mirror of
https://github.com/sqlite/sqlite.git
synced 2025-08-10 01:02:56 +03:00
1423 lines
43 KiB
C
1423 lines
43 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains routines used for analyzing expressions and
|
|
** for generating VDBE code that evaluates expressions in SQLite.
|
|
**
|
|
** $Id: expr.c,v 1.46 2002/02/27 01:47:12 drh Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
|
|
/*
|
|
** Construct a new expression node and return a pointer to it. Memory
|
|
** for this node is obtained from sqliteMalloc(). The calling function
|
|
** is responsible for making sure the node eventually gets freed.
|
|
*/
|
|
Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){
|
|
Expr *pNew;
|
|
pNew = sqliteMalloc( sizeof(Expr) );
|
|
if( pNew==0 ){
|
|
sqliteExprDelete(pLeft);
|
|
sqliteExprDelete(pRight);
|
|
return 0;
|
|
}
|
|
pNew->op = op;
|
|
pNew->pLeft = pLeft;
|
|
pNew->pRight = pRight;
|
|
if( pToken ){
|
|
pNew->token = *pToken;
|
|
}else{
|
|
pNew->token.z = 0;
|
|
pNew->token.n = 0;
|
|
}
|
|
if( pLeft && pRight ){
|
|
sqliteExprSpan(pNew, &pLeft->span, &pRight->span);
|
|
}else{
|
|
pNew->span = pNew->token;
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Set the Expr.token field of the given expression to span all
|
|
** text between the two given tokens.
|
|
*/
|
|
void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
|
|
if( pExpr ){
|
|
pExpr->span.z = pLeft->z;
|
|
pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Construct a new expression node for a function with multiple
|
|
** arguments.
|
|
*/
|
|
Expr *sqliteExprFunction(ExprList *pList, Token *pToken){
|
|
Expr *pNew;
|
|
pNew = sqliteMalloc( sizeof(Expr) );
|
|
if( pNew==0 ){
|
|
sqliteExprListDelete(pList);
|
|
return 0;
|
|
}
|
|
pNew->op = TK_FUNCTION;
|
|
pNew->pList = pList;
|
|
if( pToken ){
|
|
pNew->token = *pToken;
|
|
}else{
|
|
pNew->token.z = 0;
|
|
pNew->token.n = 0;
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Recursively delete an expression tree.
|
|
*/
|
|
void sqliteExprDelete(Expr *p){
|
|
if( p==0 ) return;
|
|
if( p->op!=TK_AS ){
|
|
if( p->pLeft ) sqliteExprDelete(p->pLeft);
|
|
if( p->pRight ) sqliteExprDelete(p->pRight);
|
|
}
|
|
if( p->pList ) sqliteExprListDelete(p->pList);
|
|
if( p->pSelect ) sqliteSelectDelete(p->pSelect);
|
|
sqliteFree(p);
|
|
}
|
|
|
|
/*
|
|
** The following group of functions are used to translate the string
|
|
** pointers of tokens in expression from one buffer to another.
|
|
**
|
|
** Normally, the Expr.token.z and Expr.span.z fields point into the
|
|
** original input buffer of an SQL statement. This is usually OK
|
|
** since the SQL statement is executed and the expression is deleted
|
|
** before the input buffer is freed. Making the tokens point to the
|
|
** original input buffer saves many calls to malloc() and thus helps
|
|
** the library to run faster.
|
|
**
|
|
** But sometimes we need an expression to persist past the time when
|
|
** the input buffer is freed. (Example: The SELECT clause of a
|
|
** CREATE VIEW statement contains expressions that must persist for
|
|
** the life of the view.) When that happens we have to make a
|
|
** persistent copy of the input buffer and translate the Expr.token.z
|
|
** and Expr.span.z fields to point to the copy rather than the
|
|
** original input buffer. The following group of routines handle that
|
|
** translation.
|
|
**
|
|
** The "offset" parameter is the distance from the original input buffer
|
|
** to the persistent copy. These routines recursively walk the entire
|
|
** expression tree and shift all tokens by "offset" amount.
|
|
**
|
|
** The work of figuring out the appropriate "offset" and making the
|
|
** presistent copy of the input buffer is done by the calling routine.
|
|
*/
|
|
void sqliteExprMoveStrings(Expr *p, int offset){
|
|
if( p==0 ) return;
|
|
if( p->token.z ) p->token.z += offset;
|
|
if( p->span.z ) p->span.z += offset;
|
|
if( p->pLeft ) sqliteExprMoveStrings(p->pLeft, offset);
|
|
if( p->pRight ) sqliteExprMoveStrings(p->pRight, offset);
|
|
if( p->pList ) sqliteExprListMoveStrings(p->pList, offset);
|
|
if( p->pSelect ) sqliteSelectMoveStrings(p->pSelect, offset);
|
|
}
|
|
void sqliteExprListMoveStrings(ExprList *pList, int offset){
|
|
int i;
|
|
if( pList==0 ) return;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
sqliteExprMoveStrings(pList->a[i].pExpr, offset);
|
|
}
|
|
}
|
|
void sqliteSelectMoveStrings(Select *pSelect, int offset){
|
|
if( pSelect==0 ) return;
|
|
sqliteExprListMoveStrings(pSelect->pEList, offset);
|
|
sqliteExprMoveStrings(pSelect->pWhere, offset);
|
|
sqliteExprListMoveStrings(pSelect->pGroupBy, offset);
|
|
sqliteExprMoveStrings(pSelect->pHaving, offset);
|
|
sqliteExprListMoveStrings(pSelect->pOrderBy, offset);
|
|
sqliteSelectMoveStrings(pSelect->pPrior, offset);
