Move the libtest code into a 'libtest' subdirectory and make it
one of the SUBDIRS in the tests Makefile. having it at the top level
required having "." as one of the subdirs, and that caused the
unit tests to be executed twice.
The unit tests are now using a common base, which means that
lib/dns/tests/ code now has to include lib/isc/include/isc/test.h and
link with lib/isc/test.c and lib/ns/tests has to include both libisc and
libdns parts.
Instead of cross-linking code between the directories, move the
/lib/<foo>/test.c to /tests/<foo>.c and /lib/<foo>/include/<foo>test.h
to /tests/include/tests/<foo>.h and create a single libtest.la
convenience library in /tests/.
At the same time, move the /lib/<foo>/tests/ to /tests/<foo>/ (but keep
it symlinked to the old location) and adjust paths accordingly. In few
places, we are now using absolute paths instead of relative paths,
because the directory level has changed. By moving the directories
under the /tests/ directory, the test-related code is kept in a single
place and we can avoid referencing files between libns->libdns->libisc
which is unhealthy because they live in a separate Makefile-space.
In the future, the /bin/tests/ should be merged to /tests/ and symlink
kept, and the /fuzz/ directory moved to /tests/fuzz/.
BIND 9 plugins are installed using Automake's pkglib_LTLIBRARIES stanza,
which causes the relevant shared objects to be placed in the
$(libdir)/@PACKAGE@/ directory, where @PACKAGE@ is expanded to the
lowercase form of the first argument passed to AC_INIT(), i.e. "bind".
Meanwhile, NAMED_PLUGINDIR - the preprocessor macro that the
ns_plugin_expandpath() function uses for determining the absolute path
to a plugin for which only a filename has been provided (rather than a
path) - is set to $(libdir)/named. This discrepancy breaks loading
plugins using just their filenames. Fix the issue (and also prevent it
from reoccurring) by setting NAMED_PLUGINDIR to $(pkglibdir).
From an attacker's point of view, a VLA declaration is essentially a
primitive for performing arbitrary arithmetic on the stack pointer. If
the attacker can control the size of a VLA they have a very powerful
tool for causing memory corruption.
To mitigate this kind of attack, and the more general class of stack
clash vulnerabilities, C compilers insert extra code when allocating a
VLA to probe the growing stack one page at a time. If these probes hit
the stack guard page, the program will crash.
From the point of view of a C programmer, there are a few things to
consider about VLAs:
* If it is important to handle allocation failures in a controlled
manner, don't use VLAs. You can use VLAs if it is OK for
unreasonable inputs to cause an uncontrolled crash.
* If the VLA is known to be smaller than some known fixed size,
use a fixed size array and a run-time check to ensure it is large
enough. This will be more efficient than the compiler's stack
probes that need to cope with arbitrary-size VLAs.
* If the VLA might be large, allocate it on the heap. The heap
allocator can allocate multiple pages in one shot, whereas the
stack clash probes work one page at a time.
Most of the existing uses of VLAs in BIND are in test code where they
are benign, but there was one instance in `named`, in the GSS-TSIG
verification code, which has now been removed.
This commit adjusts the style guide and the C compiler flags to allow
VLAs in test code but not elsewhere.
The Makefile.tests was modifying global AM_CFLAGS and LDADD and could
accidentally pull /usr/include to be listed before the internal
libraries, which is known to cause problems if the headers from the
previous version of BIND 9 has been installed on the build machine.
The rewrite of BIND 9 build system is a large work and cannot be reasonable
split into separate merge requests. Addition of the automake has a positive
effect on the readability and maintainability of the build system as it is more
declarative, it allows conditional and we are able to drop all of the custom
make code that BIND 9 developed over the years to overcome the deficiencies of
autoconf + custom Makefile.in files.
This squashed commit contains following changes:
- conversion (or rather fresh rewrite) of all Makefile.in files to Makefile.am
by using automake
- the libtool is now properly integrated with automake (the way we used it
was rather hackish as the only official way how to use libtool is via
automake
- the dynamic module loading was rewritten from a custom patchwork to libtool's
libltdl (which includes the patchwork to support module loading on different
systems internally)
- conversion of the unit test executor from kyua to automake parallel driver
- conversion of the system test executor from custom make/shell to automake
parallel driver
- The GSSAPI has been refactored, the custom SPNEGO on the basis that
all major KRB5/GSSAPI (mit-krb5, heimdal and Windows) implementations
support SPNEGO mechanism.
- The various defunct tests from bin/tests have been removed:
bin/tests/optional and bin/tests/pkcs11
- The text files generated from the MD files have been removed, the
MarkDown has been designed to be readable by both humans and computers
- The xsl header is now generated by a simple sed command instead of
perl helper
- The <irs/platform.h> header has been removed
- cleanups of configure.ac script to make it more simpler, addition of multiple
macros (there's still work to be done though)
- the tarball can now be prepared with `make dist`
- the system tests are partially able to run in oot build
Here's a list of unfinished work that needs to be completed in subsequent merge
requests:
- `make distcheck` doesn't yet work (because of system tests oot run is not yet
finished)
- documentation is not yet built, there's a different merge request with docbook
to sphinx-build rst conversion that needs to be rebased and adapted on top of
the automake
- msvc build is non functional yet and we need to decide whether we will just
cross-compile bind9 using mingw-w64 or fix the msvc build
- contributed dlz modules are not included neither in the autoconf nor automake