mirror of
				https://github.com/sqlite/sqlite.git
				synced 2025-10-30 07:05:46 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			5246 lines
		
	
	
		
			164 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5246 lines
		
	
	
		
			164 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2003 September 6
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code used for creating, destroying, and populating
 | |
| ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| #include "vdbeInt.h"
 | |
| 
 | |
| /* Forward references */
 | |
| static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
 | |
| static void vdbeFreeOpArray(sqlite3 *, Op *, int);
 | |
| 
 | |
| /*
 | |
| ** Create a new virtual database engine.
 | |
| */
 | |
| Vdbe *sqlite3VdbeCreate(Parse *pParse){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   Vdbe *p;
 | |
|   p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
 | |
|   if( p==0 ) return 0;
 | |
|   memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
 | |
|   p->db = db;
 | |
|   if( db->pVdbe ){
 | |
|     db->pVdbe->pPrev = p;
 | |
|   }
 | |
|   p->pNext = db->pVdbe;
 | |
|   p->pPrev = 0;
 | |
|   db->pVdbe = p;
 | |
|   p->iVdbeMagic = VDBE_MAGIC_INIT;
 | |
|   p->pParse = pParse;
 | |
|   pParse->pVdbe = p;
 | |
|   assert( pParse->aLabel==0 );
 | |
|   assert( pParse->nLabel==0 );
 | |
|   assert( p->nOpAlloc==0 );
 | |
|   assert( pParse->szOpAlloc==0 );
 | |
|   sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the Parse object that owns a Vdbe object.
 | |
| */
 | |
| Parse *sqlite3VdbeParser(Vdbe *p){
 | |
|   return p->pParse;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the error string stored in Vdbe.zErrMsg
 | |
| */
 | |
| void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
 | |
|   va_list ap;
 | |
|   sqlite3DbFree(p->db, p->zErrMsg);
 | |
|   va_start(ap, zFormat);
 | |
|   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
 | |
|   va_end(ap);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Remember the SQL string for a prepared statement.
 | |
| */
 | |
| void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
 | |
|   if( p==0 ) return;
 | |
|   p->prepFlags = prepFlags;
 | |
|   if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
 | |
|     p->expmask = 0;
 | |
|   }
 | |
|   assert( p->zSql==0 );
 | |
|   p->zSql = sqlite3DbStrNDup(p->db, z, n);
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_NORMALIZE
 | |
| /*
 | |
| ** Add a new element to the Vdbe->pDblStr list.
 | |
| */
 | |
| void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
 | |
|   if( p ){
 | |
|     int n = sqlite3Strlen30(z);
 | |
|     DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
 | |
|                             sizeof(*pStr)+n+1-sizeof(pStr->z));
 | |
|     if( pStr ){
 | |
|       pStr->pNextStr = p->pDblStr;
 | |
|       p->pDblStr = pStr;
 | |
|       memcpy(pStr->z, z, n+1);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_NORMALIZE
 | |
| /*
 | |
| ** zId of length nId is a double-quoted identifier.  Check to see if
 | |
| ** that identifier is really used as a string literal.
 | |
| */
 | |
| int sqlite3VdbeUsesDoubleQuotedString(
 | |
|   Vdbe *pVdbe,            /* The prepared statement */
 | |
|   const char *zId         /* The double-quoted identifier, already dequoted */
 | |
| ){
 | |
|   DblquoteStr *pStr;
 | |
|   assert( zId!=0 );
 | |
|   if( pVdbe->pDblStr==0 ) return 0;
 | |
|   for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
 | |
|     if( strcmp(zId, pStr->z)==0 ) return 1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Swap all content between two VDBE structures.
 | |
| */
 | |
| void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
 | |
|   Vdbe tmp, *pTmp;
 | |
|   char *zTmp;
 | |
|   assert( pA->db==pB->db );
 | |
|   tmp = *pA;
 | |
|   *pA = *pB;
 | |
|   *pB = tmp;
 | |
|   pTmp = pA->pNext;
 | |
|   pA->pNext = pB->pNext;
 | |
|   pB->pNext = pTmp;
 | |
|   pTmp = pA->pPrev;
 | |
|   pA->pPrev = pB->pPrev;
 | |
|   pB->pPrev = pTmp;
 | |
|   zTmp = pA->zSql;
 | |
|   pA->zSql = pB->zSql;
 | |
|   pB->zSql = zTmp;
 | |
| #ifdef SQLITE_ENABLE_NORMALIZE
 | |
|   zTmp = pA->zNormSql;
 | |
|   pA->zNormSql = pB->zNormSql;
 | |
|   pB->zNormSql = zTmp;
 | |
| #endif
 | |
|   pB->expmask = pA->expmask;
 | |
|   pB->prepFlags = pA->prepFlags;
 | |
|   memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
 | |
|   pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 
 | |
| ** than its current size. nOp is guaranteed to be less than or equal
 | |
| ** to 1024/sizeof(Op).
 | |
| **
 | |
| ** If an out-of-memory error occurs while resizing the array, return
 | |
| ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 
 | |
| ** unchanged (this is so that any opcodes already allocated can be 
 | |
| ** correctly deallocated along with the rest of the Vdbe).
 | |
| */
 | |
| static int growOpArray(Vdbe *v, int nOp){
 | |
|   VdbeOp *pNew;
 | |
|   Parse *p = v->pParse;
 | |
| 
 | |
|   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
 | |
|   ** more frequent reallocs and hence provide more opportunities for 
 | |
|   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
 | |
|   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
 | |
|   ** by the minimum* amount required until the size reaches 512.  Normal
 | |
|   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
 | |
|   ** size of the op array or add 1KB of space, whichever is smaller. */
 | |
| #ifdef SQLITE_TEST_REALLOC_STRESS
 | |
|   sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
 | |
|                         : (sqlite3_int64)v->nOpAlloc+nOp);
 | |
| #else
 | |
|   sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
 | |
|                         : (sqlite3_int64)(1024/sizeof(Op)));
 | |
|   UNUSED_PARAMETER(nOp);
 | |
| #endif
 | |
| 
 | |
|   /* Ensure that the size of a VDBE does not grow too large */
 | |
|   if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
 | |
|     sqlite3OomFault(p->db);
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| 
 | |
|   assert( nOp<=(1024/sizeof(Op)) );
 | |
|   assert( nNew>=(v->nOpAlloc+nOp) );
 | |
|   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
 | |
|   if( pNew ){
 | |
|     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
 | |
|     v->nOpAlloc = p->szOpAlloc/sizeof(Op);
 | |
|     v->aOp = pNew;
 | |
|   }
 | |
|   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /* This routine is just a convenient place to set a breakpoint that will
 | |
| ** fire after each opcode is inserted and displayed using
 | |
| ** "PRAGMA vdbe_addoptrace=on".  Parameters "pc" (program counter) and
 | |
| ** pOp are available to make the breakpoint conditional.
 | |
| **
 | |
| ** Other useful labels for breakpoints include:
 | |
| **   test_trace_breakpoint(pc,pOp)
 | |
| **   sqlite3CorruptError(lineno)
 | |
| **   sqlite3MisuseError(lineno)
 | |
| **   sqlite3CantopenError(lineno)
 | |
| */
 | |
| static void test_addop_breakpoint(int pc, Op *pOp){
 | |
|   static int n = 0;
 | |
|   n++;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Add a new instruction to the list of instructions current in the
 | |
| ** VDBE.  Return the address of the new instruction.
 | |
| **
 | |
| ** Parameters:
 | |
| **
 | |
| **    p               Pointer to the VDBE
 | |
| **
 | |
| **    op              The opcode for this instruction
 | |
| **
 | |
| **    p1, p2, p3      Operands
 | |
| **
 | |
| ** Use the sqlite3VdbeResolveLabel() function to fix an address and
 | |
| ** the sqlite3VdbeChangeP4() function to change the value of the P4
 | |
| ** operand.
 | |
| */
 | |
| static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
 | |
|   assert( p->nOpAlloc<=p->nOp );
 | |
|   if( growOpArray(p, 1) ) return 1;
 | |
|   assert( p->nOpAlloc>p->nOp );
 | |
|   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
 | |
| }
 | |
| int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
 | |
|   int i;
 | |
|   VdbeOp *pOp;
 | |
| 
 | |
|   i = p->nOp;
 | |
|   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
 | |
|   assert( op>=0 && op<0xff );
 | |
|   if( p->nOpAlloc<=i ){
 | |
|     return growOp3(p, op, p1, p2, p3);
 | |
|   }
 | |
|   p->nOp++;
 | |
|   pOp = &p->aOp[i];
 | |
|   pOp->opcode = (u8)op;
 | |
|   pOp->p5 = 0;
 | |
|   pOp->p1 = p1;
 | |
|   pOp->p2 = p2;
 | |
|   pOp->p3 = p3;
 | |
|   pOp->p4.p = 0;
 | |
|   pOp->p4type = P4_NOTUSED;
 | |
| #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
 | |
|   pOp->zComment = 0;
 | |
| #endif
 | |
| #ifdef SQLITE_DEBUG
 | |
|   if( p->db->flags & SQLITE_VdbeAddopTrace ){
 | |
|     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
 | |
|     test_addop_breakpoint(i, &p->aOp[i]);
 | |
|   }
 | |
| #endif
 | |
| #ifdef VDBE_PROFILE
 | |
|   pOp->cycles = 0;
 | |
|   pOp->cnt = 0;
 | |
| #endif
 | |
| #ifdef SQLITE_VDBE_COVERAGE
 | |
|   pOp->iSrcLine = 0;
 | |
| #endif
 | |
|   return i;
 | |
| }
 | |
| int sqlite3VdbeAddOp0(Vdbe *p, int op){
 | |
|   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
 | |
| }
 | |
| int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
 | |
|   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
 | |
| }
 | |
| int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
 | |
|   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
 | |
| }
 | |
| 
 | |
| /* Generate code for an unconditional jump to instruction iDest
 | |
| */
 | |
| int sqlite3VdbeGoto(Vdbe *p, int iDest){
 | |
|   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
 | |
| }
 | |
| 
 | |
| /* Generate code to cause the string zStr to be loaded into
 | |
| ** register iDest
 | |
| */
 | |
| int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
 | |
|   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that initializes multiple registers to string or integer
 | |
| ** constants.  The registers begin with iDest and increase consecutively.
 | |
| ** One register is initialized for each characgter in zTypes[].  For each
 | |
| ** "s" character in zTypes[], the register is a string if the argument is
 | |
| ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
 | |
| ** in zTypes[], the register is initialized to an integer.
 | |
| **
 | |
| ** If the input string does not end with "X" then an OP_ResultRow instruction
 | |
| ** is generated for the values inserted.
 | |
| */
 | |
| void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
 | |
|   va_list ap;
 | |
|   int i;
 | |
|   char c;
 | |
|   va_start(ap, zTypes);
 | |
|   for(i=0; (c = zTypes[i])!=0; i++){
 | |
|     if( c=='s' ){
 | |
|       const char *z = va_arg(ap, const char*);
 | |
|       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
 | |
|     }else if( c=='i' ){
 | |
|       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
 | |
|     }else{
 | |
|       goto skip_op_resultrow;
 | |
|     }
 | |
|   }
 | |
|   sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
 | |
| skip_op_resultrow:
 | |
|   va_end(ap);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add an opcode that includes the p4 value as a pointer.
 | |
| */
 | |
| int sqlite3VdbeAddOp4(
 | |
|   Vdbe *p,            /* Add the opcode to this VM */
 | |
|   int op,             /* The new opcode */
 | |
|   int p1,             /* The P1 operand */
 | |
|   int p2,             /* The P2 operand */
 | |
|   int p3,             /* The P3 operand */
 | |
|   const char *zP4,    /* The P4 operand */
 | |
|   int p4type          /* P4 operand type */
 | |
| ){
 | |
|   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
 | |
|   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
 | |
|   return addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add an OP_Function or OP_PureFunc opcode.
 | |
| **
 | |
| ** The eCallCtx argument is information (typically taken from Expr.op2)
 | |
| ** that describes the calling context of the function.  0 means a general
 | |
| ** function call.  NC_IsCheck means called by a check constraint,
 | |
| ** NC_IdxExpr means called as part of an index expression.  NC_PartIdx
 | |
| ** means in the WHERE clause of a partial index.  NC_GenCol means called
 | |
| ** while computing a generated column value.  0 is the usual case.
 | |
| */
 | |
| int sqlite3VdbeAddFunctionCall(
 | |
|   Parse *pParse,        /* Parsing context */
 | |
|   int p1,               /* Constant argument mask */
 | |
|   int p2,               /* First argument register */
 | |
|   int p3,               /* Register into which results are written */
 | |
|   int nArg,             /* Number of argument */
 | |
|   const FuncDef *pFunc, /* The function to be invoked */
 | |
|   int eCallCtx          /* Calling context */
 | |
| ){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int nByte;
 | |
|   int addr;
 | |
|   sqlite3_context *pCtx;
 | |
|   assert( v );
 | |
|   nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
 | |
|   pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
 | |
|   if( pCtx==0 ){
 | |
|     assert( pParse->db->mallocFailed );
 | |
|     freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
 | |
|     return 0;
 | |
|   }
 | |
|   pCtx->pOut = 0;
 | |
|   pCtx->pFunc = (FuncDef*)pFunc;
 | |
|   pCtx->pVdbe = 0;
 | |
|   pCtx->isError = 0;
 | |
|   pCtx->argc = nArg;
 | |
|   pCtx->iOp = sqlite3VdbeCurrentAddr(v);
 | |
|   addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
 | |
|                            p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
 | |
|   sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
 | |
|   return addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add an opcode that includes the p4 value with a P4_INT64 or
 | |
| ** P4_REAL type.
 | |
| */
 | |
| int sqlite3VdbeAddOp4Dup8(
 | |
|   Vdbe *p,            /* Add the opcode to this VM */
 | |
|   int op,             /* The new opcode */
 | |
|   int p1,             /* The P1 operand */
 | |
|   int p2,             /* The P2 operand */
 | |
|   int p3,             /* The P3 operand */
 | |
|   const u8 *zP4,      /* The P4 operand */
 | |
|   int p4type          /* P4 operand type */
 | |
| ){
 | |
|   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
 | |
|   if( p4copy ) memcpy(p4copy, zP4, 8);
 | |
|   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_EXPLAIN
 | |
| /*
 | |
| ** Return the address of the current EXPLAIN QUERY PLAN baseline.
 | |
| ** 0 means "none".
 | |
| */
 | |
| int sqlite3VdbeExplainParent(Parse *pParse){
 | |
|   VdbeOp *pOp;
 | |
|   if( pParse->addrExplain==0 ) return 0;
 | |
|   pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
 | |
|   return pOp->p2;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set a debugger breakpoint on the following routine in order to
 | |
| ** monitor the EXPLAIN QUERY PLAN code generation.