|
|
}
|
|
|
|
/*
|
|
** The following group of routines make deep copies of expressions,
|
|
** expression lists, ID lists, and select statements. The copies can
|
|
** be deleted (by being passed to their respective ...Delete() routines)
|
|
** without effecting the originals.
|
|
**
|
|
** Note, however, that the Expr.token.z and Expr.span.z fields point to
|
|
** string space that is allocated separately from the expression tree
|
|
** itself. These routines do NOT duplicate that string space.
|
|
**
|
|
** The expression list and ID list return by sqliteExprListDup() and
|
|
** sqliteIdListDup() can not be further expanded by subsequent calls
|
|
** to sqliteExprListAppend() or sqliteIdListAppend().
|
|
**
|
|
** Any tables that the ID list might point to are not duplicated.
|
|
*/
|
|
Expr *sqliteExprDup(Expr *p){
|
|
Expr *pNew;
|
|
if( p==0 ) return 0;
|
|
pNew = sqliteMalloc( sizeof(*p) );
|
|
if( pNew==0 ) return 0;
|
|
pNew->op = p->op;
|
|
pNew->pLeft = sqliteExprDup(p->pLeft);
|
|
pNew->pRight = sqliteExprDup(p->pRight);
|
|
pNew->pList = sqliteExprListDup(p->pList);
|
|
pNew->token = p->token;
|
|
pNew->span = p->span;
|
|
pNew->pSelect = sqliteSelectDup(p->pSelect);
|
|
return pNew;
|
|
}
|
|
ExprList *sqliteExprListDup(ExprList *p){
|
|
ExprList *pNew;
|
|
int i;
|
|
if( p==0 ) return 0;
|
|
pNew = sqliteMalloc( sizeof(*pNew) );
|
|
if( pNew==0 ) return 0;
|
|
pNew->nExpr = p->nExpr;
|
|
pNew->a = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
|
|
for(i=0; i<p->nExpr; i++){
|
|
pNew->a[i].pExpr = sqliteExprDup(p->a[i].pExpr);
|
|
pNew->a[i].zName = sqliteStrDup(p->a[i].zName);
|
|
pNew->a[i].sortOrder = p->a[i].sortOrder;
|
|
pNew->a[i].isAgg = p->a[i].isAgg;
|
|
pNew->a[i].done = 0;
|
|
}
|
|
return pNew;
|
|
}
|
|
IdList *sqliteIdListDup(IdList *p){
|
|
IdList *pNew;
|
|
int i;
|
|
if( p==0 ) return 0;
|
|
pNew = sqliteMalloc( sizeof(*pNew) );
|
|
if( pNew==0 ) return 0;
|
|
pNew->nId = p->nId;
|
|
pNew->a = sqliteMalloc( p->nId*sizeof(p->a[0]) );
|
|
for(i=0; i<p->nId; i++){
|
|
pNew->a[i].zName = sqliteStrDup(p->a[i].zName);
|
|
pNew->a[i].zAlias = sqliteStrDup(p->a[i].zAlias);
|
|
pNew->a[i].idx = p->a[i].idx;
|
|
pNew->a[i].pTab = 0;
|
|
pNew->a[i].pSelect = sqliteSelectDup(p->a[i].pSelect);
|
|
}
|
|
return pNew;
|
|
}
|
|
Select *sqliteSelectDup(Select *p){
|
|
Select *pNew;
|
|
if( p==0 ) return 0;
|
|
pNew = sqliteMalloc( sizeof(*p) );
|
|
if( pNew==0 ) return 0;
|
|
pNew->isDistinct = p->isDistinct;
|
|
pNew->pEList = sqliteExprListDup(p->pEList);
|
|
pNew->pSrc = sqliteIdListDup(p->pSrc);
|
|
pNew->pWhere = sqliteExprDup(p->pWhere);
|
|
pNew->pGroupBy = sqliteExprListDup(p->pGroupBy);
|
|
pNew->pHaving = sqliteExprDup(p->pHaving);
|
|
pNew->pOrderBy = sqliteExprListDup(p->pOrderBy);
|
|
pNew->op = p->op;
|
|
pNew->pPrior = sqliteSelectDup(p->pPrior);
|
|
pNew->nLimit = p->nLimit;
|
|
pNew->nOffset = p->nOffset;
|
|
pNew->zSelect = 0;
|
|
return pNew;
|
|
}
|
|
|
|
|
|
/*
|
|
** Add a new element to the end of an expression list. If pList is
|
|
** initially NULL, then create a new expression list.
|
|
*/
|
|
ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
|
|
int i;
|
|
if( pList==0 ){
|
|
pList = sqliteMalloc( sizeof(ExprList) );
|
|
if( pList==0 ){
|
|
sqliteExprDelete(pExpr);
|
|
return 0;
|
|
}
|
|
}
|
|
if( (pList->nExpr & 7)==0 ){
|
|
int n = pList->nExpr + 8;
|
|
struct ExprList_item *a;
|
|
a = sqliteRealloc(pList->a, n*sizeof(pList->a[0]));
|
|
if( a==0 ){
|
|
sqliteExprDelete(pExpr);
|
|
return pList;
|
|
}
|
|
pList->a = a;
|
|
}
|
|
if( pExpr || pName ){
|
|
i = pList->nExpr++;
|
|
pList->a[i].pExpr = pExpr;
|
|
pList->a[i].zName = 0;
|
|
if( pName ){
|
|
sqliteSetNString(&pList->a[i].zName, pName->z, pName->n, 0);
|
|
sqliteDequote(pList->a[i].zName);
|
|
}
|
|
}
|
|
return pList;
|
|
}
|
|
|
|
/*
|
|
** Delete an entire expression list.
|
|
*/
|
|
void sqliteExprListDelete(ExprList *pList){
|
|
int i;
|
|
if( pList==0 ) return;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
sqliteExprDelete(pList->a[i].pExpr);
|
|
sqliteFree(pList->a[i].zName);
|
|
}
|
|
sqliteFree(pList->a);
|
|
sqliteFree(pList);
|
|
}
|
|
|
|
/*
|
|
** Walk an expression tree. Return 1 if the expression is constant
|
|
** and 0 if it involves variables.
|
|
*/
|
|
int sqliteExprIsConstant(Expr *p){
|
|
switch( p->op ){
|
|
case TK_ID:
|
|
case TK_COLUMN:
|
|
case TK_DOT:
|
|
return 0;
|
|
case TK_INTEGER:
|
|
case TK_FLOAT:
|
|
case TK_STRING:
|
|
return 1;
|
|
default: {
|
|
if( p->pLeft && !sqliteExprIsConstant(p->pLeft) ) return 0;
|
|
if( p->pRight && !sqliteExprIsConstant(p->pRight) ) return 0;
|
|
if( p->pList ){
|
|
int i;
|
|
for(i=0; i<p->pList->nExpr; i++){
|
|
if( !sqliteExprIsConstant(p->pList->a[i].pExpr) ) return 0;
|
|
}
|
|
}
|
|
return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Walk the expression tree and process operators of the form:
|
|
**
|
|
** expr IN (SELECT ...)
|
|
**
|
|
** These operators have to be processed before column names are
|
|
** resolved because each such operator increments pParse->nTab
|
|
** to reserve cursor numbers for its own use. But pParse->nTab
|
|
** needs to be constant once we begin resolving column names. For
|
|
** that reason, this procedure needs to be called on every expression
|
|
** before sqliteExprResolveIds() is called on any expression.
|
|
**
|
|
** Actually, the processing of IN-SELECT is only started by this
|
|
** routine. This routine allocates a cursor number to the IN-SELECT
|
|
** and then moves on. The code generation is done by
|
|
** sqliteExprResolveIds() which must be called afterwards.
|
|
*/
|
|
void sqliteExprResolveInSelect(Parse *pParse, Expr *pExpr){
|
|
if( pExpr==0 ) return;
|
|
if( pExpr->op==TK_IN && pExpr->pSelect!=0 ){
|
|
pExpr->iTable = pParse->nTab++;
|
|
}else{
|
|
if( pExpr->pLeft ) sqliteExprResolveInSelect(pParse, pExpr->pLeft);
|
|
if( pExpr->pRight ) sqliteExprResolveInSelect(pParse, pExpr->pRight);
|
|
if( pExpr->pList ){
|
|
int i;
|
|
ExprList *pList = pExpr->pList;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
sqliteExprResolveInSelect(pParse, pList->a[i].pExpr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the given string is a row-id column name.
