD_aarch64
# undef __DECL_SIMD_asinpif
# define __DECL_SIMD_asinpif __DECL_SIMD_aarch64
# undef __DECL_SIMD_atan
# define __DECL_SIMD_atan __DECL_SIMD_aarch64
# undef __DECL_SIMD_atanf
@@ -185,6 +189,7 @@ __vpcs __f32x4_t _ZGVnN4v_acoshf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_acospif (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_asinf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_asinhf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_asinpif (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_atanf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_atanhf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_cbrtf (__f32x4_t);
@@ -217,6 +222,7 @@ __vpcs __f64x2_t _ZGVnN2v_acosh (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_acospi (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_asin (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_asinh (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_asinpi (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_atan (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_atanh (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_cbrt (__f64x2_t);
@@ -254,6 +260,7 @@ __sv_f32_t _ZGVsMxv_acoshf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_acospif (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_asinf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_asinhf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_asinpif (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_atanf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_atanhf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_cbrtf (__sv_f32_t, __sv_bool_t);
@@ -286,6 +293,7 @@ __sv_f64_t _ZGVsMxv_acosh (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_acospi (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_asin (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_asinh (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_asinpi (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_atan (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_atanh (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_cbrt (__sv_f64_t, __sv_bool_t);

View File

@@ -28,6 +28,7 @@ VPCS_VECTOR_WRAPPER (acosh_advsimd, _ZGVnN2v_acosh)
VPCS_VECTOR_WRAPPER (acospi_advsimd, _ZGVnN2v_acospi)
VPCS_VECTOR_WRAPPER (asin_advsimd, _ZGVnN2v_asin)
VPCS_VECTOR_WRAPPER (asinh_advsimd, _ZGVnN2v_asinh)
VPCS_VECTOR_WRAPPER (asinpi_advsimd, _ZGVnN2v_asinpi)
VPCS_VECTOR_WRAPPER (atan_advsimd, _ZGVnN2v_atan)
VPCS_VECTOR_WRAPPER (atanh_advsimd, _ZGVnN2v_atanh)
VPCS_VECTOR_WRAPPER_ff (atan2_advsimd, _ZGVnN2vv_atan2)

View File

@@ -47,6 +47,7 @@ SVE_VECTOR_WRAPPER (acosh_sve, _ZGVsMxv_acosh)
SVE_VECTOR_WRAPPER (acospi_sve, _ZGVsMxv_acospi)
SVE_VECTOR_WRAPPER (asin_sve, _ZGVsMxv_asin)
SVE_VECTOR_WRAPPER (asinh_sve, _ZGVsMxv_asinh)
SVE_VECTOR_WRAPPER (asinpi_sve, _ZGVsMxv_asinpi)
SVE_VECTOR_WRAPPER (atan_sve, _ZGVsMxv_atan)
SVE_VECTOR_WRAPPER (atanh_sve, _ZGVsMxv_atanh)
SVE_VECTOR_WRAPPER_ff (atan2_sve, _ZGVsMxvv_atan2)

View File

@@ -28,6 +28,7 @@ VPCS_VECTOR_WRAPPER (acoshf_advsimd, _ZGVnN4v_acoshf)
VPCS_VECTOR_WRAPPER (acospif_advsimd, _ZGVnN4v_acospif)
VPCS_VECTOR_WRAPPER (asinf_advsimd, _ZGVnN4v_asinf)
VPCS_VECTOR_WRAPPER (asinhf_advsimd, _ZGVnN4v_asinhf)
VPCS_VECTOR_WRAPPER (asinpif_advsimd, _ZGVnN4v_asinpif)
VPCS_VECTOR_WRAPPER (atanf_advsimd, _ZGVnN4v_atanf)
VPCS_VECTOR_WRAPPER (atanhf_advsimd, _ZGVnN4v_atanhf)
VPCS_VECTOR_WRAPPER_ff (atan2f_advsimd, _ZGVnN4vv_atan2f)

View File

@@ -47,6 +47,7 @@ SVE_VECTOR_WRAPPER (acoshf_sve, _ZGVsMxv_acoshf)
SVE_VECTOR_WRAPPER (acospif_sve, _ZGVsMxv_acospif)
SVE_VECTOR_WRAPPER (asinf_sve, _ZGVsMxv_asinf)
SVE_VECTOR_WRAPPER (asinhf_sve, _ZGVsMxv_asinhf)
SVE_VECTOR_WRAPPER (asinpif_sve, _ZGVsMxv_asinpif)
SVE_VECTOR_WRAPPER (atanf_sve, _ZGVsMxv_atanf)
SVE_VECTOR_WRAPPER (atanhf_sve, _ZGVsMxv_atanhf)
SVE_VECTOR_WRAPPER_ff (atan2f_sve, _ZGVsMxvv_atan2f)

View File

@@ -150,6 +150,11 @@ GLIBC_2.41 _ZGVsMxv_tanpi F
GLIBC_2.41 _ZGVsMxv_tanpif F
GLIBC_2.42 _ZGVnN2v_acospi F
GLIBC_2.42 _ZGVnN2v_acospif F
GLIBC_2.42 _ZGVnN2v_asinpi F
GLIBC_2.42 _ZGVnN2v_asinpif F
GLIBC_2.42 _ZGVnN4v_acospif F
GLIBC_2.42 _ZGVnN4v_asinpif F
GLIBC_2.42 _ZGVsMxv_acospi F
GLIBC_2.42 _ZGVsMxv_acospif F
GLIBC_2.42 _ZGVsMxv_asinpi F
GLIBC_2.42 _ZGVsMxv_asinpif F