 | |
| */
 | |
| #if defined(SQLITE_DEBUG)
 | |
| void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
 | |
|   (void)z1;
 | |
|   (void)z2;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Add a new OP_Explain opcode.
 | |
| **
 | |
| ** If the bPush flag is true, then make this opcode the parent for
 | |
| ** subsequent Explains until sqlite3VdbeExplainPop() is called.
 | |
| */
 | |
| void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
 | |
| #ifndef SQLITE_DEBUG
 | |
|   /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
 | |
|   ** But omit them (for performance) during production builds */
 | |
|   if( pParse->explain==2 )
 | |
| #endif
 | |
|   {
 | |
|     char *zMsg;
 | |
|     Vdbe *v;
 | |
|     va_list ap;
 | |
|     int iThis;
 | |
|     va_start(ap, zFmt);
 | |
|     zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
 | |
|     va_end(ap);
 | |
|     v = pParse->pVdbe;
 | |
|     iThis = v->nOp;
 | |
|     sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
 | |
|                       zMsg, P4_DYNAMIC);
 | |
|     sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
 | |
|     if( bPush){
 | |
|       pParse->addrExplain = iThis;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Pop the EXPLAIN QUERY PLAN stack one level.
 | |
| */
 | |
| void sqlite3VdbeExplainPop(Parse *pParse){
 | |
|   sqlite3ExplainBreakpoint("POP", 0);
 | |
|   pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
 | |
| }
 | |
| #endif /* SQLITE_OMIT_EXPLAIN */
 | |
| 
 | |
| /*
 | |
| ** Add an OP_ParseSchema opcode.  This routine is broken out from
 | |
| ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
 | |
| ** as having been used.
 | |
| **
 | |
| ** The zWhere string must have been obtained from sqlite3_malloc().
 | |
| ** This routine will take ownership of the allocated memory.
 | |
| */
 | |
| void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
 | |
|   int j;
 | |
|   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
 | |
|   sqlite3VdbeChangeP5(p, p5);
 | |
|   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
 | |
|   sqlite3MayAbort(p->pParse);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add an opcode that includes the p4 value as an integer.
 | |
| */
 | |
| int sqlite3VdbeAddOp4Int(
 | |
|   Vdbe *p,            /* Add the opcode to this VM */
 | |
|   int op,             /* The new opcode */
 | |
|   int p1,             /* The P1 operand */
 | |
|   int p2,             /* The P2 operand */
 | |
|   int p3,             /* The P3 operand */
 | |
|   int p4              /* The P4 operand as an integer */
 | |
| ){
 | |
|   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
 | |
|   if( p->db->mallocFailed==0 ){
 | |
|     VdbeOp *pOp = &p->aOp[addr];
 | |
|     pOp->p4type = P4_INT32;
 | |
|     pOp->p4.i = p4;
 | |
|   }
 | |
|   return addr;
 | |
| }
 | |
| 
 | |
| /* Insert the end of a co-routine
 | |
| */
 | |
| void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
 | |
|   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
 | |
| 
 | |
|   /* Clear the temporary register cache, thereby ensuring that each
 | |
|   ** co-routine has its own independent set of registers, because co-routines
 | |
|   ** might expect their registers to be preserved across an OP_Yield, and
 | |
|   ** that could cause problems if two or more co-routines are using the same
 | |
|   ** temporary register.
 | |
|   */
 | |
|   v->pParse->nTempReg = 0;
 | |
|   v->pParse->nRangeReg = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new symbolic label for an instruction that has yet to be
 | |
| ** coded.  The symbolic label is really just a negative number.  The
 | |
| ** label can be used as the P2 value of an operation.  Later, when
 | |
| ** the label is resolved to a specific address, the VDBE will scan
 | |
| ** through its operation list and change all values of P2 which match
 | |
| ** the label into the resolved address.
 | |
| **
 | |
| ** The VDBE knows that a P2 value is a label because labels are
 | |
| ** always negative and P2 values are suppose to be non-negative.
 | |
| ** Hence, a negative P2 value is a label that has yet to be resolved.
 | |
| ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
 | |
| ** property.
 | |
| **
 | |
| ** Variable usage notes:
 | |
| **
 | |
| **     Parse.aLabel[x]     Stores the address that the x-th label resolves
 | |
| **                         into.  For testing (SQLITE_DEBUG), unresolved
 | |
| **                         labels stores -1, but that is not required.
 | |
| **     Parse.nLabelAlloc   Number of slots allocated to Parse.aLabel[]
 | |
| **     Parse.nLabel        The *negative* of the number of labels that have
 | |
| **                         been issued.  The negative is stored because
 | |
| **                         that gives a performance improvement over storing
 | |
| **                         the equivalent positive value.
 | |
| */
 | |
| int sqlite3VdbeMakeLabel(Parse *pParse){
 | |
|   return --pParse->nLabel;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Resolve label "x" to be the address of the next instruction to
 | |
| ** be inserted.  The parameter "x" must have been obtained from
 | |
| ** a prior call to sqlite3VdbeMakeLabel().
 | |
| */
 | |
| static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
 | |
|   int nNewSize = 10 - p->nLabel;
 | |
|   p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
 | |
|                      nNewSize*sizeof(p->aLabel[0]));
 | |
|   if( p->aLabel==0 ){
 | |
|     p->nLabelAlloc = 0;
 | |
|   }else{
 | |
| #ifdef SQLITE_DEBUG
 | |
|     int i;
 | |
|     for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
 | |
| #endif
 | |
|     p->nLabelAlloc = nNewSize;
 | |
|     p->aLabel[j] = v->nOp;
 | |
|   }
 | |
| }
 | |
| void sqlite3VdbeResolveLabel(Vdbe *v, int x){
 | |
|   Parse *p = v->pParse;
 | |
|   int j = ADDR(x);
 | |
|   assert( v->iVdbeMagic==VDBE_MAGIC_INIT );
 | |
|   assert( j<-p->nLabel );
 | |
|   assert( j>=0 );
 | |
| #ifdef SQLITE_DEBUG
 | |
|   if( p->db->flags & SQLITE_VdbeAddopTrace ){
 | |
|     printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
 | |
|   }
 | |
| #endif
 | |
|   if( p->nLabelAlloc + p->nLabel < 0 ){
 | |
|     resizeResolveLabel(p,v,j);
 | |
|   }else{
 | |
|     assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
 | |
|     p->aLabel[j] = v->nOp;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Mark the VDBE as one that can only be run one time.
 | |
| */
 | |
| void sqlite3VdbeRunOnlyOnce(Vdbe *p){
 | |
|   p->runOnlyOnce = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Mark the VDBE as one that can only be run multiple times.
 | |
| */
 | |
| void sqlite3VdbeReusable(Vdbe *p){
 | |
|   p->runOnlyOnce = 0;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
 | |
| 
 | |
| /*
 | |
| ** The following type and function are used to iterate through all opcodes
 | |
| ** in a Vdbe main program and each of the sub-programs (triggers) it may 
 | |
| ** invoke directly or indirectly. It should be used as follows:
 | |
| **
 | |
| **   Op *pOp;
 | |
| **   VdbeOpIter sIter;
 | |
| **
 | |
| **   memset(&sIter, 0, sizeof(sIter));
 | |
| **   sIter.v = v;                            // v is of type Vdbe* 
 | |
| **   while( (pOp = opIterNext(&sIter)) ){
 | |
| **     // Do something with pOp
 | |
| **   }
 | |
| **   sqlite3DbFree(v->db, sIter.apSub);
 | |
| ** 
 | |
| */
 | |
| typedef struct VdbeOpIter VdbeOpIter;
 | |
| struct VdbeOpIter {
 | |
|   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
 | |
|   SubProgram **apSub;        /* Array of subprograms */
 | |
|   int nSub;                  /* Number of entries in apSub */
 | |
|   int iAddr;                 /* Address of next instruction to return */
 | |
|   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
 | |
| };
 | |
| static Op *opIterNext(VdbeOpIter *p){
 | |
|   Vdbe *v = p->v;
 | |
|   Op *pRet = 0;
 | |
|   Op *aOp;
 | |
|   int nOp;
 | |
| 
 | |
|   if( p->iSub<=p->nSub ){
 | |
| 
 | |
|     if( p->iSub==0 ){
 | |
|       aOp = v->aOp;
 | |
|       nOp = v->nOp;
 | |
|     }else{
 | |
|       aOp = p->apSub[p->iSub-1]->aOp;
 | |
|       nOp = p->apSub[p->iSub-1]->nOp;
 | |
|     }
 | |
|     assert( p->iAddr<nOp );
 | |
| 
 | |
|     pRet = &aOp[p->iAddr];
 | |
|     p->iAddr++;
 | |
|     if( p->iAddr==nOp ){
 | |
|       p->iSub++;
 | |
|       p->iAddr = 0;
 | |
|     }
 | |
|   
 | |
|     if( pRet->p4type==P4_SUBPROGRAM ){
 | |
|       int nByte = (p->nSub+1)*sizeof(SubProgram*);
 | |
|       int j;
 | |
|       for(j=0; j<p->nSub; j++){
 | |
|         if( p->apSub[j]==pRet->p4.pProgram ) break;
 | |
|       }
 | |
|       if( j==p->nSub ){
 | |
|         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
 | |
|         if( !p->apSub ){
 | |
|           pRet = 0;
 | |
|         }else{
 | |
|           p->apSub[p->nSub++] = pRet->p4.pProgram;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return pRet;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Check if the program stored in the VM associated with pParse may
 | |
| ** throw an ABORT exception (causing the statement, but not entire transaction
 | |
| ** to be rolled back). This condition is true if the main program or any
 | |
| ** sub-programs contains any of the following:
 | |
| **
 | |
| **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
 | |
| **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
 | |
| **   *  OP_Destroy
 | |
| **   *  OP_VUpdate
 | |
| **   *  OP_VCreate
 | |
| **   *  OP_VRename
 | |
| **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
 | |
| **   *  OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 
 | |
| **      (for CREATE TABLE AS SELECT ...)
 | |
| **
 | |
| ** Then check that the value of Parse.mayAbort is true if an
 | |
| ** ABORT may be thrown, or false otherwise. Return true if it does
 | |
| ** match, or false otherwise. This function is intended to be used as
 | |
| ** part of an assert statement in the compiler. Similar to:
 | |
| **
 | |
| **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
 | |
| */
 | |
| int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
 | |
|   int hasAbort = 0;
 | |
|   int hasFkCounter = 0;
 | |
|   int hasCreateTable = 0;
 | |
|   int hasCreateIndex = 0;
 | |
|   int hasInitCoroutine = 0;
 | |
|   Op *pOp;
 | |
|   VdbeOpIter sIter;
 | |
|   memset(&sIter, 0, sizeof(sIter));
 | |
|   sIter.v = v;
 | |
| 
 | |
|   while( (pOp = opIterNext(&sIter))!=0 ){
 | |
|     int opcode = pOp->opcode;
 | |
|     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 
 | |
|      || opcode==OP_VDestroy
 | |
|      || opcode==OP_VCreate
 | |
|      || opcode==OP_ParseSchema
 | |
|      || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 
 | |
|       && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
 | |
|     ){
 | |
|       hasAbort = 1;
 | |
|       break;
 | |
|     }
 | |
|     if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
 | |
|     if( mayAbort ){
 | |
|       /* hasCreateIndex may also be set for some DELETE statements that use
 | |
|       ** OP_Clear. So this routine may end up returning true in the case 
 | |
|       ** where a "DELETE FROM tbl" has a statement-journal but does not
 | |
|       ** require one. This is not so bad - it is an inefficiency, not a bug. */
 | |
|       if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
 | |
|       if( opcode==OP_Clear ) hasCreateIndex = 1;
 | |
|     }
 | |
|     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
 | |
| #ifndef SQLITE_OMIT_FOREIGN_KEY
 | |
|     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
 | |
|       hasFkCounter = 1;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   sqlite3DbFree(v->db, sIter.apSub);
 | |
| 
 | |
|   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
 | |
|   ** If malloc failed, then the while() loop above may not have iterated
 | |
|   ** through all opcodes and hasAbort may be set incorrectly. Return
 | |
|   ** true for this case to prevent the assert() in the callers frame
 | |
|   ** from failing.  */
 | |
|   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
 | |
|         || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
 | |
|   );
 | |
| }
 | |
| #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** Increment the nWrite counter in the VDBE if the cursor is not an
 | |
| ** ephemeral cursor, or if the cursor argument is NULL.
 | |
| */
 | |
| void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
 | |
|   if( pC==0
 | |
|    || (pC->eCurType!=CURTYPE_SORTER
 | |
|        && pC->eCurType!=CURTYPE_PSEUDO
 | |
|        && !pC->isEphemeral)
 | |
|   ){
 | |
|     p->nWrite++;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** Assert if an Abort at this point in time might result in a corrupt
 | |
| ** database.
 | |
| */
 | |
| void sqlite3VdbeAssertAbortable(Vdbe *p){
 | |
|   assert( p->nWrite==0 || p->usesStmtJournal );
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This routine is called after all opcodes have been inserted.  It loops
 | |
| ** through all the opcodes and fixes up some details.
 | |
| **
 | |
| ** (1) For each jump instruction with a negative P2 value (a label)
 | |
| **     resolve the P2 value to an actual address.
 | |
| **
 | |
| ** (2) Compute the maximum number of arguments used by any SQL function
 | |
| **     and store that value in *pMaxFuncArgs.
 | |
| **
 | |
| ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
 | |
| **     indicate what the prepared statement actually does.
 | |
| **
 | |
| ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
 | |
| **
 | |
| ** (5) Reclaim the memory allocated for storing labels.
 | |
| **
 | |
| ** This routine will only function correctly if the mkopcodeh.tcl generator
 | |
| ** script numbers the opcodes correctly.  Changes to this routine must be
 | |
| ** coordinated with changes to mkopcodeh.tcl.