|
|
*/
|
|
static int sqliteIsRowid(const char *z){
|
|
if( sqliteStrICmp(z, "_ROWID_")==0 ) return 1;
|
|
if( sqliteStrICmp(z, "ROWID")==0 ) return 1;
|
|
if( sqliteStrICmp(z, "OID")==0 ) return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** This routine walks an expression tree and resolves references to
|
|
** table columns. Nodes of the form ID.ID or ID resolve into an
|
|
** index to the table in the table list and a column offset. The
|
|
** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
|
|
** value is changed to the index of the referenced table in pTabList
|
|
** plus the pParse->nTab value. This value will ultimately become the
|
|
** VDBE cursor number for a cursor that is pointing into the referenced
|
|
** table. The Expr.iColumn value is changed to the index of the column
|
|
** of the referenced table. The Expr.iColumn value for the special
|
|
** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
|
|
** alias for ROWID.
|
|
**
|
|
** We also check for instances of the IN operator. IN comes in two
|
|
** forms:
|
|
**
|
|
** expr IN (exprlist)
|
|
** and
|
|
** expr IN (SELECT ...)
|
|
**
|
|
** The first form is handled by creating a set holding the list
|
|
** of allowed values. The second form causes the SELECT to generate
|
|
** a temporary table.
|
|
**
|
|
** This routine also looks for scalar SELECTs that are part of an expression.
|
|
** If it finds any, it generates code to write the value of that select
|
|
** into a memory cell.
|
|
**
|
|
** Unknown columns or tables provoke an error. The function returns
|
|
** the number of errors seen and leaves an error message on pParse->zErrMsg.
|
|
*/
|
|
int sqliteExprResolveIds(
|
|
Parse *pParse, /* The parser context */
|
|
IdList *pTabList, /* List of tables used to resolve column names */
|
|
ExprList *pEList, /* List of expressions used to resolve "AS" */
|
|
Expr *pExpr /* The expression to be analyzed. */
|
|
){
|
|
if( pExpr==0 || pTabList==0 ) return 0;
|
|
switch( pExpr->op ){
|
|
/* A lone identifier. Try and match it as follows:
|
|
**
|
|
** 1. To the name of a column of one of the tables in pTabList
|
|
**
|
|
** 2. To the right side of an AS keyword in the column list of
|
|
** a SELECT statement. (For example, match against 'x' in
|
|
** "SELECT a+b AS 'x' FROM t1".)
|
|
**
|
|
** 3. One of the special names "ROWID", "OID", or "_ROWID_".
|
|
*/
|
|
case TK_ID: {
|
|
int cnt = 0; /* Number of matches */
|
|
int i; /* Loop counter */
|
|
char *z;
|
|
assert( pExpr->token.z );
|
|
z = sqliteStrNDup(pExpr->token.z, pExpr->token.n);
|
|
sqliteDequote(z);
|
|
if( z==0 ) return 1;
|
|
for(i=0; i<pTabList->nId; i++){
|
|
int j;
|
|
Table *pTab = pTabList->a[i].pTab;
|
|
if( pTab==0 ) continue;
|
|
for(j=0; j<pTab->nCol; j++){
|
|
if( sqliteStrICmp(pTab->aCol[j].zName, z)==0 ){
|
|
cnt++;
|
|
pExpr->iTable = i + pParse->nTab;
|
|
if( j==pTab->iPKey ){
|
|
/* Substitute the record number for the INTEGER PRIMARY KEY */
|
|
pExpr->iColumn = -1;
|
|
}else{
|
|
pExpr->iColumn = j;
|
|
}
|
|
pExpr->op = TK_COLUMN;
|
|
}
|
|
}
|
|
}
|
|
if( cnt==0 && pEList!=0 ){
|
|
int j;
|
|
for(j=0; j<pEList->nExpr; j++){
|
|
char *zAs = pEList->a[j].zName;
|
|
if( zAs!=0 && sqliteStrICmp(zAs, z)==0 ){
|
|
cnt++;
|
|
assert( pExpr->pLeft==0 && pExpr->pRight==0 );
|
|
pExpr->op = TK_AS;
|
|
pExpr->iColumn = j;
|
|
pExpr->pLeft = pEList->a[j].pExpr;
|
|
}
|
|
}
|
|
}
|
|
if( cnt==0 && sqliteIsRowid(z) ){
|
|
pExpr->iColumn = -1;
|
|
pExpr->iTable = pParse->nTab;
|
|
cnt = 1 + (pTabList->nId>1);
|
|
pExpr->op = TK_COLUMN;
|
|
}
|
|
sqliteFree(z);
|
|
if( cnt==0 ){
|
|
sqliteSetNString(&pParse->zErrMsg, "no such column: ", -1,
|
|
pExpr->token.z, pExpr->token.n, 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}else if( cnt>1 ){
|
|
sqliteSetNString(&pParse->zErrMsg, "ambiguous column name: ", -1,
|
|
pExpr->token.z, pExpr->token.n, 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* A table name and column name: ID.ID */
|
|
case TK_DOT: {
|
|
int cnt = 0; /* Number of matches */
|
|
int cntTab = 0; /* Number of matching tables */
|
|
int i; /* Loop counter */
|
|
Expr *pLeft, *pRight; /* Left and right subbranches of the expr */
|
|
char *zLeft, *zRight; /* Text of an identifier */
|
|
|
|
pLeft = pExpr->pLeft;
|
|
pRight = pExpr->pRight;
|
|
assert( pLeft && pLeft->op==TK_ID && pLeft->token.z );
|
|
assert( pRight && pRight->op==TK_ID && pRight->token.z );
|
|
zLeft = sqliteStrNDup(pLeft->token.z, pLeft->token.n);
|
|
zRight = sqliteStrNDup(pRight->token.z, pRight->token.n);
|
|
if( zLeft==0 || zRight==0 ){
|
|
sqliteFree(zLeft);
|
|
sqliteFree(zRight);
|
|
return 1;
|
|
}
|
|
sqliteDequote(zLeft);
|
|
sqliteDequote(zRight);
|
|
pExpr->iTable = -1;
|
|
for(i=0; i<pTabList->nId; i++){
|
|
int j;
|
|
char *zTab;
|
|
Table *pTab = pTabList->a[i].pTab;
|
|
if( pTab==0 ) continue;
|
|