 | |
| */
 | |
| static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
 | |
|   int nMaxArgs = *pMaxFuncArgs;
 | |
|   Op *pOp;
 | |
|   Parse *pParse = p->pParse;
 | |
|   int *aLabel = pParse->aLabel;
 | |
|   p->readOnly = 1;
 | |
|   p->bIsReader = 0;
 | |
|   pOp = &p->aOp[p->nOp-1];
 | |
|   while(1){
 | |
| 
 | |
|     /* Only JUMP opcodes and the short list of special opcodes in the switch
 | |
|     ** below need to be considered.  The mkopcodeh.tcl generator script groups
 | |
|     ** all these opcodes together near the front of the opcode list.  Skip
 | |
|     ** any opcode that does not need processing by virtual of the fact that
 | |
|     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
 | |
|     */
 | |
|     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
 | |
|       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
 | |
|       ** cases from this switch! */
 | |
|       switch( pOp->opcode ){
 | |
|         case OP_Transaction: {
 | |
|           if( pOp->p2!=0 ) p->readOnly = 0;
 | |
|           /* no break */ deliberate_fall_through
 | |
|         }
 | |
|         case OP_AutoCommit:
 | |
|         case OP_Savepoint: {
 | |
|           p->bIsReader = 1;
 | |
|           break;
 | |
|         }
 | |
| #ifndef SQLITE_OMIT_WAL
 | |
|         case OP_Checkpoint:
 | |
| #endif
 | |
|         case OP_Vacuum:
 | |
|         case OP_JournalMode: {
 | |
|           p->readOnly = 0;
 | |
|           p->bIsReader = 1;
 | |
|           break;
 | |
|         }
 | |
|         case OP_Next:
 | |
|         case OP_SorterNext: {
 | |
|           pOp->p4.xAdvance = sqlite3BtreeNext;
 | |
|           pOp->p4type = P4_ADVANCE;
 | |
|           /* The code generator never codes any of these opcodes as a jump
 | |
|           ** to a label.  They are always coded as a jump backwards to a 
 | |
|           ** known address */
 | |
|           assert( pOp->p2>=0 );
 | |
|           break;
 | |
|         }
 | |
|         case OP_Prev: {
 | |
|           pOp->p4.xAdvance = sqlite3BtreePrevious;
 | |
|           pOp->p4type = P4_ADVANCE;
 | |
|           /* The code generator never codes any of these opcodes as a jump
 | |
|           ** to a label.  They are always coded as a jump backwards to a 
 | |
|           ** known address */
 | |
|           assert( pOp->p2>=0 );
 | |
|           break;
 | |
|         }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|         case OP_VUpdate: {
 | |
|           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
 | |
|           break;
 | |
|         }
 | |
|         case OP_VFilter: {
 | |
|           int n;
 | |
|           assert( (pOp - p->aOp) >= 3 );
 | |
|           assert( pOp[-1].opcode==OP_Integer );
 | |
|           n = pOp[-1].p1;
 | |
|           if( n>nMaxArgs ) nMaxArgs = n;
 | |
|           /* Fall through into the default case */
 | |
|           /* no break */ deliberate_fall_through
 | |
|         }
 | |
| #endif
 | |
|         default: {
 | |
|           if( pOp->p2<0 ){
 | |
|             /* The mkopcodeh.tcl script has so arranged things that the only
 | |
|             ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
 | |
|             ** have non-negative values for P2. */
 | |
|             assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
 | |
|             assert( ADDR(pOp->p2)<-pParse->nLabel );
 | |
|             pOp->p2 = aLabel[ADDR(pOp->p2)];
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       /* The mkopcodeh.tcl script has so arranged things that the only
 | |
|       ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
 | |
|       ** have non-negative values for P2. */
 | |
|       assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
 | |
|     }
 | |
|     if( pOp==p->aOp ) break;
 | |
|     pOp--;
 | |
|   }
 | |
|   sqlite3DbFree(p->db, pParse->aLabel);
 | |
|   pParse->aLabel = 0;
 | |
|   pParse->nLabel = 0;
 | |
|   *pMaxFuncArgs = nMaxArgs;
 | |
|   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the address of the next instruction to be inserted.
 | |
| */
 | |
| int sqlite3VdbeCurrentAddr(Vdbe *p){
 | |
|   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
 | |
|   return p->nOp;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Verify that at least N opcode slots are available in p without
 | |
| ** having to malloc for more space (except when compiled using
 | |
| ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
 | |
| ** to verify that certain calls to sqlite3VdbeAddOpList() can never
 | |
| ** fail due to a OOM fault and hence that the return value from
 | |
| ** sqlite3VdbeAddOpList() will always be non-NULL.
 | |
| */
 | |
| #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
 | |
| void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
 | |
|   assert( p->nOp + N <= p->nOpAlloc );
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Verify that the VM passed as the only argument does not contain
 | |
| ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
 | |
| ** by code in pragma.c to ensure that the implementation of certain
 | |
| ** pragmas comports with the flags specified in the mkpragmatab.tcl
 | |
| ** script.
 | |
| */
 | |
| #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
 | |
| void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
 | |
|   int i;
 | |
|   for(i=0; i<p->nOp; i++){
 | |
|     assert( p->aOp[i].opcode!=OP_ResultRow );
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Generate code (a single OP_Abortable opcode) that will
 | |
| ** verify that the VDBE program can safely call Abort in the current
 | |
| ** context.
 | |
| */
 | |
| #if defined(SQLITE_DEBUG)
 | |
| void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
 | |
|   if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This function returns a pointer to the array of opcodes associated with
 | |
| ** the Vdbe passed as the first argument. It is the callers responsibility
 | |
| ** to arrange for the returned array to be eventually freed using the 
 | |
| ** vdbeFreeOpArray() function.
 | |
| **
 | |
| ** Before returning, *pnOp is set to the number of entries in the returned
 | |
| ** array. Also, *pnMaxArg is set to the larger of its current value and 
 | |
| ** the number of entries in the Vdbe.apArg[] array required to execute the 
 | |
| ** returned program.
 | |
| */
 | |
| VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
 | |
|   VdbeOp *aOp = p->aOp;
 | |
|   assert( aOp && !p->db->mallocFailed );
 | |
| 
 | |
|   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
 | |
|   assert( DbMaskAllZero(p->btreeMask) );
 | |
| 
 | |
|   resolveP2Values(p, pnMaxArg);
 | |
|   *pnOp = p->nOp;
 | |
|   p->aOp = 0;
 | |
|   return aOp;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a whole list of operations to the operation stack.  Return a
 | |
| ** pointer to the first operation inserted.
 | |
| **
 | |
| ** Non-zero P2 arguments to jump instructions are automatically adjusted
 | |
| ** so that the jump target is relative to the first operation inserted.
 | |
| */
 | |
| VdbeOp *sqlite3VdbeAddOpList(
 | |
|   Vdbe *p,                     /* Add opcodes to the prepared statement */
 | |
|   int nOp,                     /* Number of opcodes to add */
 | |
|   VdbeOpList const *aOp,       /* The opcodes to be added */
 | |
|   int iLineno                  /* Source-file line number of first opcode */
 | |
| ){
 | |
|   int i;
 | |
|   VdbeOp *pOut, *pFirst;
 | |
|   assert( nOp>0 );
 | |
|   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
 | |
|   if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
 | |
|     return 0;
 | |
|   }
 | |
|   pFirst = pOut = &p->aOp[p->nOp];
 | |
|   for(i=0; i<nOp; i++, aOp++, pOut++){
 | |
|     pOut->opcode = aOp->opcode;
 | |
|     pOut->p1 = aOp->p1;
 | |
|     pOut->p2 = aOp->p2;
 | |
|     assert( aOp->p2>=0 );
 | |
|     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
 | |
|       pOut->p2 += p->nOp;
 | |
|     }
 | |
|     pOut->p3 = aOp->p3;
 | |
|     pOut->p4type = P4_NOTUSED;
 | |
|     pOut->p4.p = 0;
 | |
|     pOut->p5 = 0;
 | |
| #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
 | |
|     pOut->zComment = 0;
 | |
| #endif
 | |
| #ifdef SQLITE_VDBE_COVERAGE
 | |
|     pOut->iSrcLine = iLineno+i;
 | |
| #else
 | |
|     (void)iLineno;
 | |
| #endif
 | |
| #ifdef SQLITE_DEBUG
 | |
|     if( p->db->flags & SQLITE_VdbeAddopTrace ){
 | |
|       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   p->nOp += nOp;
 | |
|   return pFirst;
 | |
| }
 | |
| 
 | |
| #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
 | |
| /*
 | |
| ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
 | |
| */
 | |
| void sqlite3VdbeScanStatus(
 | |
|   Vdbe *p,                        /* VM to add scanstatus() to */
 | |
|   int addrExplain,                /* Address of OP_Explain (or 0) */
 | |
|   int addrLoop,                   /* Address of loop counter */ 
 | |
|   int addrVisit,                  /* Address of rows visited counter */
 | |
|   LogEst nEst,                    /* Estimated number of output rows */
 | |
|   const char *zName               /* Name of table or index being scanned */
 | |
| ){
 | |
|   sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
 | |
|   ScanStatus *aNew;
 | |
|   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
 | |
|   if( aNew ){
 | |
|     ScanStatus *pNew = &aNew[p->nScan++];
 | |
|     pNew->addrExplain = addrExplain;
 | |
|     pNew->addrLoop = addrLoop;
 | |
|     pNew->addrVisit = addrVisit;
 | |
|     pNew->nEst = nEst;
 | |
|     pNew->zName = sqlite3DbStrDup(p->db, zName);
 | |
|     p->aScan = aNew;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Change the value of the opcode, or P1, P2, P3, or P5 operands
 | |
| ** for a specific instruction.
 | |
| */
 | |
| void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
 | |
|   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
 | |
| }
 | |
| void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
 | |
|   sqlite3VdbeGetOp(p,addr)->p1 = val;
 | |
| }
 | |
| void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
 | |
|   sqlite3VdbeGetOp(p,addr)->p2 = val;
 | |
| }
 | |
| void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
 | |
|   sqlite3VdbeGetOp(p,addr)->p3 = val;
 | |
| }
 | |
| void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
 | |
|   assert( p->nOp>0 || p->db->mallocFailed );
 | |
|   if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the P2 operand of instruction addr so that it points to
 | |
| ** the address of the next instruction to be coded.
 | |
| */
 | |
| void sqlite3VdbeJumpHere(Vdbe *p, int addr){
 | |
|   sqlite3VdbeChangeP2(p, addr, p->nOp);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the P2 operand of the jump instruction at addr so that
 | |
| ** the jump lands on the next opcode.  Or if the jump instruction was
 | |
| ** the previous opcode (and is thus a no-op) then simply back up
 | |
| ** the next instruction counter by one slot so that the jump is
 | |
| ** overwritten by the next inserted opcode.
 | |
| **
 | |
| ** This routine is an optimization of sqlite3VdbeJumpHere() that
 | |
| ** strives to omit useless byte-code like this:
 | |
| **
 | |
| **        7   Once 0 8 0
 | |
| **        8   ...
 | |
| */
 | |
| void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
 | |
|   if( addr==p->nOp-1 ){
 | |
|     assert( p->aOp[addr].opcode==OP_Once
 | |
|          || p->aOp[addr].opcode==OP_If
 | |
|          || p->aOp[addr].opcode==OP_FkIfZero );
 | |
|     assert( p->aOp[addr].p4type==0 );
 | |
| #ifdef SQLITE_VDBE_COVERAGE
 | |
|     sqlite3VdbeGetOp(p,-1)->iSrcLine = 0;  /* Erase VdbeCoverage() macros */
 | |
| #endif
 | |
|     p->nOp--;
 | |
|   }else{
 | |
|     sqlite3VdbeChangeP2(p, addr, p->nOp);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** If the input FuncDef structure is ephemeral, then free it.  If
 | |
| ** the FuncDef is not ephermal, then do nothing.
 | |
| */
 | |
| static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
 | |
|   if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
 | |
|     sqlite3DbFreeNN(db, pDef);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete a P4 value if necessary.
 | |
| */
 | |
| static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
 | |
|   if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
 | |
|   sqlite3DbFreeNN(db, p);
 | |
| }
 | |
| static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
 | |
|   freeEphemeralFunction(db, p->pFunc);
 | |
|   sqlite3DbFreeNN(db, p);
 | |
| }
 | |
| static void freeP4(sqlite3 *db, int p4type, void *p4){
 | |
|   assert( db );
 | |
|   switch( p4type ){
 | |
|     case P4_FUNCCTX: {
 | |
|       freeP4FuncCtx(db, (sqlite3_context*)p4);
 | |
|       break;
 | |
|     }
 | |
|     case P4_REAL:
 | |
|     case P4_INT64:
 | |
|     case P4_DYNAMIC:
 | |
|     case P4_DYNBLOB:
 | |
|     case P4_INTARRAY: {
 | |
|       sqlite3DbFree(db, p4);
 | |
|       break;
 | |
|     }
 | |
|     case P4_KEYINFO: {
 | |
|       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
 | |
|       break;
 | |
|     }
 | |
| #ifdef SQLITE_ENABLE_CURSOR_HINTS
 | |
|     case P4_EXPR: {
 | |
|       sqlite3ExprDelete(db, (Expr*)p4);
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|     case P4_FUNCDEF: {
 | |
|       freeEphemeralFunction(db, (FuncDef*)p4);
 | |
|       break;
 | |
|     }
 | |
|     case P4_MEM: {
 | |
|       if( db->pnBytesFreed==0 ){
 | |
|         sqlite3ValueFree((sqlite3_value*)p4);
 | |
|       }else{
 | |
|         freeP4Mem(db, (Mem*)p4);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case P4_VTAB : {
 | |
|       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free the space allocated for aOp and any p4 values allocated for the
 | |
| ** opcodes contained within. If aOp is not NULL it is assumed to contain 
 | |
| ** nOp entries. 
 | |
| */
 | |
| static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
 | |
|   if( aOp ){
 | |
|     Op *pOp;
 | |
|     for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
 | |
|       if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
 | |
| #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
 | |
|       sqlite3DbFree(db, pOp->zComment);
 | |
| #endif     
 | |
|     }
 | |
|     sqlite3DbFreeNN(db, aOp);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Link the SubProgram object passed as the second argument into the linked
 | |
| ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
 | |
| ** objects when the VM is no longer required.
 | |
| */
 | |
| void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
 | |
|   p->pNext = pVdbe->pProgram;
 | |
|   pVdbe->pProgram = p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return true if the given Vdbe has any SubPrograms.
 | |
| */
 | |
| int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
 | |
|   return pVdbe->pProgram!=0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the opcode at addr into OP_Noop
 | |
| */
 | |
| int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
 | |
|   VdbeOp *pOp;
 | |
|   if( p->db->mallocFailed ) return 0;
 | |
|   assert( addr>=0 && addr<p->nOp );
 | |
|   pOp = &p->aOp[addr];
 | |
|   freeP4(p->db, pOp->p4type, pOp->p4.p);
 | |
|   pOp->p4type = P4_NOTUSED;
 | |
|   pOp->p4.z = 0;
 | |
|   pOp->opcode = OP_Noop;
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If the last opcode is "op" and it is not a jump destination,
 | |
| ** then remove it.  Return true if and only if an opcode was removed.
 | |
| */
 | |
| int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
 | |
|   if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
 | |
|     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
 | |
|   }else{
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** Generate an OP_ReleaseReg opcode to indicate that a range of
 | |
| ** registers, except any identified by mask, are no longer in use.
 | |
| */
 | |
| void sqlite3VdbeReleaseRegisters(
 | |
|   Parse *pParse,       /* Parsing context */
 | |
|   int iFirst,          /* Index of first register to be released */
 | |
|   int N,               /* Number of registers to release */
 | |
|   u32 mask,            /* Mask of registers to NOT release */
 | |
|   int bUndefine        /* If true, mark registers as undefined */
 | |
| ){
 | |
|   if( N==0 ) return;
 | |
|   assert( pParse->pVdbe );
 | |
|   assert( iFirst>=1 );
 | |
|   assert( iFirst+N-1<=pParse->nMem );
 | |
|   if( N<=31 && mask!=0 ){
 | |
|     while( N>0 && (mask&1)!=0 ){
 | |
|       mask >>= 1;
 | |
|       iFirst++;
 | |
|       N--;
 | |
|     }
 | |
|     while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
 | |
|       mask &= ~MASKBIT32(N-1);
 | |
|       N--;
 | |
|     }
 | |
|   }
 | |
|   if( N>0 ){
 | |
|     sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
 | |
|     if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
 | |
|   }
 | |
| }
 | |
| #endif /* SQLITE_DEBUG */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Change the value of the P4 operand for a specific instruction.
 | |
| ** This routine is useful when a large program is loaded from a
 | |
| ** static array using sqlite3VdbeAddOpList but we want to make a
 | |
| ** few minor changes to the program.
 | |
| **
 | |
| ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
 | |
| ** the string is made into memory obtained from sqlite3_malloc().
 | |
| ** A value of n==0 means copy bytes of zP4 up to and including the
 | |
| ** first null byte.  If n>0 then copy n+1 bytes of zP4.
 | |
| ** 
 | |
| ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
 | |
| ** to a string or structure that is guaranteed to exist for the lifetime of
 | |
| ** the Vdbe. In these cases we can just copy the pointer.
 | |
| **
 | |
| ** If addr<0 then change P4 on the most recently inserted instruction.
 | |
| */
 | |
| static void SQLITE_NOINLINE vdbeChangeP4Full(
 | |
|   Vdbe *p,
 | |
|   Op *pOp,
 | |
|   const char *zP4,
 | |
|   int n
 | |
| ){
 | |
|   if( pOp->p4type ){
 | |
|     freeP4(p->db, pOp->p4type, pOp->p4.p);
 | |
|     pOp->p4type = 0;
 | |
|     pOp->p4.p = 0;
 | |
|   }
 | |
|   if( n<0 ){
 | |
|     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
 | |
|   }else{
 | |
|     if( n==0 ) n = sqlite3Strlen30(zP4);
 | |
|     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
 | |
|     pOp->p4type = P4_DYNAMIC;
 | |
|   }
 | |
| }
 | |
| void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
 | |
|   Op *pOp;
 | |
|   sqlite3 *db;
 | |
|   assert( p!=0 );
 | |
|   db = p->db;
 | |
|   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
 | |
|   assert( p->aOp!=0 || db->mallocFailed );
 | |
|   if( db->mallocFailed ){
 | |
|     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
 | |
|     return;
 | |
|   }
 | |
|   assert( p->nOp>0 );
 | |
|   assert( addr<p->nOp );
 | |
|   if( addr<0 ){
 | |
|     addr = p->nOp - 1;
 | |
|   }
 | |
|   pOp = &p->aOp[addr];
 | |
|   if( n>=0 || pOp->p4type ){
 | |
|     vdbeChangeP4Full(p, pOp, zP4, n);
 | |
|     return;
 | |
|   }
 | |
|   if( n==P4_INT32 ){
 | |
|     /* Note: this cast is safe, because the origin data point was an int
 | |
|     ** that was cast to a (const char *). */
 | |
|     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
 | |
|     pOp->p4type = P4_INT32;
 | |
|   }else if( zP4!=0 ){
 | |
|     assert( n<0 );
 | |
|     pOp->p4.p = (void*)zP4;
 | |
|     pOp->p4type = (signed char)n;
 | |
|     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the P4 operand of the most recently coded instruction 
 | |
| ** to the value defined by the arguments.  This is a high-speed
 | |
| ** version of sqlite3VdbeChangeP4().
 | |
| **
 | |
| ** The P4 operand must not have been previously defined.  And the new
 | |
| ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of
 | |
| ** those cases.
 | |
| */
 | |
| void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
 | |
|   VdbeOp *pOp;
 | |
|   assert( n!=P4_INT32 && n!=P4_VTAB );
 | |
|   assert( n<=0 );
 | |
|   if( p->db->mallocFailed ){
 | |
|     freeP4(p->db, n, pP4);
 | |
|   }else{
 | |
|     assert( pP4!=0 );
 | |
|     assert( p->nOp>0 );
 | |
|     pOp = &p->aOp[p->nOp-1];
 | |
|     assert( pOp->p4type==P4_NOTUSED );
 | |
|     pOp->p4type = n;
 | |
|     pOp->p4.p = pP4;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the P4 on the most recently added opcode to the KeyInfo for the
 | |
| ** index given.
 | |
| */
 | |
| void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   KeyInfo *pKeyInfo;
 | |
|   assert( v!=0 );
 | |
|   assert( pIdx!=0 );
 | |
|   pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
 | |
|   if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
 | |
| /*
 | |
| ** Change the comment on the most recently coded instruction.  Or
 | |
| ** insert a No-op and add the comment to that new instruction.  This
 | |
| ** makes the code easier to read during debugging.  None of this happens
 | |
| ** in a production build.
 | |
| */
 | |
| static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
 | |
|   assert( p->nOp>0 || p->aOp==0 );
 | |
|   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed
 | |
|           || p->pParse->nErr>0 );
 | |
|   if( p->nOp ){
 | |
|     assert( p->aOp );
 | |
|     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
 | |
|     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
 | |
|   }
 | |
| }
 | |
| void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
 | |
|   va_list ap;
 | |
|   if( p ){
 | |
|     va_start(ap, zFormat);
 | |
|     vdbeVComment(p, zFormat, ap);
 | |
|     va_end(ap);
 | |
|   }
 | |
| }
 | |
| void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
 | |
|   va_list ap;
 | |
|   if( p ){
 | |
|     sqlite3VdbeAddOp0(p, OP_Noop);
 | |
|     va_start(ap, zFormat);
 | |
|     vdbeVComment(p, zFormat, ap);
 | |
|     va_end(ap);
 | |
|   }
 | |
| }
 | |
| #endif  /* NDEBUG */
 | |
| 
 | |
| #ifdef SQLITE_VDBE_COVERAGE
 | |
| /*
 | |
| ** Set the value if the iSrcLine field for the previously coded instruction.
 | |
| */
 | |
| void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
 | |
|   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
 | |
| }
 | |
| #endif /* SQLITE_VDBE_COVERAGE */
 | |
| 
 | |
| /*
 | |
| ** Return the opcode for a given address.  If the address is -1, then
 | |
| ** return the most recently inserted opcode.
 | |
| **
 | |
| ** If a memory allocation error has occurred prior to the calling of this
 | |
| ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
 | |
| ** is readable but not writable, though it is cast to a writable value.
 | |
| ** The return of a dummy opcode allows the call to continue functioning
 | |
| ** after an OOM fault without having to check to see if the return from 
 | |
| ** this routine is a valid pointer.  But because the dummy.opcode is 0,
 | |
| ** dummy will never be written to.  This is verified by code inspection and
 | |
| ** by running with Valgrind.
 | |
| */
 | |
| VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
 | |
|   /* C89 specifies that the constant "dummy" will be initialized to all
 | |
|   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
 | |
|   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
 | |
|   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
 | |
|   if( addr<0 ){
 | |
|     addr = p->nOp - 1;
 | |
|   }
 | |
|   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
 | |
|   if( p->db->mallocFailed ){
 | |
|     return (VdbeOp*)&dummy;
 | |
|   }else{
 | |
|     return &p->aOp[addr];
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
 | |
| /*
 | |
| ** Return an integer value for one of the parameters to the opcode pOp
 | |
| ** determined by character c.
 | |
| */
 | |
| static int translateP(char c, const Op *pOp){
 | |
|   if( c=='1' ) return pOp->p1;
 | |
|   if( c=='2' ) return pOp->p2;
 | |
|   if( c=='3' ) return pOp->p3;
 | |
|   if( c=='4' ) return pOp->p4.i;
 | |
|   return pOp->p5;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute a string for the "comment" field of a VDBE opcode listing.
 | |
| **
 | |
| ** The Synopsis: field in comments in the vdbe.c source file gets converted
 | |
| ** to an extra string that is appended to the sqlite3OpcodeName().  In the
 | |
| ** absence of other comments, this synopsis becomes the comment on the opcode.
 | |
| ** Some translation occurs:
 | |
| **
 | |
| **       "PX"      ->  "r[X]"
 | |
| **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
 | |
| **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
 | |
| **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
 | |
| */
 | |
| char *sqlite3VdbeDisplayComment(
 | |
|   sqlite3 *db,       /* Optional - Oom error reporting only */
 | |
|   const Op *pOp,     /* The opcode to be commented */
 | |
|   const char *zP4    /* Previously obtained value for P4 */
 | |
| ){
 | |
|   const char *zOpName;
 | |
|   const char *zSynopsis;
 | |
|   int nOpName;
 | |
|   int ii;
 | |
|   char zAlt[50];
 | |
|   StrAccum x;
 | |
| 
 | |
|   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
 | |
|   zOpName = sqlite3OpcodeName(pOp->opcode);
 | |
|   nOpName = sqlite3Strlen30(zOpName);
 | |
|   if( zOpName[nOpName+1] ){
 | |
|     int seenCom = 0;
 | |
|     char c;
 | |
|     zSynopsis = zOpName += nOpName + 1;
 | |
|     if( strncmp(zSynopsis,"IF ",3)==0 ){
 | |
|       sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
 | |
|       zSynopsis = zAlt;
 | |
|     }
 | |
|     for(ii=0; (c = zSynopsis[ii])!=0; ii++){
 | |
|       if( c=='P' ){
 | |
|         c = zSynopsis[++ii];
 | |
|         if( c=='4' ){
 | |
|           sqlite3_str_appendall(&x, zP4);
 | |
|         }else if( c=='X' ){
 | |
|           sqlite3_str_appendall(&x, pOp->zComment);
 | |
|           seenCom = 1;
 | |
|         }else{
 | |
|           int v1 = translateP(c, pOp);
 | |
|           int v2;
 | |
|           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
 | |
|             ii += 3;
 | |
|             v2 = translateP(zSynopsis[ii], pOp);
 | |
|             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
 | |
|               ii += 2;
 | |
|               v2++;
 | |
|             }
 | |
|             if( v2<2 ){
 | |
|               sqlite3_str_appendf(&x, "%d", v1);
 | |
|             }else{
 | |
|               sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
 | |
|             }
 | |
|           }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
 | |
|             sqlite3_context *pCtx = pOp->p4.pCtx;
 | |
|             if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
 | |
|               sqlite3_str_appendf(&x, "%d", v1);
 | |
|             }else if( pCtx->argc>1 ){
 | |
|               sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
 | |
|             }else if( x.accError==0 ){
 | |
|               assert( x.nChar>2 );
 | |
|               x.nChar -= 2;
 | |
|               ii++;
 | |
|             }
 | |
|             ii += 3;
 | |
|           }else{
 | |
|             sqlite3_str_appendf(&x, "%d", v1);
 | |
|             if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
 | |
|               ii += 4;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }else{
 | |
|         sqlite3_str_appendchar(&x, 1, c);
 | |
|       }
 | |
|     }
 | |
|     if( !seenCom && pOp->zComment ){
 | |
|       sqlite3_str_appendf(&x, "; %s", pOp->zComment);
 | |
|     }
 | |
|   }else if( pOp->zComment ){
 | |
|     sqlite3_str_appendall(&x, pOp->zComment);
 | |
|   }
 | |
|   if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
 | |
|     sqlite3OomFault(db);
 | |
|   }
 | |
|   return sqlite3StrAccumFinish(&x);
 | |
| }
 | |
| #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
 | |
| 
 | |
| #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
 | |
| /*
 | |
| ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
 | |
| ** that can be displayed in the P4 column of EXPLAIN output.
 | |
| */
 | |
| static void displayP4Expr(StrAccum *p, Expr *pExpr){
 | |
|   const char *zOp = 0;
 | |
|   switch( pExpr->op ){
 | |
|     case TK_STRING:
 | |
|       sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
 | |
|       break;
 | |
|     case TK_INTEGER:
 | |
|       sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
 | |
|       break;
 | |
|     case TK_NULL:
 | |
|       sqlite3_str_appendf(p, "NULL");
 | |
|       break;
 | |
|     case TK_REGISTER: {
 | |
|       sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
 | |
|       break;
 | |
|     }
 | |
|     case TK_COLUMN: {
 | |
|       if( pExpr->iColumn<0 ){
 | |
|         sqlite3_str_appendf(p, "rowid");
 | |
|       }else{
 | |
|         sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_LT:      zOp = "LT";      break;
 | |
|     case TK_LE:      zOp = "LE";      break;
 | |
|     case TK_GT:      zOp = "GT";      break;
 | |
|     case TK_GE:      zOp = "GE";      break;
 | |
|     case TK_NE:      zOp = "NE";      break;
 | |
|     case TK_EQ:      zOp = "EQ";      break;
 | |
|     case TK_IS:      zOp = "IS";      break;
 | |
|     case TK_ISNOT:   zOp = "ISNOT";   break;
 | |
|     case TK_AND:     zOp = "AND";     break;
 | |
|     case TK_OR:      zOp = "OR";      break;
 | |
|     case TK_PLUS:    zOp = "ADD";     break;
 | |
|     case TK_STAR:    zOp = "MUL";     break;
 | |
|     case TK_MINUS:   zOp = "SUB";     break;
 | |
|     case TK_REM:     zOp = "REM";     break;
 | |
|     case TK_BITAND:  zOp = "BITAND";  break;
 | |
|     case TK_BITOR:   zOp = "BITOR";   break;
 | |
|     case TK_SLASH:   zOp = "DIV";     break;
 | |
|     case TK_LSHIFT:  zOp = "LSHIFT";  break;
 | |
|     case TK_RSHIFT:  zOp = "RSHIFT";  break;
 | |
|     case TK_CONCAT:  zOp = "CONCAT";  break;
 | |
|     case TK_UMINUS:  zOp = "MINUS";   break;
 | |
|     case TK_UPLUS:   zOp = "PLUS";    break;
 | |
|     case TK_BITNOT:  zOp = "BITNOT";  break;
 | |
|     case TK_NOT:     zOp = "NOT";     break;
 | |
|     case TK_ISNULL:  zOp = "ISNULL";  break;
 | |
|     case TK_NOTNULL: zOp = "NOTNULL"; break;
 | |
| 
 | |
|     default:
 | |
|       sqlite3_str_appendf(p, "%s", "expr");
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   if( zOp ){
 | |
|     sqlite3_str_appendf(p, "%s(", zOp);
 | |
|     displayP4Expr(p, pExpr->pLeft);
 | |
|     if( pExpr->pRight ){
 | |
|       sqlite3_str_append(p, ",", 1);
 | |
|       displayP4Expr(p, pExpr->pRight);
 | |
|     }
 | |
|     sqlite3_str_append(p, ")", 1);
 | |
|   }
 | |
| }
 | |
| #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
 | |
| 
 | |
| 
 | |
| #if VDBE_DISPLAY_P4
 | |
| /*
 | |
| ** Compute a string that describes the P4 parameter for an opcode.