if( pTabList->a[i].zAlias ){
|
|
zTab = pTabList->a[i].zAlias;
|
|
}else{
|
|
zTab = pTab->zName;
|
|
}
|
|
if( sqliteStrICmp(zTab, zLeft)!=0 ) continue;
|
|
if( 0==(cntTab++) ) pExpr->iTable = i + pParse->nTab;
|
|
for(j=0; j<pTab->nCol; j++){
|
|
if( sqliteStrICmp(pTab->aCol[j].zName, zRight)==0 ){
|
|
cnt++;
|
|
pExpr->iTable = i + pParse->nTab;
|
|
if( j==pTab->iPKey ){
|
|
/* Substitute the record number for the INTEGER PRIMARY KEY */
|
|
pExpr->iColumn = -1;
|
|
}else{
|
|
pExpr->iColumn = j;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if( cnt==0 && cntTab==1 && sqliteIsRowid(zRight) ){
|
|
cnt = 1;
|
|
pExpr->iColumn = -1;
|
|
}
|
|
sqliteFree(zLeft);
|
|
sqliteFree(zRight);
|
|
if( cnt==0 ){
|
|
sqliteSetNString(&pParse->zErrMsg, "no such column: ", -1,
|
|
pLeft->token.z, pLeft->token.n, ".", 1,
|
|
pRight->token.z, pRight->token.n, 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}else if( cnt>1 ){
|
|
sqliteSetNString(&pParse->zErrMsg, "ambiguous column name: ", -1,
|
|
pLeft->token.z, pLeft->token.n, ".", 1,
|
|
pRight->token.z, pRight->token.n, 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
sqliteExprDelete(pLeft);
|
|
pExpr->pLeft = 0;
|
|
sqliteExprDelete(pRight);
|
|
pExpr->pRight = 0;
|
|
pExpr->op = TK_COLUMN;
|
|
break;
|
|
}
|
|
|
|
case TK_IN: {
|
|
Vdbe *v = sqliteGetVdbe(pParse);
|
|
if( v==0 ) return 1;
|
|
if( sqliteExprResolveIds(pParse, pTabList, pEList, pExpr->pLeft) ){
|
|
return 1;
|
|
}
|
|
if( pExpr->pSelect ){
|
|
/* Case 1: expr IN (SELECT ...)
|
|
**
|
|
** Generate code to write the results of the select into a temporary
|
|
** table. The cursor number of the temporary table has already
|
|
** been put in iTable by sqliteExprResolveInSelect().
|
|
*/
|
|
sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1);
|
|
if( sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable) );
|
|
}else if( pExpr->pList ){
|
|
/* Case 2: expr IN (exprlist)
|
|
**
|
|
** Create a set to put the exprlist values in. The Set id is stored
|
|
** in iTable.
|
|
*/
|
|
int i, iSet;
|
|
for(i=0; i<pExpr->pList->nExpr; i++){
|
|
Expr *pE2 = pExpr->pList->a[i].pExpr;
|
|
if( !sqliteExprIsConstant(pE2) ){
|
|
sqliteSetString(&pParse->zErrMsg,
|
|
"right-hand side of IN operator must be constant", 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
if( sqliteExprCheck(pParse, pE2, 0, 0) ){
|
|
return 1;
|
|
}
|
|
}
|
|
iSet = pExpr->iTable = pParse->nSet++;
|
|
for(i=0; i<pExpr->pList->nExpr; i++){
|
|
Expr *pE2 = pExpr->pList->a[i].pExpr;
|
|
switch( pE2->op ){
|
|
case TK_FLOAT:
|
|
case TK_INTEGER:
|
|
case TK_STRING: {
|
|
int addr = sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0);
|
|
assert( pE2->token.z );
|
|
sqliteVdbeChangeP3(v, addr, pE2->token.z, pE2->token.n);
|
|
sqliteVdbeDequoteP3(v, addr);
|
|
break;
|
|
}
|
|
default: {
|
|
sqliteExprCode(pParse, pE2);
|
|
sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TK_SELECT: {
|
|
/* This has to be a scalar SELECT. Generate code to put the
|
|
** value of this select in a memory cell and record the number
|
|
** of the memory cell in iColumn.
|
|
*/
|
|
pExpr->iColumn = pParse->nMem++;
|
|
if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn) ){
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* For all else, just recursively walk the tree */
|
|
default: {
|
|
if( pExpr->pLeft
|
|
&& sqliteExprResolveIds(pParse, pTabList, pEList, pExpr->pLeft) ){
|
|
return 1;
|
|
}
|
|
if( pExpr->pRight
|
|
&& sqliteExprResolveIds(pParse, pTabList, pEList, pExpr->pRight) ){
|
|
return 1;
|
|
}
|
|
if( pExpr->pList ){
|
|
int i;
|
|
ExprList *pList = pExpr->pList;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
if( sqliteExprResolveIds(pParse,pTabList,pEList,pList->a[i].pExpr) ){
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if 0 /* NOT USED */
|
|
/*
|
|
** Compare a token against a string. Return TRUE if they match.
|
|
*/
|
|
static int sqliteTokenCmp(Token *pToken, const char *zStr){
|
|
int n = strlen(zStr);
|
|
if( n!=pToken->n ) return 0;
|
|
return sqliteStrNICmp(pToken->z, zStr, n)==0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Convert a function name into its integer identifier. Return the
|
|
** identifier. Return FN_Unknown if the function name is unknown.
|
|
*/
|
|
int sqliteFuncId(Token *pToken){
|
|
static const struct {
|
|
char *zName;
|
|
int len;
|
|
int id;
|
|
} aFunc[] = {
|
|
{ "count", 5, FN_Count },
|
|
{ "min", 3, FN_Min },
|
|
{ "max", 3, FN_Max },
|
|
{ "sum", 3, FN_Sum },
|
|
{ "avg", 3, FN_Avg },
|
|
{ "length", 6, FN_Length },
|
|
{ "substr", 6, FN_Substr },
|
|
{ "abs", 3, FN_Abs },
|
|
{ "round", 5, FN_Round },
|
|
};
|
|
int i;
|
|
for(i=0; i<ArraySize(aFunc); i++){
|
|
if( aFunc[i].len==pToken->n
|
|
&& sqliteStrNICmp(pToken->z, aFunc[i].zName, aFunc[i].len)==0 ){
|
|
return aFunc[i].id;
|
|
}
|
|
}
|
|
return FN_Unknown;