 | |
| ** Use zTemp for any required temporary buffer space.
 | |
| */
 | |
| char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
 | |
|   char *zP4 = 0;
 | |
|   StrAccum x;
 | |
| 
 | |
|   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
 | |
|   switch( pOp->p4type ){
 | |
|     case P4_KEYINFO: {
 | |
|       int j;
 | |
|       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
 | |
|       assert( pKeyInfo->aSortFlags!=0 );
 | |
|       sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
 | |
|       for(j=0; j<pKeyInfo->nKeyField; j++){
 | |
|         CollSeq *pColl = pKeyInfo->aColl[j];
 | |
|         const char *zColl = pColl ? pColl->zName : "";
 | |
|         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
 | |
|         sqlite3_str_appendf(&x, ",%s%s%s", 
 | |
|                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", 
 | |
|                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", 
 | |
|                zColl);
 | |
|       }
 | |
|       sqlite3_str_append(&x, ")", 1);
 | |
|       break;
 | |
|     }
 | |
| #ifdef SQLITE_ENABLE_CURSOR_HINTS
 | |
|     case P4_EXPR: {
 | |
|       displayP4Expr(&x, pOp->p4.pExpr);
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|     case P4_COLLSEQ: {
 | |
|       static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
 | |
|       CollSeq *pColl = pOp->p4.pColl;
 | |
|       assert( pColl->enc<4 );
 | |
|       sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
 | |
|                           encnames[pColl->enc]);
 | |
|       break;
 | |
|     }
 | |
|     case P4_FUNCDEF: {
 | |
|       FuncDef *pDef = pOp->p4.pFunc;
 | |
|       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
 | |
|       break;
 | |
|     }
 | |
|     case P4_FUNCCTX: {
 | |
|       FuncDef *pDef = pOp->p4.pCtx->pFunc;
 | |
|       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
 | |
|       break;
 | |
|     }
 | |
|     case P4_INT64: {
 | |
|       sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
 | |
|       break;
 | |
|     }
 | |
|     case P4_INT32: {
 | |
|       sqlite3_str_appendf(&x, "%d", pOp->p4.i);
 | |
|       break;
 | |
|     }
 | |
|     case P4_REAL: {
 | |
|       sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
 | |
|       break;
 | |
|     }
 | |
|     case P4_MEM: {
 | |
|       Mem *pMem = pOp->p4.pMem;
 | |
|       if( pMem->flags & MEM_Str ){
 | |
|         zP4 = pMem->z;
 | |
|       }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
 | |
|         sqlite3_str_appendf(&x, "%lld", pMem->u.i);
 | |
|       }else if( pMem->flags & MEM_Real ){
 | |
|         sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
 | |
|       }else if( pMem->flags & MEM_Null ){
 | |
|         zP4 = "NULL";
 | |
|       }else{
 | |
|         assert( pMem->flags & MEM_Blob );
 | |
|         zP4 = "(blob)";
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     case P4_VTAB: {
 | |
|       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
 | |
|       sqlite3_str_appendf(&x, "vtab:%p", pVtab);
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|     case P4_INTARRAY: {
 | |
|       u32 i;
 | |
|       u32 *ai = pOp->p4.ai;
 | |
|       u32 n = ai[0];   /* The first element of an INTARRAY is always the
 | |
|                        ** count of the number of elements to follow */
 | |
|       for(i=1; i<=n; i++){
 | |
|         sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
 | |
|       }
 | |
|       sqlite3_str_append(&x, "]", 1);
 | |
|       break;
 | |
|     }
 | |
|     case P4_SUBPROGRAM: {
 | |
|       zP4 = "program";
 | |
|       break;
 | |
|     }
 | |
|     case P4_DYNBLOB:
 | |
|     case P4_ADVANCE: {
 | |
|       break;
 | |
|     }
 | |
|     case P4_TABLE: {
 | |
|       zP4 = pOp->p4.pTab->zName;
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       zP4 = pOp->p4.z;
 | |
|     }
 | |
|   }
 | |
|   if( zP4 ) sqlite3_str_appendall(&x, zP4);
 | |
|   if( (x.accError & SQLITE_NOMEM)!=0 ){
 | |
|     sqlite3OomFault(db);
 | |
|   }
 | |
|   return sqlite3StrAccumFinish(&x);
 | |
| }
 | |
| #endif /* VDBE_DISPLAY_P4 */
 | |
| 
 | |
| /*
 | |
| ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
 | |
| **
 | |
| ** The prepared statements need to know in advance the complete set of
 | |
| ** attached databases that will be use.  A mask of these databases
 | |
| ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
 | |
| ** p->btreeMask of databases that will require a lock.
 | |
| */
 | |
| void sqlite3VdbeUsesBtree(Vdbe *p, int i){
 | |
|   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
 | |
|   assert( i<(int)sizeof(p->btreeMask)*8 );
 | |
|   DbMaskSet(p->btreeMask, i);
 | |
|   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
 | |
|     DbMaskSet(p->lockMask, i);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_SHARED_CACHE)
 | |
| /*
 | |
| ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
 | |
| ** this routine obtains the mutex associated with each BtShared structure
 | |
| ** that may be accessed by the VM passed as an argument. In doing so it also
 | |
| ** sets the BtShared.db member of each of the BtShared structures, ensuring
 | |
| ** that the correct busy-handler callback is invoked if required.
 | |
| **
 | |
| ** If SQLite is not threadsafe but does support shared-cache mode, then
 | |
| ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
 | |
| ** of all of BtShared structures accessible via the database handle 
 | |
| ** associated with the VM.
 | |
| **
 | |
| ** If SQLite is not threadsafe and does not support shared-cache mode, this
 | |
| ** function is a no-op.
 | |
| **
 | |
| ** The p->btreeMask field is a bitmask of all btrees that the prepared 
 | |
| ** statement p will ever use.  Let N be the number of bits in p->btreeMask
 | |
| ** corresponding to btrees that use shared cache.  Then the runtime of
 | |
| ** this routine is N*N.  But as N is rarely more than 1, this should not
 | |
| ** be a problem.
 | |
| */
 | |
| void sqlite3VdbeEnter(Vdbe *p){
 | |
|   int i;
 | |
|   sqlite3 *db;
 | |
|   Db *aDb;
 | |
|   int nDb;
 | |
|   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
 | |
|   db = p->db;
 | |
|   aDb = db->aDb;
 | |
|   nDb = db->nDb;
 | |
|   for(i=0; i<nDb; i++){
 | |
|     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
 | |
|       sqlite3BtreeEnter(aDb[i].pBt);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
 | |
| /*
 | |
| ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
 | |
| */
 | |
| static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
 | |
|   int i;
 | |
|   sqlite3 *db;
 | |
|   Db *aDb;
 | |
|   int nDb;
 | |
|   db = p->db;
 | |
|   aDb = db->aDb;
 | |
|   nDb = db->nDb;
 | |
|   for(i=0; i<nDb; i++){
 | |
|     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
 | |
|       sqlite3BtreeLeave(aDb[i].pBt);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| void sqlite3VdbeLeave(Vdbe *p){
 | |
|   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
 | |
|   vdbeLeave(p);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
 | |
| /*
 | |
| ** Print a single opcode.  This routine is used for debugging only.
 | |
| */
 | |
| void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
 | |
|   char *zP4;
 | |
|   char *zCom;
 | |
|   sqlite3 dummyDb;
 | |
|   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
 | |
|   if( pOut==0 ) pOut = stdout;
 | |
|   sqlite3BeginBenignMalloc();
 | |
|   dummyDb.mallocFailed = 1;
 | |
|   zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
 | |
| #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
 | |
|   zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
 | |
| #else
 | |
|   zCom = 0;
 | |
| #endif
 | |
|   /* NB:  The sqlite3OpcodeName() function is implemented by code created
 | |
|   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
 | |
|   ** information from the vdbe.c source text */
 | |
|   fprintf(pOut, zFormat1, pc, 
 | |
|       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, 
 | |
|       zP4 ? zP4 : "", pOp->p5,
 | |
|       zCom ? zCom : ""
 | |
|   );
 | |
|   fflush(pOut);
 | |
|   sqlite3_free(zP4);
 | |
|   sqlite3_free(zCom);
 | |
|   sqlite3EndBenignMalloc();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Initialize an array of N Mem element.
 | |
| */
 | |
| static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
 | |
|   while( (N--)>0 ){
 | |
|     p->db = db;
 | |
|     p->flags = flags;
 | |
|     p->szMalloc = 0;
 | |
| #ifdef SQLITE_DEBUG
 | |
|     p->pScopyFrom = 0;
 | |
| #endif
 | |
|     p++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Release an array of N Mem elements
 | |
| */
 | |
| static void releaseMemArray(Mem *p, int N){
 | |
|   if( p && N ){
 | |
|     Mem *pEnd = &p[N];
 | |
|     sqlite3 *db = p->db;
 | |
|     if( db->pnBytesFreed ){
 | |
|       do{
 | |
|         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
 | |
|       }while( (++p)<pEnd );
 | |
|       return;
 | |
|     }
 | |
|     do{
 | |
|       assert( (&p[1])==pEnd || p[0].db==p[1].db );
 | |
|       assert( sqlite3VdbeCheckMemInvariants(p) );
 | |
| 
 | |
|       /* This block is really an inlined version of sqlite3VdbeMemRelease()
 | |
|       ** that takes advantage of the fact that the memory cell value is 
 | |
|       ** being set to NULL after releasing any dynamic resources.
 | |
|       **
 | |
|       ** The justification for duplicating code is that according to 
 | |
|       ** callgrind, this causes a certain test case to hit the CPU 4.7 
 | |
|       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 
 | |
|       ** sqlite3MemRelease() were called from here. With -O2, this jumps
 | |
|       ** to 6.6 percent. The test case is inserting 1000 rows into a table 
 | |
|       ** with no indexes using a single prepared INSERT statement, bind() 
 | |
|       ** and reset(). Inserts are grouped into a transaction.
 | |
|       */
 | |
|       testcase( p->flags & MEM_Agg );
 | |
|       testcase( p->flags & MEM_Dyn );
 | |
|       testcase( p->xDel==sqlite3VdbeFrameMemDel );
 | |
|       if( p->flags&(MEM_Agg|MEM_Dyn) ){
 | |
|         sqlite3VdbeMemRelease(p);
 | |
|       }else if( p->szMalloc ){
 | |
|         sqlite3DbFreeNN(db, p->zMalloc);
 | |
|         p->szMalloc = 0;
 | |
|       }
 | |
| 
 | |
|       p->flags = MEM_Undefined;
 | |
|     }while( (++p)<pEnd );
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** Verify that pFrame is a valid VdbeFrame pointer.  Return true if it is
 | |
| ** and false if something is wrong.
 | |
| **
 | |
| ** This routine is intended for use inside of assert() statements only.
 | |
| */
 | |
| int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
 | |
|   if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
 | |
|   return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This is a destructor on a Mem object (which is really an sqlite3_value)
 | |
| ** that deletes the Frame object that is attached to it as a blob.
 | |
| **
 | |
| ** This routine does not delete the Frame right away.  It merely adds the
 | |
| ** frame to a list of frames to be deleted when the Vdbe halts.
 | |
| */
 | |
| void sqlite3VdbeFrameMemDel(void *pArg){
 | |
|   VdbeFrame *pFrame = (VdbeFrame*)pArg;
 | |
|   assert( sqlite3VdbeFrameIsValid(pFrame) );
 | |
|   pFrame->pParent = pFrame->v->pDelFrame;
 | |
|   pFrame->v->pDelFrame = pFrame;
 | |
| }
 | |
| 
 | |
| #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
 | |
| /*
 | |
| ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
 | |
| ** QUERY PLAN output.
 | |
| **
 | |
| ** Return SQLITE_ROW on success.  Return SQLITE_DONE if there are no
 | |
| ** more opcodes to be displayed.
 | |
| */
 | |
| int sqlite3VdbeNextOpcode(
 | |
|   Vdbe *p,         /* The statement being explained */
 | |
|   Mem *pSub,       /* Storage for keeping track of subprogram nesting */
 | |
|   int eMode,       /* 0: normal.  1: EQP.  2:  TablesUsed */
 | |
|   int *piPc,       /* IN/OUT: Current rowid.  Overwritten with next rowid */
 | |
|   int *piAddr,     /* OUT: Write index into (*paOp)[] here */
 | |
|   Op **paOp        /* OUT: Write the opcode array here */
 | |
| ){
 | |
|   int nRow;                            /* Stop when row count reaches this */
 | |
|   int nSub = 0;                        /* Number of sub-vdbes seen so far */
 | |
|   SubProgram **apSub = 0;              /* Array of sub-vdbes */
 | |
|   int i;                               /* Next instruction address */
 | |
|   int rc = SQLITE_OK;                  /* Result code */
 | |
|   Op *aOp = 0;                         /* Opcode array */
 | |
|   int iPc;                             /* Rowid.  Copy of value in *piPc */
 | |
| 
 | |
|   /* When the number of output rows reaches nRow, that means the
 | |
|   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
 | |
|   ** nRow is the sum of the number of rows in the main program, plus
 | |
|   ** the sum of the number of rows in all trigger subprograms encountered
 | |
|   ** so far.  The nRow value will increase as new trigger subprograms are
 | |
|   ** encountered, but p->pc will eventually catch up to nRow.