|
|
}
|
|
|
|
/*
|
|
** Error check the functions in an expression. Make sure all
|
|
** function names are recognized and all functions have the correct
|
|
** number of arguments. Leave an error message in pParse->zErrMsg
|
|
** if anything is amiss. Return the number of errors.
|
|
**
|
|
** if pIsAgg is not null and this expression is an aggregate function
|
|
** (like count(*) or max(value)) then write a 1 into *pIsAgg.
|
|
*/
|
|
int sqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){
|
|
int nErr = 0;
|
|
if( pExpr==0 ) return 0;
|
|
switch( pExpr->op ){
|
|
case TK_FUNCTION: {
|
|
int id = sqliteFuncId(&pExpr->token);
|
|
int n = pExpr->pList ? pExpr->pList->nExpr : 0;
|
|
int no_such_func = 0;
|
|
int too_many_args = 0;
|
|
int too_few_args = 0;
|
|
int wrong_num_args = 0;
|
|
int is_agg = 0;
|
|
int i;
|
|
pExpr->iColumn = id;
|
|
switch( id ){
|
|
case FN_Unknown: {
|
|
UserFunc *pUser = sqliteFindUserFunction(pParse->db,
|
|
pExpr->token.z, pExpr->token.n, n, 0);
|
|
if( pUser==0 ){
|
|
pUser = sqliteFindUserFunction(pParse->db,
|
|
pExpr->token.z, pExpr->token.n, -1, 0);
|
|
if( pUser==0 ){
|
|
no_such_func = 1;
|
|
}else{
|
|
wrong_num_args = 1;
|
|
}
|
|
}else{
|
|
is_agg = pUser->xFunc==0;
|
|
}
|
|
break;
|
|
}
|
|
case FN_Count: {
|
|
too_many_args = n>1;
|
|
is_agg = 1;
|
|
break;
|
|
}
|
|
case FN_Max:
|
|
case FN_Min: {
|
|
too_few_args = n<1;
|
|
is_agg = n==1;
|
|
break;
|
|
}
|
|
case FN_Avg:
|
|
case FN_Sum: {
|
|
too_many_args = n>1;
|
|
too_few_args = n<1;
|
|
is_agg = 1;
|
|
break;
|
|
}
|
|
case FN_Abs:
|
|
case FN_Length: {
|
|
too_few_args = n<1;
|
|
too_many_args = n>1;
|
|
break;
|
|
}
|
|
case FN_Round: {
|
|
too_few_args = n<1;
|
|
too_many_args = n>2;
|
|
break;
|
|
}
|
|
case FN_Substr: {
|
|
too_few_args = n<3;
|
|
too_many_args = n>3;
|
|
break;
|
|
}
|
|
default: break;
|
|
}
|
|
if( is_agg && !allowAgg ){
|
|
sqliteSetNString(&pParse->zErrMsg, "misuse of aggregate function ", -1,
|
|
pExpr->token.z, pExpr->token.n, "()", 2, 0);
|
|
pParse->nErr++;
|
|
nErr++;
|
|
is_agg = 0;
|
|
}else if( no_such_func ){
|
|
sqliteSetNString(&pParse->zErrMsg, "no such function: ", -1,
|
|
pExpr->token.z, pExpr->token.n, 0);
|
|
pParse->nErr++;
|
|
nErr++;
|
|
}else if( too_many_args ){
|
|
sqliteSetNString(&pParse->zErrMsg, "too many arguments to function ",-1,
|
|
pExpr->token.z, pExpr->token.n, "()", 2, 0);
|
|
pParse->nErr++;
|
|
nErr++;
|
|
}else if( too_few_args ){
|
|
sqliteSetNString(&pParse->zErrMsg, "too few arguments to function ",-1,
|
|
pExpr->token.z, pExpr->token.n, "()", 2, 0);
|
|
pParse->nErr++;
|
|
nErr++;
|
|
}else if( wrong_num_args ){
|
|
sqliteSetNString(&pParse->zErrMsg,
|
|
"wrong number of arguments to function ",-1,
|
|
pExpr->token.z, pExpr->token.n, "()", 2, 0);
|
|
pParse->nErr++;
|
|
nErr++;
|
|
}
|
|
if( is_agg ) pExpr->op = TK_AGG_FUNCTION;
|
|
if( is_agg && pIsAgg ) *pIsAgg = 1;
|
|
for(i=0; nErr==0 && i<n; i++){
|
|
nErr = sqliteExprCheck(pParse, pExpr->pList->a[i].pExpr,
|
|
allowAgg && !is_agg, pIsAgg);
|
|
}
|
|
}
|
|
default: {
|
|
if( pExpr->pLeft ){
|
|
nErr = sqliteExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
|
|
}
|
|
if( nErr==0 && pExpr->pRight ){
|
|
nErr = sqliteExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);
|
|
}
|
|
if( nErr==0 && pExpr->pList ){
|
|
int n = pExpr->pList->nExpr;
|
|
int i;
|
|
for(i=0; nErr==0 && i<n; i++){
|
|
Expr *pE2 = pExpr->pList->a[i].pExpr;
|
|
nErr = sqliteExprCheck(pParse, pE2, allowAgg, pIsAgg);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return nErr;