 | |
|   */
 | |
|   nRow = p->nOp;
 | |
|   if( pSub!=0 ){
 | |
|     if( pSub->flags&MEM_Blob ){
 | |
|       /* pSub is initiallly NULL.  It is initialized to a BLOB by
 | |
|       ** the P4_SUBPROGRAM processing logic below */
 | |
|       nSub = pSub->n/sizeof(Vdbe*);
 | |
|       apSub = (SubProgram **)pSub->z;
 | |
|     }
 | |
|     for(i=0; i<nSub; i++){
 | |
|       nRow += apSub[i]->nOp;
 | |
|     }
 | |
|   }
 | |
|   iPc = *piPc;
 | |
|   while(1){  /* Loop exits via break */
 | |
|     i = iPc++;
 | |
|     if( i>=nRow ){
 | |
|       p->rc = SQLITE_OK;
 | |
|       rc = SQLITE_DONE;
 | |
|       break;
 | |
|     }
 | |
|     if( i<p->nOp ){
 | |
|       /* The rowid is small enough that we are still in the
 | |
|       ** main program. */
 | |
|       aOp = p->aOp;
 | |
|     }else{
 | |
|       /* We are currently listing subprograms.  Figure out which one and
 | |
|       ** pick up the appropriate opcode. */
 | |
|       int j;
 | |
|       i -= p->nOp;
 | |
|       assert( apSub!=0 );
 | |
|       assert( nSub>0 );
 | |
|       for(j=0; i>=apSub[j]->nOp; j++){
 | |
|         i -= apSub[j]->nOp;
 | |
|         assert( i<apSub[j]->nOp || j+1<nSub );
 | |
|       }
 | |
|       aOp = apSub[j]->aOp;
 | |
|     }
 | |
| 
 | |
|     /* When an OP_Program opcode is encounter (the only opcode that has
 | |
|     ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
 | |
|     ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
 | |
|     ** has not already been seen.
 | |
|     */
 | |
|     if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
 | |
|       int nByte = (nSub+1)*sizeof(SubProgram*);
 | |
|       int j;
 | |
|       for(j=0; j<nSub; j++){
 | |
|         if( apSub[j]==aOp[i].p4.pProgram ) break;
 | |
|       }
 | |
|       if( j==nSub ){
 | |
|         p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
 | |
|         if( p->rc!=SQLITE_OK ){
 | |
|           rc = SQLITE_ERROR;
 | |
|           break;
 | |
|         }
 | |
|         apSub = (SubProgram **)pSub->z;
 | |
|         apSub[nSub++] = aOp[i].p4.pProgram;
 | |
|         MemSetTypeFlag(pSub, MEM_Blob);
 | |
|         pSub->n = nSub*sizeof(SubProgram*);
 | |
|         nRow += aOp[i].p4.pProgram->nOp;
 | |
|       }
 | |
|     }
 | |
|     if( eMode==0 ) break;
 | |
| #ifdef SQLITE_ENABLE_BYTECODE_VTAB
 | |
|     if( eMode==2 ){
 | |
|       Op *pOp = aOp + i;
 | |
|       if( pOp->opcode==OP_OpenRead ) break;
 | |
|       if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
 | |
|       if( pOp->opcode==OP_ReopenIdx ) break;      
 | |
|     }else
 | |
| #endif
 | |
|     {
 | |
|       assert( eMode==1 );
 | |
|       if( aOp[i].opcode==OP_Explain ) break;
 | |
|       if( aOp[i].opcode==OP_Init && iPc>1 ) break;
 | |
|     }
 | |
|   }
 | |
|   *piPc = iPc;
 | |
|   *piAddr = i;
 | |
|   *paOp = aOp;
 | |
|   return rc;
 | |
| }
 | |
| #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
 | |
| ** allocated by the OP_Program opcode in sqlite3VdbeExec().
 | |
| */
 | |
| void sqlite3VdbeFrameDelete(VdbeFrame *p){
 | |
|   int i;
 | |
|   Mem *aMem = VdbeFrameMem(p);
 | |
|   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
 | |
|   assert( sqlite3VdbeFrameIsValid(p) );
 | |
|   for(i=0; i<p->nChildCsr; i++){
 | |
|     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
 | |
|   }
 | |
|   releaseMemArray(aMem, p->nChildMem);
 | |
|   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
 | |
|   sqlite3DbFree(p->v->db, p);
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_EXPLAIN
 | |
| /*
 | |
| ** Give a listing of the program in the virtual machine.
 | |
| **
 | |
| ** The interface is the same as sqlite3VdbeExec().  But instead of
 | |
| ** running the code, it invokes the callback once for each instruction.
 | |
| ** This feature is used to implement "EXPLAIN".
 | |
| **
 | |
| ** When p->explain==1, each instruction is listed.  When
 | |
| ** p->explain==2, only OP_Explain instructions are listed and these
 | |
| ** are shown in a different format.  p->explain==2 is used to implement
 | |
| ** EXPLAIN QUERY PLAN.
 | |
| ** 2018-04-24:  In p->explain==2 mode, the OP_Init opcodes of triggers
 | |
| ** are also shown, so that the boundaries between the main program and
 | |
| ** each trigger are clear.
 | |
| **
 | |
| ** When p->explain==1, first the main program is listed, then each of
 | |
| ** the trigger subprograms are listed one by one.
 | |
| */
 | |
| int sqlite3VdbeList(
 | |
|   Vdbe *p                   /* The VDBE */
 | |
| ){
 | |
|   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
 | |
|   sqlite3 *db = p->db;                 /* The database connection */
 | |
|   int i;                               /* Loop counter */
 | |
|   int rc = SQLITE_OK;                  /* Return code */
 | |
|   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
 | |
|   int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
 | |
|   Op *aOp;                             /* Array of opcodes */
 | |
|   Op *pOp;                             /* Current opcode */
 | |
| 
 | |
|   assert( p->explain );
 | |
|   assert( p->iVdbeMagic==VDBE_MAGIC_RUN );
 | |
|   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
 | |
| 
 | |
|   /* Even though this opcode does not use dynamic strings for
 | |
|   ** the result, result columns may become dynamic if the user calls
 | |
|   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
 | |
|   */
 | |
|   releaseMemArray(pMem, 8);
 | |
|   p->pResultSet = 0;
 | |
| 
 | |
|   if( p->rc==SQLITE_NOMEM ){
 | |
|     /* This happens if a malloc() inside a call to sqlite3_column_text() or
 | |
|     ** sqlite3_column_text16() failed.  */
 | |
|     sqlite3OomFault(db);
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   if( bListSubprogs ){
 | |
|     /* The first 8 memory cells are used for the result set.  So we will
 | |
|     ** commandeer the 9th cell to use as storage for an array of pointers
 | |
|     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
 | |
|     ** cells.  */
 | |
|     assert( p->nMem>9 );
 | |
|     pSub = &p->aMem[9];
 | |
|   }else{
 | |
|     pSub = 0;
 | |
|   }
 | |
| 
 | |
|   /* Figure out which opcode is next to display */
 | |
|   rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
 | |
| 
 | |
|   if( rc==SQLITE_OK ){
 | |
|     pOp = aOp + i;
 | |
|     if( AtomicLoad(&db->u1.isInterrupted) ){
 | |
|       p->rc = SQLITE_INTERRUPT;
 | |
|       rc = SQLITE_ERROR;
 | |
|       sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
 | |
|     }else{
 | |
|       char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
 | |
|       if( p->explain==2 ){
 | |
|         sqlite3VdbeMemSetInt64(pMem, pOp->p1);
 | |
|         sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
 | |
|         sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
 | |
|         sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);     
 | |
|         p->nResColumn = 4;
 | |
|       }else{
 | |
|         sqlite3VdbeMemSetInt64(pMem+0, i);
 | |
|         sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
 | |
|                              -1, SQLITE_UTF8, SQLITE_STATIC);
 | |
|         sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
 | |
|         sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
 | |
|         sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
 | |
|         /* pMem+5 for p4 is done last */
 | |
|         sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
 | |
| #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
 | |
|         {
 | |
|           char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
 | |
|           sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
 | |
|         }
 | |
| #else
 | |
|         sqlite3VdbeMemSetNull(pMem+7);
 | |
| #endif
 | |
|         sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
 | |
|         p->nResColumn = 8;
 | |
|       }
 | |
|       p->pResultSet = pMem;
 | |
|       if( db->mallocFailed ){
 | |
|         p->rc = SQLITE_NOMEM;
 | |
|         rc = SQLITE_ERROR;
 | |
|       }else{
 | |
|         p->rc = SQLITE_OK;
 | |
|         rc = SQLITE_ROW;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_EXPLAIN */
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** Print the SQL that was used to generate a VDBE program.
 | |
| */
 | |
| void sqlite3VdbePrintSql(Vdbe *p){
 | |
|   const char *z = 0;
 | |
|   if( p->zSql ){
 | |
|     z = p->zSql;
 | |
|   }else if( p->nOp>=1 ){
 | |
|     const VdbeOp *pOp = &p->aOp[0];
 | |
|     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
 | |
|       z = pOp->p4.z;
 | |
|       while( sqlite3Isspace(*z) ) z++;
 | |
|     }
 | |
|   }
 | |
|   if( z ) printf("SQL: [%s]\n", z);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
 | |
| /*
 | |
| ** Print an IOTRACE message showing SQL content.
 | |
| */
 | |
| void sqlite3VdbeIOTraceSql(Vdbe *p){
 | |
|   int nOp = p->nOp;
 | |
|   VdbeOp *pOp;
 | |
|   if( sqlite3IoTrace==0 ) return;
 | |
|   if( nOp<1 ) return;
 | |
|   pOp = &p->aOp[0];
 | |
|   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
 | |
|     int i, j;
 | |
|     char z[1000];
 | |
|     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
 | |
|     for(i=0; sqlite3Isspace(z[i]); i++){}
 | |
|     for(j=0; z[i]; i++){
 | |
|       if( sqlite3Isspace(z[i]) ){
 | |
|         if( z[i-1]!=' ' ){
 | |
|           z[j++] = ' ';
 | |
|         }
 | |
|       }else{
 | |
|         z[j++] = z[i];
 | |
|       }
 | |
|     }
 | |
|     z[j] = 0;
 | |
|     sqlite3IoTrace("SQL %s\n", z);
 | |
|   }
 | |
| }
 | |
| #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
 | |
| 
 | |
| /* An instance of this object describes bulk memory available for use
 | |
| ** by subcomponents of a prepared statement.  Space is allocated out
 | |
| ** of a ReusableSpace object by the allocSpace() routine below.
 | |
| */
 | |
| struct ReusableSpace {
 | |
|   u8 *pSpace;            /* Available memory */
 | |
|   sqlite3_int64 nFree;   /* Bytes of available memory */
 | |
|   sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
 | |
| };
 | |
| 
 | |
| /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
 | |
| ** from the ReusableSpace object.  Return a pointer to the allocated
 | |
| ** memory on success.  If insufficient memory is available in the
 | |
| ** ReusableSpace object, increase the ReusableSpace.nNeeded
 | |
| ** value by the amount needed and return NULL.
 | |
| **
 | |
| ** If pBuf is not initially NULL, that means that the memory has already
 | |
| ** been allocated by a prior call to this routine, so just return a copy
 | |
| ** of pBuf and leave ReusableSpace unchanged.
 | |
| **
 | |
| ** This allocator is employed to repurpose unused slots at the end of the
 | |
| ** opcode array of prepared state for other memory needs of the prepared
 | |
| ** statement.
 | |
| */
 | |
| static void *allocSpace(
 | |
|   struct ReusableSpace *p,  /* Bulk memory available for allocation */
 | |
|   void *pBuf,               /* Pointer to a prior allocation */
 | |
|   sqlite3_int64 nByte       /* Bytes of memory needed */
 | |
| ){
 | |
|   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
 | |
|   if( pBuf==0 ){
 | |
|     nByte = ROUND8(nByte);
 | |
|     if( nByte <= p->nFree ){
 | |
|       p->nFree -= nByte;
 | |
|       pBuf = &p->pSpace[p->nFree];
 | |
|     }else{
 | |
|       p->nNeeded += nByte;
 | |
|     }
 | |
|   }
 | |
|   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
 | |
|   return pBuf;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Rewind the VDBE back to the beginning in preparation for
 | |
| ** running it.
 | |
| */
 | |
| void sqlite3VdbeRewind(Vdbe *p){
 | |
| #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
 | |
|   int i;
 | |
| #endif
 | |
|   assert( p!=0 );
 | |
|   assert( p->iVdbeMagic==VDBE_MAGIC_INIT || p->iVdbeMagic==VDBE_MAGIC_RESET );
 | |
| 
 | |
|   /* There should be at least one opcode.
 | |
|   */
 | |
|   assert( p->nOp>0 );
 | |
| 
 | |
|   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
 | |
|   p->iVdbeMagic = VDBE_MAGIC_RUN;
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
|   for(i=0; i<p->nMem; i++){
 | |
|     assert( p->aMem[i].db==p->db );
 | |
|   }
 | |
| #endif
 | |
|   p->pc = -1;
 | |
|   p->rc = SQLITE_OK;
 | |
|   p->errorAction = OE_Abort;
 | |
|   p->nChange = 0;
 | |
|   p->cacheCtr = 1;
 | |
|   p->minWriteFileFormat = 255;
 | |
|   p->iStatement = 0;
 | |
|   p->nFkConstraint = 0;
 | |
| #ifdef VDBE_PROFILE
 | |
|   for(i=0; i<p->nOp; i++){
 | |
|     p->aOp[i].cnt = 0;
 | |
|     p->aOp[i].cycles = 0;
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Prepare a virtual machine for execution for the first time after
 | |
| ** creating the virtual machine.  This involves things such
 | |
| ** as allocating registers and initializing the program counter.
 | |
| ** After the VDBE has be prepped, it can be executed by one or more
 | |
| ** calls to sqlite3VdbeExec().  
 | |
| **
 | |
| ** This function may be called exactly once on each virtual machine.
 | |
| ** After this routine is called the VM has been "packaged" and is ready
 | |
| ** to run.  After this routine is called, further calls to 
 | |
| ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
 | |
| ** the Vdbe from the Parse object that helped generate it so that the
 | |
| ** the Vdbe becomes an independent entity and the Parse object can be
 | |
| ** destroyed.
 | |
| **
 | |
| ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
 | |
| ** to its initial state after it has been run.
 | |
| */
 | |
| void sqlite3VdbeMakeReady(
 | |
|   Vdbe *p,                       /* The VDBE */
 | |
|   Parse *pParse                  /* Parsing context */
 | |
| ){
 | |
|   sqlite3 *db;                   /* The database connection */
 | |
|   int nVar;                      /* Number of parameters */
 | |
|   int nMem;                      /* Number of VM memory registers */
 | |
|   int nCursor;                   /* Number of cursors required */
 | |
|   int nArg;                      /* Number of arguments in subprograms */
 | |
|   int n;                         /* Loop counter */
 | |
|   struct ReusableSpace x;        /* Reusable bulk memory */
 | |
| 
 | |
|   assert( p!=0 );
 | |
|   assert( p->nOp>0 );
 | |
|   assert( pParse!=0 );
 | |
|   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
 | |
|   assert( pParse==p->pParse );
 | |
|   p->pVList = pParse->pVList;
 | |
|   pParse->pVList =  0;
 | |
|   db = p->db;
 | |
|   assert( db->mallocFailed==0 );
 | |
|   nVar = pParse->nVar;
 | |
|   nMem = pParse->nMem;
 | |
|   nCursor = pParse->nTab;
 | |
|   nArg = pParse->nMaxArg;
 | |
|   
 | |
|   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
 | |
|   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
 | |
|   ** space at the end of aMem[] for cursors 1 and greater.