|
|
}
|
|
|
|
/*
|
|
** Generate code into the current Vdbe to evaluate the given
|
|
** expression and leave the result on the top of stack.
|
|
*/
|
|
void sqliteExprCode(Parse *pParse, Expr *pExpr){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int op;
|
|
if( v==0 || pExpr==0 ) return;
|
|
switch( pExpr->op ){
|
|
case TK_PLUS: op = OP_Add; break;
|
|
case TK_MINUS: op = OP_Subtract; break;
|
|
case TK_STAR: op = OP_Multiply; break;
|
|
case TK_SLASH: op = OP_Divide; break;
|
|
case TK_AND: op = OP_And; break;
|
|
case TK_OR: op = OP_Or; break;
|
|
case TK_LT: op = OP_Lt; break;
|
|
case TK_LE: op = OP_Le; break;
|
|
case TK_GT: op = OP_Gt; break;
|
|
case TK_GE: op = OP_Ge; break;
|
|
case TK_NE: op = OP_Ne; break;
|
|
case TK_EQ: op = OP_Eq; break;
|
|
case TK_LIKE: op = OP_Like; break;
|
|
case TK_GLOB: op = OP_Glob; break;
|
|
case TK_ISNULL: op = OP_IsNull; break;
|
|
case TK_NOTNULL: op = OP_NotNull; break;
|
|
case TK_NOT: op = OP_Not; break;
|
|
case TK_UMINUS: op = OP_Negative; break;
|
|
case TK_BITAND: op = OP_BitAnd; break;
|
|
case TK_BITOR: op = OP_BitOr; break;
|
|
case TK_BITNOT: op = OP_BitNot; break;
|
|
case TK_LSHIFT: op = OP_ShiftLeft; break;
|
|
case TK_RSHIFT: op = OP_ShiftRight; break;
|
|
case TK_REM: op = OP_Remainder; break;
|
|
default: break;
|
|
}
|
|
switch( pExpr->op ){
|
|
case TK_COLUMN: {
|
|
if( pParse->useAgg ){
|
|
sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
|
|
}else if( pExpr->iColumn>=0 ){
|
|
sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0);
|
|
}
|
|
break;
|
|
}
|
|
case TK_FLOAT:
|
|
case TK_INTEGER: {
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
assert( pExpr->token.z );
|
|
sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n);
|
|
break;
|
|
}
|
|
case TK_STRING: {
|
|
int addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
assert( pExpr->token.z );
|
|
sqliteVdbeChangeP3(v, addr, pExpr->token.z, pExpr->token.n);
|
|
sqliteVdbeDequoteP3(v, addr);
|
|
break;
|
|
}
|
|
case TK_NULL: {
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
break;
|
|
}
|
|
case TK_AND:
|
|
case TK_OR:
|
|
case TK_PLUS:
|
|
case TK_STAR:
|
|
case TK_MINUS:
|
|
case TK_REM:
|
|
case TK_BITAND:
|
|
case TK_BITOR:
|
|
case TK_SLASH: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteVdbeAddOp(v, op, 0, 0);
|
|
break;
|
|
}
|
|
case TK_LSHIFT:
|
|
case TK_RSHIFT: {
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, op, 0, 0);
|
|
break;
|
|
}
|
|
case TK_CONCAT: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteVdbeAddOp(v, OP_Concat, 2, 0);
|
|
break;
|
|
}
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ:
|
|
case TK_LIKE:
|
|
case TK_GLOB: {
|
|
int dest;
|
|
sqliteVdbeAddOp(v, OP_Integer, 1, 0);
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
dest = sqliteVdbeCurrentAddr(v) + 2;
|
|
sqliteVdbeAddOp(v, op, 0, dest);
|
|
sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
|
|
break;
|
|
}
|
|
case TK_UMINUS: {
|
|
assert( pExpr->pLeft );
|
|
if( pExpr->pLeft->op==TK_FLOAT || pExpr->pLeft->op==TK_INTEGER ){
|
|
Token *p = &pExpr->pLeft->token;
|
|
char *z = sqliteMalloc( p->n + 2 );
|
|
sprintf(z, "-%.*s", p->n, p->z);
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
sqliteVdbeChangeP3(v, -1, z, p->n+1);
|
|
sqliteFree(z);
|
|
break;
|
|
}
|
|
/* Fall through into TK_NOT */
|
|
}
|
|
case TK_BITNOT:
|
|
case TK_NOT: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, op, 0, 0);
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
int dest;
|
|
sqliteVdbeAddOp(v, OP_Integer, 1, 0);
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
dest = sqliteVdbeCurrentAddr(v) + 2;
|
|
sqliteVdbeAddOp(v, op, 0, dest);
|
|
sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
|
|
break;
|
|
}
|
|
case TK_AGG_FUNCTION: {
|
|
sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
|
|
if( pExpr->iColumn==FN_Avg ){
|
|
assert( pParse->iAggCount>=0 && pParse->iAggCount<pParse->nAgg );
|
|
sqliteVdbeAddOp(v, OP_AggGet, 0, pParse->iAggCount);
|
|
sqliteVdbeAddOp(v, OP_Divide, 0, 0);
|
|
}
|
|
break;
|
|
}
|
|
case TK_FUNCTION: {
|
|
int id = pExpr->iColumn;
|
|
int op;
|
|
int i;
|
|
ExprList *pList = pExpr->pList;
|
|
switch( id ){
|
|
case FN_Min:
|
|
case FN_Max: {
|
|
op = id==FN_Min ? OP_Min : OP_Max;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
sqliteExprCode(pParse, pList->a[i].pExpr);
|
|
if( i>0 ){
|
|
sqliteVdbeAddOp(v, op, 0, 0);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case FN_Abs: {
|
|
sqliteExprCode(pParse, pList->a[0].pExpr);
|
|
sqliteVdbeAddOp(v, OP_AbsValue, 0, 0);
|
|
break;
|
|
}
|
|
case FN_Round: {
|
|
if( pList->nExpr==2 ){
|
|
sqliteExprCode(pParse, pList->a[1].pExpr);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
|
}
|
|
sqliteExprCode(pParse, pList->a[0].pExpr);
|
|
sqliteVdbeAddOp(v, OP_Precision, 0, 0);
|
|
break;
|
|
}
|
|
case FN_Length: {
|
|
sqliteExprCode(pParse, pList->a[0].pExpr);
|
|
sqliteVdbeAddOp(v, OP_Strlen, 0, 0);
|
|
break;
|
|
}
|
|
case FN_Substr: {
|
|
for(i=0; i<pList->nExpr; i++){
|
|
sqliteExprCode(pParse, pList->a[i].pExpr);
|
|
}
|
|
sqliteVdbeAddOp(v, OP_Substr, 0, 0);
|
|
break;
|
|
}
|
|
case FN_Unknown: {
|
|
UserFunc *pUser;
|
|
pUser = sqliteFindUserFunction(pParse->db,
|
|
pExpr->token.z, pExpr->token.n, pList->nExpr, 0);
|
|
assert( pUser!=0 );
|
|
for(i=0; i<pList->nExpr; i++){
|
|
sqliteExprCode(pParse, pList->a[i].pExpr);
|
|
}
|
|
sqliteVdbeAddOp(v, OP_UserFunc, pList->nExpr, 0);
|
|
sqliteVdbeChangeP3(v, -1, (char*)pUser->xFunc, P3_POINTER);
|
|
break;
|
|
}
|
|
default: {
|
|
/* Can't happen! */
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case TK_SELECT: {
|
|
sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
|
|
break;
|
|
}
|
|
case TK_IN: {
|
|
int addr;
|
|
sqliteVdbeAddOp(v, OP_Integer, 1, 0);
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
addr = sqliteVdbeCurrentAddr(v);
|
|
if( pExpr->pSelect ){
|
|
sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+2);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+2);
|
|
}
|
|
sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
|
|
break;
|
|
}
|
|
case TK_BETWEEN: {
|
|
int lbl = sqliteVdbeMakeLabel(v);
|
|
sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
|
sqliteExprIfFalse(pParse, pExpr, lbl);
|
|
sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
|
|
sqliteVdbeResolveLabel(v, lbl);
|
|
break;
|
|
}
|
|
case TK_AS: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Generate code for a boolean expression such that a jump is made