 | |
|   ** See also: allocateCursor().
 | |
|   */
 | |
|   nMem += nCursor;
 | |
|   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
 | |
| 
 | |
|   /* Figure out how much reusable memory is available at the end of the
 | |
|   ** opcode array.  This extra memory will be reallocated for other elements
 | |
|   ** of the prepared statement.
 | |
|   */
 | |
|   n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */
 | |
|   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
 | |
|   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
 | |
|   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
 | |
|   assert( x.nFree>=0 );
 | |
|   assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
 | |
| 
 | |
|   resolveP2Values(p, &nArg);
 | |
|   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
 | |
|   if( pParse->explain ){
 | |
|     static const char * const azColName[] = {
 | |
|        "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
 | |
|        "id", "parent", "notused", "detail"
 | |
|     };
 | |
|     int iFirst, mx, i;
 | |
|     if( nMem<10 ) nMem = 10;
 | |
|     p->explain = pParse->explain;
 | |
|     if( pParse->explain==2 ){
 | |
|       sqlite3VdbeSetNumCols(p, 4);
 | |
|       iFirst = 8;
 | |
|       mx = 12;
 | |
|     }else{
 | |
|       sqlite3VdbeSetNumCols(p, 8);
 | |
|       iFirst = 0;
 | |
|       mx = 8;
 | |
|     }
 | |
|     for(i=iFirst; i<mx; i++){
 | |
|       sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
 | |
|                             azColName[i], SQLITE_STATIC);
 | |
|     }
 | |
|   }
 | |
|   p->expired = 0;
 | |
| 
 | |
|   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
 | |
|   ** passes.  On the first pass, we try to reuse unused memory at the 
 | |
|   ** end of the opcode array.  If we are unable to satisfy all memory
 | |
|   ** requirements by reusing the opcode array tail, then the second
 | |
|   ** pass will fill in the remainder using a fresh memory allocation.  
 | |
|   **
 | |
|   ** This two-pass approach that reuses as much memory as possible from
 | |
|   ** the leftover memory at the end of the opcode array.  This can significantly
 | |
|   ** reduce the amount of memory held by a prepared statement.
 | |
|   */
 | |
|   x.nNeeded = 0;
 | |
|   p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
 | |
|   p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
 | |
|   p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
 | |
|   p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
 | |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
 | |
|   p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
 | |
| #endif
 | |
|   if( x.nNeeded ){
 | |
|     x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
 | |
|     x.nFree = x.nNeeded;
 | |
|     if( !db->mallocFailed ){
 | |
|       p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
 | |
|       p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
 | |
|       p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
 | |
|       p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
 | |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
 | |
|       p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
 | |
| #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( db->mallocFailed ){
 | |
|     p->nVar = 0;
 | |
|     p->nCursor = 0;
 | |
|     p->nMem = 0;
 | |
|   }else{
 | |
|     p->nCursor = nCursor;
 | |
|     p->nVar = (ynVar)nVar;
 | |
|     initMemArray(p->aVar, nVar, db, MEM_Null);
 | |
|     p->nMem = nMem;
 | |
|     initMemArray(p->aMem, nMem, db, MEM_Undefined);
 | |
|     memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
 | |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
 | |
|     memset(p->anExec, 0, p->nOp*sizeof(i64));
 | |
| #endif
 | |
|   }
 | |
|   sqlite3VdbeRewind(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close a VDBE cursor and release all the resources that cursor 
 | |
| ** happens to hold.
 | |
| */
 | |
| void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
 | |
|   if( pCx==0 ){
 | |
|     return;
 | |
|   }
 | |
|   assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
 | |
|   assert( pCx->pBtx==0 || pCx->isEphemeral );
 | |
|   switch( pCx->eCurType ){
 | |
|     case CURTYPE_SORTER: {
 | |
|       sqlite3VdbeSorterClose(p->db, pCx);
 | |
|       break;
 | |
|     }
 | |
|     case CURTYPE_BTREE: {
 | |
|       assert( pCx->uc.pCursor!=0 );
 | |
|       sqlite3BtreeCloseCursor(pCx->uc.pCursor);
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     case CURTYPE_VTAB: {
 | |
|       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
 | |
|       const sqlite3_module *pModule = pVCur->pVtab->pModule;
 | |
|       assert( pVCur->pVtab->nRef>0 );
 | |
|       pVCur->pVtab->nRef--;
 | |
|       pModule->xClose(pVCur);
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close all cursors in the current frame.
 | |
| */
 | |
| static void closeCursorsInFrame(Vdbe *p){
 | |
|   if( p->apCsr ){
 | |
|     int i;
 | |
|     for(i=0; i<p->nCursor; i++){
 | |
|       VdbeCursor *pC = p->apCsr[i];
 | |
|       if( pC ){
 | |
|         sqlite3VdbeFreeCursor(p, pC);
 | |
|         p->apCsr[i] = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
 | |
| ** is used, for example, when a trigger sub-program is halted to restore
 | |
| ** control to the main program.
 | |
| */
 | |
| int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
 | |
|   Vdbe *v = pFrame->v;
 | |
|   closeCursorsInFrame(v);
 | |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
 | |
|   v->anExec = pFrame->anExec;
 | |
| #endif
 | |
|   v->aOp = pFrame->aOp;
 | |
|   v->nOp = pFrame->nOp;
 | |
|   v->aMem = pFrame->aMem;
 | |
|   v->nMem = pFrame->nMem;
 | |
|   v->apCsr = pFrame->apCsr;
 | |
|   v->nCursor = pFrame->nCursor;
 | |
|   v->db->lastRowid = pFrame->lastRowid;
 | |
|   v->nChange = pFrame->nChange;
 | |
|   v->db->nChange = pFrame->nDbChange;
 | |
|   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
 | |
|   v->pAuxData = pFrame->pAuxData;
 | |
|   pFrame->pAuxData = 0;
 | |
|   return pFrame->pc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close all cursors.
 | |
| **
 | |
| ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 
 | |
| ** cell array. This is necessary as the memory cell array may contain
 | |
| ** pointers to VdbeFrame objects, which may in turn contain pointers to
 | |
| ** open cursors.
 | |
| */
 | |
| static void closeAllCursors(Vdbe *p){
 | |
|   if( p->pFrame ){
 | |
|     VdbeFrame *pFrame;
 | |
|     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
 | |
|     sqlite3VdbeFrameRestore(pFrame);
 | |
|     p->pFrame = 0;
 | |
|     p->nFrame = 0;
 | |
|   }
 | |
|   assert( p->nFrame==0 );
 | |
|   closeCursorsInFrame(p);
 | |
|   if( p->aMem ){
 | |
|     releaseMemArray(p->aMem, p->nMem);
 | |
|   }
 | |
|   while( p->pDelFrame ){
 | |
|     VdbeFrame *pDel = p->pDelFrame;
 | |
|     p->pDelFrame = pDel->pParent;
 | |
|     sqlite3VdbeFrameDelete(pDel);
 | |
|   }
 | |
| 
 | |
|   /* Delete any auxdata allocations made by the VM */
 | |
|   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
 | |
|   assert( p->pAuxData==0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the number of result columns that will be returned by this SQL
 | |
| ** statement. This is now set at compile time, rather than during
 | |
| ** execution of the vdbe program so that sqlite3_column_count() can
 | |
| ** be called on an SQL statement before sqlite3_step().
 | |
| */
 | |
| void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
 | |
|   int n;
 | |
|   sqlite3 *db = p->db;
 | |
| 
 | |
|   if( p->nResColumn ){
 | |
|     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
 | |
|     sqlite3DbFree(db, p->aColName);
 | |
|   }
 | |
|   n = nResColumn*COLNAME_N;
 | |
|   p->nResColumn = (u16)nResColumn;
 | |
|   p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
 | |
|   if( p->aColName==0 ) return;
 | |
|   initMemArray(p->aColName, n, db, MEM_Null);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the name of the idx'th column to be returned by the SQL statement.
 | |
| ** zName must be a pointer to a nul terminated string.
 | |
| **
 | |
| ** This call must be made after a call to sqlite3VdbeSetNumCols().
 | |
| **
 | |
| ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
 | |
| ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
 | |
| ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
 | |
| */
 | |
| int sqlite3VdbeSetColName(
 | |
|   Vdbe *p,                         /* Vdbe being configured */
 | |
|   int idx,                         /* Index of column zName applies to */
 | |
|   int var,                         /* One of the COLNAME_* constants */
 | |
|   const char *zName,               /* Pointer to buffer containing name */
 | |
|   void (*xDel)(void*)              /* Memory management strategy for zName */
 | |
| ){
 | |
|   int rc;
 | |
|   Mem *pColName;
 | |
|   assert( idx<p->nResColumn );
 | |
|   assert( var<COLNAME_N );
 | |
|   if( p->db->mallocFailed ){
 | |
|     assert( !zName || xDel!=SQLITE_DYNAMIC );
 | |
|     return SQLITE_NOMEM_BKPT;
 | |
|   }
 | |
|   assert( p->aColName!=0 );
 | |
|   pColName = &(p->aColName[idx+var*p->nResColumn]);
 | |
|   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
 | |
|   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** A read or write transaction may or may not be active on database handle
 | |
| ** db. If a transaction is active, commit it. If there is a
 | |
| ** write-transaction spanning more than one database file, this routine
 | |
| ** takes care of the super-journal trickery.
 | |
| */
 | |
| static int vdbeCommit(sqlite3 *db, Vdbe *p){
 | |
|   int i;
 | |
|   int nTrans = 0;  /* Number of databases with an active write-transaction
 | |
|                    ** that are candidates for a two-phase commit using a
 | |
|                    ** super-journal */
 | |
|   int rc = SQLITE_OK;
 | |
|   int needXcommit = 0;
 | |
| 
 | |
| #ifdef SQLITE_OMIT_VIRTUALTABLE
 | |
|   /* With this option, sqlite3VtabSync() is defined to be simply 
 | |
|   ** SQLITE_OK so p is not used. 
 | |
|   */
 | |
|   UNUSED_PARAMETER(p);
 | |
| #endif
 | |
| 
 | |
|   /* Before doing anything else, call the xSync() callback for any
 | |
|   ** virtual module tables written in this transaction. This has to
 | |
|   ** be done before determining whether a super-journal file is 
 | |
|   ** required, as an xSync() callback may add an attached database
 | |
|   ** to the transaction.
 | |
|   */
 | |
|   rc = sqlite3VtabSync(db, p);
 | |
| 
 | |
|   /* This loop determines (a) if the commit hook should be invoked and
 | |
|   ** (b) how many database files have open write transactions, not 
 | |
|   ** including the temp database. (b) is important because if more than 
 | |
|   ** one database file has an open write transaction, a super-journal
 | |
|   ** file is required for an atomic commit.
 | |
|   */ 
 | |
|   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
 | |
|     Btree *pBt = db->aDb[i].pBt;
 | |
|     if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
 | |
|       /* Whether or not a database might need a super-journal depends upon
 | |
|       ** its journal mode (among other things).  This matrix determines which
 | |
|       ** journal modes use a super-journal and which do not */
 | |
|       static const u8 aMJNeeded[] = {
 | |
|         /* DELETE   */  1,
 | |
|         /* PERSIST   */ 1,
 | |
|         /* OFF       */ 0,
 | |
|         /* TRUNCATE  */ 1,
 | |
|         /* MEMORY    */ 0,
 | |
|         /* WAL       */ 0
 | |
|       };
 | |
|       Pager *pPager;   /* Pager associated with pBt */
 | |
|       needXcommit = 1;
 | |
|       sqlite3BtreeEnter(pBt);
 | |
|       pPager = sqlite3BtreePager(pBt);
 | |
|       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
 | |
|        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
 | |
|        && sqlite3PagerIsMemdb(pPager)==0
 | |
|       ){ 
 | |
|         assert( i!=1 );
 | |
|         nTrans++;
 | |
|       }
 | |
|       rc = sqlite3PagerExclusiveLock(pPager);
 | |
|       sqlite3BtreeLeave(pBt);
 | |
|     }
 | |
|   }
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   /* If there are any write-transactions at all, invoke the commit hook */
 | |
|   if( needXcommit && db->xCommitCallback ){
 | |
|     rc = db->xCommitCallback(db->pCommitArg);
 | |
|     if( rc ){
 | |
|       return SQLITE_CONSTRAINT_COMMITHOOK;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The simple case - no more than one database file (not counting the
 | |
|   ** TEMP database) has a transaction active.   There is no need for the
 | |
|   ** super-journal.
 | |
|   **
 | |
|   ** If the return value of sqlite3BtreeGetFilename() is a zero length
 | |
|   ** string, it means the main database is :memory: or a temp file.  In 
 | |
|   ** that case we do not support atomic multi-file commits, so use the 
 | |
|   ** simple case then too.
 | |
|   */
 | |
|   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
 | |
|    || nTrans<=1
 | |
|   ){
 | |
|     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( pBt ){
 | |
|         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Do the commit only if all databases successfully complete phase 1. 
 | |
|     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
 | |
|     ** IO error while deleting or truncating a journal file. It is unlikely,
 | |
|     ** but could happen. In this case abandon processing and return the error.
 | |
|     */
 | |
|     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( pBt ){
 | |
|         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
 | |
|       }
 | |
|     }
 | |
|     if( rc==SQLITE_OK ){
 | |
|       sqlite3VtabCommit(db);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The complex case - There is a multi-file write-transaction active.
 | |
|   ** This requires a super-journal file to ensure the transaction is
 | |
|   ** committed atomically.