|
|
** to the label "dest" if the expression is true but execution
|
|
** continues straight thru if the expression is false.
|
|
*/
|
|
void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int op = 0;
|
|
if( v==0 || pExpr==0 ) return;
|
|
switch( pExpr->op ){
|
|
case TK_LT: op = OP_Lt; break;
|
|
case TK_LE: op = OP_Le; break;
|
|
case TK_GT: op = OP_Gt; break;
|
|
case TK_GE: op = OP_Ge; break;
|
|
case TK_NE: op = OP_Ne; break;
|
|
case TK_EQ: op = OP_Eq; break;
|
|
case TK_LIKE: op = OP_Like; break;
|
|
case TK_GLOB: op = OP_Glob; break;
|
|
case TK_ISNULL: op = OP_IsNull; break;
|
|
case TK_NOTNULL: op = OP_NotNull; break;
|
|
default: break;
|
|
}
|
|
switch( pExpr->op ){
|
|
case TK_AND: {
|
|
int d2 = sqliteVdbeMakeLabel(v);
|
|
sqliteExprIfFalse(pParse, pExpr->pLeft, d2);
|
|
sqliteExprIfTrue(pParse, pExpr->pRight, dest);
|
|
sqliteVdbeResolveLabel(v, d2);
|
|
break;
|
|
}
|
|
case TK_OR: {
|
|
sqliteExprIfTrue(pParse, pExpr->pLeft, dest);
|
|
sqliteExprIfTrue(pParse, pExpr->pRight, dest);
|
|
break;
|
|
}
|
|
case TK_NOT: {
|
|
sqliteExprIfFalse(pParse, pExpr->pLeft, dest);
|
|
break;
|
|
}
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ:
|
|
case TK_LIKE:
|
|
case TK_GLOB: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteVdbeAddOp(v, op, 0, dest);
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, op, 0, dest);
|
|
break;
|
|
}
|
|
case TK_IN: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
if( pExpr->pSelect ){
|
|
sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest);
|
|
}
|
|
break;
|
|
}
|
|
case TK_BETWEEN: {
|
|
int lbl = sqliteVdbeMakeLabel(v);
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
|
|
sqliteVdbeAddOp(v, OP_Lt, 0, lbl);
|
|
sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
|
|
sqliteVdbeAddOp(v, OP_Le, 0, dest);
|
|
sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
|
sqliteVdbeResolveLabel(v, lbl);
|
|
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
break;
|
|
}
|
|
default: {
|
|
sqliteExprCode(pParse, pExpr);
|
|
sqliteVdbeAddOp(v, OP_If, 0, dest);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code for a boolean expression such that a jump is made
|
|
** to the label "dest" if the expression is false but execution
|
|
** continues straight thru if the expression is true.
|
|
*/
|
|
void sqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int op = 0;
|
|
if( v==0 || pExpr==0 ) return;
|
|
switch( pExpr->op ){
|
|
case TK_LT: op = OP_Ge; break;
|
|
case TK_LE: op = OP_Gt; break;
|
|
case TK_GT: op = OP_Le; break;
|
|
case TK_GE: op = OP_Lt; break;
|
|
case TK_NE: op = OP_Eq; break;
|
|
case TK_EQ: op = OP_Ne; break;
|
|
case TK_LIKE: op = OP_Like; break;
|
|
case TK_GLOB: op = OP_Glob; break;
|
|
case TK_ISNULL: op = OP_NotNull; break;
|
|
case TK_NOTNULL: op = OP_IsNull; break;
|
|
default: break;
|
|
}
|
|
switch( pExpr->op ){
|
|
case TK_AND: {
|
|
sqliteExprIfFalse(pParse, pExpr->pLeft, dest);
|
|
sqliteExprIfFalse(pParse, pExpr->pRight, dest);
|
|
break;
|
|
}
|
|
case TK_OR: {
|
|
int d2 = sqliteVdbeMakeLabel(v);
|
|
sqliteExprIfTrue(pParse, pExpr->pLeft, d2);
|
|
sqliteExprIfFalse(pParse, pExpr->pRight, dest);
|
|
sqliteVdbeResolveLabel(v, d2);
|
|
break;
|
|
}
|
|
case TK_NOT: {
|
|
sqliteExprIfTrue(pParse, pExpr->pLeft, dest);
|
|
break;
|
|
}
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteVdbeAddOp(v, op, 0, dest);
|
|
break;
|
|
}
|
|
case TK_LIKE:
|
|
case TK_GLOB: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteVdbeAddOp(v, op, 1, dest);
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, op, 0, dest);
|
|
break;
|
|
}
|
|
case TK_IN: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
if( pExpr->pSelect ){
|
|
sqliteVdbeAddOp(v, OP_NotFound, pExpr->iTable, dest);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_SetNotFound, pExpr->iTable, dest);
|
|
}
|
|
break;
|
|
}
|
|
case TK_BETWEEN: {
|
|
int addr;
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
|
|
addr = sqliteVdbeCurrentAddr(v);
|
|
sqliteVdbeAddOp(v, OP_Ge, 0, addr+3);
|
|
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, dest);
|
|
sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
|
|
sqliteVdbeAddOp(v, OP_Gt, 0, dest);
|
|
break;
|
|
}
|
|
default: {
|
|
sqliteExprCode(pParse, pExpr);
|
|
sqliteVdbeAddOp(v, OP_Not, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_If, 0, dest);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Do a deep comparison of two expression trees. Return TRUE (non-zero)
|
|
** if they are identical and return FALSE if they differ in any way.
|
|
*/
|
|
int sqliteExprCompare(Expr *pA, Expr *pB){
|
|
int i;
|
|
if( pA==0 ){
|
|
return pB==0;
|
|
}else if( pB==0 ){
|
|
return 0;
|
|
}
|
|
if( pA->op!=pB->op ) return 0;
|
|
if( !sqliteExprCompare(pA->pLeft, pB->pLeft) ) return 0;
|
|
if( !sqliteExprCompare(pA->pRight, pB->pRight) ) return 0;
|
|
if( pA->pList ){
|
|
if( pB->pList==0 ) return 0;
|
|
if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
|
|
for(i=0; i<pA->pList->nExpr; i++){
|
|
if( !sqliteExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
|
|
return 0;
|
|
}
|
|
}
|
|
}else if( pB->pList ){
|
|
return 0;
|
|
}
|
|
if( pA->pSelect || pB->pSelect ) return 0;
|
|
if( pA->token.z ){
|
|
if( pB->token.z==0 ) return 0;
|
|
if( pB->token.n!=pA->token.n ) return 0;
|
|
if( sqliteStrNICmp(pA->token.z, pB->token.z, pA->token.n)!=0 ) return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Add a new element to the pParse->aAgg[] array and return its index.
|
|
*/
|
|
static int appendAggInfo(Parse *pParse){
|
|
if( (pParse->nAgg & 0x7)==0 ){
|
|
int amt = pParse->nAgg + 8;
|
|
AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0]));
|
|
if( aAgg==0 ){
|
|
return -1;
|
|
}
|
|
pParse->aAgg = aAgg;
|
|
}
|
|
memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0]));
|
|
return pParse->nAgg++;
|
|
}
|
|
|
|
/*
|
|
** Analyze the given expression looking for aggregate functions and
|
|
** for variables that need to be added to the pParse->aAgg[] array.
|
|
** Make additional entries to the pParse->aAgg[] array as necessary.
|
|
**
|
|
** This routine should only be called after the expression has been
|
|
** analyzed by sqliteExprResolveIds() and sqliteExprCheck().
|
|
**
|
|
** If errors are seen, leave an error message in zErrMsg and return
|
|
** the number of errors.
|
|
*/
|
|
int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
|
|
int i;
|
|
AggExpr *aAgg;
|
|
int nErr = 0;
|
|
|
|
if( pExpr==0 ) return 0;
|
|
switch( pExpr->op ){
|
|
case TK_COLUMN: {
|
|
aAgg = pParse->aAgg;
|
|
for(i=0; i<pParse->nAgg; i++){
|
|
if( aAgg[i].isAgg ) continue;
|
|
if( aAgg[i].pExpr->iTable==pExpr->iTable
|
|
&& aAgg[i].pExpr->iColumn==pExpr->iColumn ){
|
|
break;
|
|
}
|
|
}
|
|
if( i>=pParse->nAgg ){
|
|
i = appendAggInfo(pParse);
|
|
if( i<0 ) return 1;
|
|
pParse->aAgg[i].isAgg = 0;
|
|
pParse->aAgg[i].pExpr = pExpr;
|
|
}
|
|
pExpr->iAgg = i;
|
|
break;
|
|
}
|
|
case TK_AGG_FUNCTION: {
|
|
if( pExpr->iColumn==FN_Count || pExpr->iColumn==FN_Avg ){
|
|
if( pParse->iAggCount>=0 ){
|
|
i = pParse->iAggCount;
|
|
}else{
|
|
i = appendAggInfo(pParse);
|
|
if( i<0 ) return 1;
|
|
pParse->aAgg[i].isAgg = 1;
|
|
pParse->aAgg[i].pExpr = 0;
|
|
pParse->iAggCount = i;
|
|
}
|
|
if( pExpr->iColumn==FN_Count ){
|
|
pExpr->iAgg = i;
|
|
break;
|
|
}
|
|
}
|
|
aAgg = pParse->aAgg;
|
|
for(i=0; i<pParse->nAgg; i++){
|
|
if( !aAgg[i].isAgg ) continue;
|
|
if( sqliteExprCompare(aAgg[i].pExpr, pExpr) ){
|
|
break;
|
|
}
|
|
}
|
|
if( i>=pParse->nAgg ){
|
|
i = appendAggInfo(pParse);
|
|
if( i<0 ) return 1;
|
|
pParse->aAgg[i].isAgg = 1;
|
|
pParse->aAgg[i].pExpr = pExpr;
|
|
if( pExpr->iColumn==FN_Unknown ){
|
|
pParse->aAgg[i].pUser = sqliteFindUserFunction(pParse->db,
|
|
pExpr->token.z, pExpr->token.n, pExpr->pList->nExpr, 0);
|
|
}else{
|
|
pParse->aAgg[i].pUser = 0;
|
|
}
|
|
}
|
|
pExpr->iAgg = i;
|
|
break;
|
|
}
|
|
default: {
|
|
if( pExpr->pLeft ){
|
|
nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pLeft);
|
|
}
|
|
if( nErr==0 && pExpr->pRight ){
|
|
nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pRight);
|
|
}
|
|
if( nErr==0 && pExpr->pList ){
|
|
int n = pExpr->pList->nExpr;
|
|
int i;
|
|
for(i=0; nErr==0 && i<n; i++){
|
|
nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return nErr;
|
|
}
|
|
|
|
/*
|
|
** Locate a user function given a name and a number of arguments.
|
|
** Return a pointer to the UserFunc structure that defines that
|
|
** function, or return NULL if the function does not exist.
|
|
**
|
|
** If the createFlag argument is true, then a new (blank) UserFunc
|
|
** structure is created and liked into the "db" structure if a
|
|
** no matching function previously existed. When createFlag is true
|
|
** and the nArg parameter is -1, then only a function that accepts
|
|
** any number of arguments will be returned.
|
|
**
|
|
** If createFlag is false and nArg is -1, then the first valid
|
|
** function found is returned. A function is valid if either xFunc
|
|
** or xStep is non-zero.
|
|
*/
|
|
UserFunc *sqliteFindUserFunction(
|
|
sqlite *db, /* An open database */
|
|
const char *zName, /* Name of the function. Not null-terminated */
|
|
int nName, /* Number of characters in the name */
|
|
int nArg, /* Number of arguments. -1 means any number */
|
|
int createFlag /* Create new entry if true and does not otherwise exist */
|
|
){
|
|
UserFunc *pFirst, *p, *pMaybe;
|
|
pFirst = p = (UserFunc*)sqliteHashFind(&db->userFunc, zName, nName);
|
|
if( !createFlag && nArg<0 ){
|
|
while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; }
|
|
return p;
|
|
}
|
|
pMaybe = 0;
|
|
while( p && p->nArg!=nArg ){
|
|
if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p;
|
|
p = p->pNext;
|
|
}
|
|
if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){
|
|
return 0;
|
|
}
|
|
if( p==0 && pMaybe ){
|
|
assert( createFlag==0 );
|
|
return pMaybe;
|
|
}
|
|
if( p==0 && createFlag ){
|
|
p = sqliteMalloc( sizeof(*p) );
|
|
p->nArg = nArg;
|
|
p->pNext = pFirst;
|
|
sqliteHashInsert(&db->userFunc, zName, nName, (void*)p);
|
|
}
|
|
return p;
|
|
}
|