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_DISKIO
 | |
|   else{
 | |
|     sqlite3_vfs *pVfs = db->pVfs;
 | |
|     char *zSuper = 0;   /* File-name for the super-journal */
 | |
|     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
 | |
|     sqlite3_file *pSuperJrnl = 0;
 | |
|     i64 offset = 0;
 | |
|     int res;
 | |
|     int retryCount = 0;
 | |
|     int nMainFile;
 | |
| 
 | |
|     /* Select a super-journal file name */
 | |
|     nMainFile = sqlite3Strlen30(zMainFile);
 | |
|     zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
 | |
|     if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
 | |
|     zSuper += 4;
 | |
|     do {
 | |
|       u32 iRandom;
 | |
|       if( retryCount ){
 | |
|         if( retryCount>100 ){
 | |
|           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
 | |
|           sqlite3OsDelete(pVfs, zSuper, 0);
 | |
|           break;
 | |
|         }else if( retryCount==1 ){
 | |
|           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
 | |
|         }
 | |
|       }
 | |
|       retryCount++;
 | |
|       sqlite3_randomness(sizeof(iRandom), &iRandom);
 | |
|       sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
 | |
|                                (iRandom>>8)&0xffffff, iRandom&0xff);
 | |
|       /* The antipenultimate character of the super-journal name must
 | |
|       ** be "9" to avoid name collisions when using 8+3 filenames. */
 | |
|       assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
 | |
|       sqlite3FileSuffix3(zMainFile, zSuper);
 | |
|       rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
 | |
|     }while( rc==SQLITE_OK && res );
 | |
|     if( rc==SQLITE_OK ){
 | |
|       /* Open the super-journal. */
 | |
|       rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, 
 | |
|           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
 | |
|           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
 | |
|       );
 | |
|     }
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqlite3DbFree(db, zSuper-4);
 | |
|       return rc;
 | |
|     }
 | |
|  
 | |
|     /* Write the name of each database file in the transaction into the new
 | |
|     ** super-journal file. If an error occurs at this point close
 | |
|     ** and delete the super-journal file. All the individual journal files
 | |
|     ** still have 'null' as the super-journal pointer, so they will roll
 | |
|     ** back independently if a failure occurs.
 | |
|     */
 | |
|     for(i=0; i<db->nDb; i++){
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
 | |
|         char const *zFile = sqlite3BtreeGetJournalname(pBt);
 | |
|         if( zFile==0 ){
 | |
|           continue;  /* Ignore TEMP and :memory: databases */
 | |
|         }
 | |
|         assert( zFile[0]!=0 );
 | |
|         rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
 | |
|         offset += sqlite3Strlen30(zFile)+1;
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           sqlite3OsCloseFree(pSuperJrnl);
 | |
|           sqlite3OsDelete(pVfs, zSuper, 0);
 | |
|           sqlite3DbFree(db, zSuper-4);
 | |
|           return rc;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
 | |
|     ** flag is set this is not required.
 | |
|     */
 | |
|     if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
 | |
|      && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
 | |
|     ){
 | |
|       sqlite3OsCloseFree(pSuperJrnl);
 | |
|       sqlite3OsDelete(pVfs, zSuper, 0);
 | |
|       sqlite3DbFree(db, zSuper-4);
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     /* Sync all the db files involved in the transaction. The same call
 | |
|     ** sets the super-journal pointer in each individual journal. If
 | |
|     ** an error occurs here, do not delete the super-journal file.
 | |
|     **
 | |
|     ** If the error occurs during the first call to
 | |
|     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
 | |
|     ** super-journal file will be orphaned. But we cannot delete it,
 | |
|     ** in case the super-journal file name was written into the journal
 | |
|     ** file before the failure occurred.
 | |
|     */
 | |
|     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( pBt ){
 | |
|         rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
 | |
|       }
 | |
|     }
 | |
|     sqlite3OsCloseFree(pSuperJrnl);
 | |
|     assert( rc!=SQLITE_BUSY );
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqlite3DbFree(db, zSuper-4);
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     /* Delete the super-journal file. This commits the transaction. After
 | |
|     ** doing this the directory is synced again before any individual
 | |
|     ** transaction files are deleted.
 | |
|     */
 | |
|     rc = sqlite3OsDelete(pVfs, zSuper, 1);
 | |
|     sqlite3DbFree(db, zSuper-4);
 | |
|     zSuper = 0;
 | |
|     if( rc ){
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     /* All files and directories have already been synced, so the following
 | |
|     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
 | |
|     ** deleting or truncating journals. If something goes wrong while
 | |
|     ** this is happening we don't really care. The integrity of the
 | |
|     ** transaction is already guaranteed, but some stray 'cold' journals
 | |
|     ** may be lying around. Returning an error code won't help matters.
 | |
|     */
 | |
|     disable_simulated_io_errors();
 | |
|     sqlite3BeginBenignMalloc();
 | |
|     for(i=0; i<db->nDb; i++){ 
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( pBt ){
 | |
|         sqlite3BtreeCommitPhaseTwo(pBt, 1);
 | |
|       }
 | |
|     }
 | |
|     sqlite3EndBenignMalloc();
 | |
|     enable_simulated_io_errors();
 | |
| 
 | |
|     sqlite3VtabCommit(db);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** This routine checks that the sqlite3.nVdbeActive count variable
 | |
| ** matches the number of vdbe's in the list sqlite3.pVdbe that are
 | |
| ** currently active. An assertion fails if the two counts do not match.
 | |
| ** This is an internal self-check only - it is not an essential processing
 | |
| ** step.
 | |
| **
 | |
| ** This is a no-op if NDEBUG is defined.
 | |
| */
 | |
| #ifndef NDEBUG
 | |
| static void checkActiveVdbeCnt(sqlite3 *db){
 | |
|   Vdbe *p;
 | |
|   int cnt = 0;
 | |
|   int nWrite = 0;
 | |
|   int nRead = 0;
 | |
|   p = db->pVdbe;
 | |
|   while( p ){
 | |
|     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
 | |
|       cnt++;
 | |
|       if( p->readOnly==0 ) nWrite++;
 | |
|       if( p->bIsReader ) nRead++;
 | |
|     }
 | |
|     p = p->pNext;
 | |
|   }
 | |
|   assert( cnt==db->nVdbeActive );
 | |
|   assert( nWrite==db->nVdbeWrite );
 | |
|   assert( nRead==db->nVdbeRead );
 | |
| }
 | |
| #else
 | |
| #define checkActiveVdbeCnt(x)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** If the Vdbe passed as the first argument opened a statement-transaction,
 | |
| ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
 | |
| ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
 | |
| ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 
 | |
| ** statement transaction is committed.
 | |
| **
 | |
| ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 
 | |
| ** Otherwise SQLITE_OK.
 | |
| */
 | |
| static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
 | |
|   sqlite3 *const db = p->db;
 | |
|   int rc = SQLITE_OK;
 | |
|   int i;
 | |
|   const int iSavepoint = p->iStatement-1;
 | |
| 
 | |
|   assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
 | |
|   assert( db->nStatement>0 );
 | |
|   assert( p->iStatement==(db->nStatement+db->nSavepoint) );
 | |
| 
 | |
|   for(i=0; i<db->nDb; i++){ 
 | |
|     int rc2 = SQLITE_OK;
 | |
|     Btree *pBt = db->aDb[i].pBt;
 | |
|     if( pBt ){
 | |
|       if( eOp==SAVEPOINT_ROLLBACK ){
 | |
|         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
 | |
|       }
 | |
|       if( rc2==SQLITE_OK ){
 | |
|         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
 | |
|       }
 | |
|       if( rc==SQLITE_OK ){
 | |
|         rc = rc2;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   db->nStatement--;
 | |
|   p->iStatement = 0;
 | |
| 
 | |
|   if( rc==SQLITE_OK ){
 | |
|     if( eOp==SAVEPOINT_ROLLBACK ){
 | |
|       rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
 | |
|     }
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If the statement transaction is being rolled back, also restore the 
 | |
|   ** database handles deferred constraint counter to the value it had when 
 | |
|   ** the statement transaction was opened.  */
 | |
|   if( eOp==SAVEPOINT_ROLLBACK ){
 | |
|     db->nDeferredCons = p->nStmtDefCons;
 | |
|     db->nDeferredImmCons = p->nStmtDefImmCons;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
 | |
|   if( p->db->nStatement && p->iStatement ){
 | |
|     return vdbeCloseStatement(p, eOp);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This function is called when a transaction opened by the database 
 | |
| ** handle associated with the VM passed as an argument is about to be 
 | |
| ** committed. If there are outstanding deferred foreign key constraint
 | |
| ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
 | |
| **
 | |
| ** If there are outstanding FK violations and this function returns 
 | |
| ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
 | |
| ** and write an error message to it. Then return SQLITE_ERROR.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_FOREIGN_KEY
 | |
| int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
 | |
|   sqlite3 *db = p->db;
 | |
|   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 
 | |
|    || (!deferred && p->nFkConstraint>0) 
 | |
|   ){
 | |
|     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
 | |
|     p->errorAction = OE_Abort;
 | |
|     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This routine is called the when a VDBE tries to halt.  If the VDBE
 | |
| ** has made changes and is in autocommit mode, then commit those
 | |
| ** changes.  If a rollback is needed, then do the rollback.
 | |
| **
 | |
| ** This routine is the only way to move the sqlite3eOpenState of a VM from
 | |
| ** SQLITE_STATE_RUN to SQLITE_STATE_HALT.  It is harmless to
 | |
| ** call this on a VM that is in the SQLITE_STATE_HALT state.
 | |
| **
 | |
| ** Return an error code.  If the commit could not complete because of
 | |
| ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
 | |
| ** means the close did not happen and needs to be repeated.
 | |
| */
 | |
| int sqlite3VdbeHalt(Vdbe *p){
 | |
|   int rc;                         /* Used to store transient return codes */
 | |
|   sqlite3 *db = p->db;
 | |
| 
 | |
|   /* This function contains the logic that determines if a statement or
 | |
|   ** transaction will be committed or rolled back as a result of the
 | |
|   ** execution of this virtual machine. 
 | |
|   **
 | |
|   ** If any of the following errors occur:
 | |
|   **
 | |
|   **     SQLITE_NOMEM
 | |
|   **     SQLITE_IOERR
 | |
|   **     SQLITE_FULL
 | |
|   **     SQLITE_INTERRUPT
 | |
|   **
 | |
|   ** Then the internal cache might have been left in an inconsistent
 | |
|   ** state.  We need to rollback the statement transaction, if there is
 | |
|   ** one, or the complete transaction if there is no statement transaction.
 | |
|   */
 | |
| 
 | |
|   if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   if( db->mallocFailed ){
 | |
|     p->rc = SQLITE_NOMEM_BKPT;
 | |
|   }
 | |
|   closeAllCursors(p);
 | |
|   checkActiveVdbeCnt(db);
 | |
| 
 | |
|   /* No commit or rollback needed if the program never started or if the
 | |
|   ** SQL statement does not read or write a database file.  */
 | |
|   if( p->pc>=0 && p->bIsReader ){
 | |
|     int mrc;   /* Primary error code from p->rc */
 | |
|     int eStatementOp = 0;
 | |
|     int isSpecialError;            /* Set to true if a 'special' error */
 | |
| 
 | |
|     /* Lock all btrees used by the statement */
 | |
|     sqlite3VdbeEnter(p);
 | |
| 
 | |
|     /* Check for one of the special errors */
 | |
|     mrc = p->rc & 0xff;
 | |
|     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
 | |
|                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
 | |
|     if( isSpecialError ){
 | |
|       /* If the query was read-only and the error code is SQLITE_INTERRUPT, 
 | |
|       ** no rollback is necessary. Otherwise, at least a savepoint 
 | |
|       ** transaction must be rolled back to restore the database to a 
 | |
|       ** consistent state.
 | |
|       **
 | |
|       ** Even if the statement is read-only, it is important to perform
 | |
|       ** a statement or transaction rollback operation. If the error 
 | |
|       ** occurred while writing to the journal, sub-journal or database
 | |
|       ** file as part of an effort to free up cache space (see function
 | |
|       ** pagerStress() in pager.c), the rollback is required to restore 
 | |
|       ** the pager to a consistent state.
 | |
|       */
 | |
|       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
 | |
|         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
 | |
|           eStatementOp = SAVEPOINT_ROLLBACK;
 | |
|         }else{
 | |
|           /* We are forced to roll back the active transaction. Before doing
 | |
|           ** so, abort any other statements this handle currently has active.
 | |
|           */
 | |
|           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
 | |
|           sqlite3CloseSavepoints(db);
 | |
|           db->autoCommit = 1;
 | |
|           p->nChange = 0;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Check for immediate foreign key violations. */
 | |
|     if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
 | |
|       sqlite3VdbeCheckFk(p, 0);
 | |
|     }
 | |
|   
 | |
|     /* If the auto-commit flag is set and this is the only active writer 
 | |
|     ** VM, then we do either a commit or rollback of the current transaction. 
 | |
|     **
 | |
|     ** Note: This block also runs if one of the special errors handled 
 | |
|     ** above has occurred. 
 | |
|     */
 | |
|     if( !sqlite3VtabInSync(db) 
 | |
|      && db->autoCommit 
 | |
|      && db->nVdbeWrite==(p->readOnly==0) 
 | |
|     ){
 | |
|       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
 | |
|         rc = sqlite3VdbeCheckFk(p, 1);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           if( NEVER(p->readOnly) ){
 | |
|             sqlite3VdbeLeave(p);
 | |
|             return SQLITE_ERROR;
 | |
|           }
 | |
|           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
 | |
|         }else{ 
 | |
|           /* The auto-commit flag is true, the vdbe program was successful 
 | |
|           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
 | |
|           ** key constraints to hold up the transaction. This means a commit 
 | |
|           ** is required. */
 | |
|           rc = vdbeCommit(db, p);
 | |
|         }
 | |
|         if( rc==SQLITE_BUSY && p->readOnly ){
 | |
|           sqlite3VdbeLeave(p);
 | |
|           return SQLITE_BUSY;
 | |
|         }else if( rc!=SQLITE_OK ){
 | |
|           p->rc = rc;
 | |
|           sqlite3RollbackAll(db, SQLITE_OK);
 | |
|           p->nChange = 0;
 | |
|         }else{
 | |
|           db->nDeferredCons = 0;
 | |
|           db->nDeferredImmCons = 0;
 | |
|           db->flags &= ~(u64)SQLITE_DeferFKs;
 | |
|           sqlite3CommitInternalChanges(db);
 | |
|         }
 | |
|       }else{
 | |
|         sqlite3RollbackAll(db, SQLITE_OK);
 | |
|         p->nChange = 0;
 | |
|       }
 | |
|       db->nStatement = 0;
 | |
|     }else if( eStatementOp==0 ){
 | |
|       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
 | |
|         eStatementOp = SAVEPOINT_RELEASE;
 | |
|       }else if( p->errorAction==OE_Abort ){
 | |
|         eStatementOp = SAVEPOINT_ROLLBACK;
 | |
|       }else{
 | |
|         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
 | |
|         sqlite3CloseSavepoints(db);
 | |
|         db->autoCommit = 1;
 | |
|         p->nChange = 0;
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     /* If eStatementOp is non-zero, then a statement transaction needs to
 | |
|     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
 | |
|     ** do so. If this operation returns an error, and the current statement
 | |
|     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
 | |
|     ** current statement error code.
 | |
|     */
 | |
|     if( eStatementOp ){
 | |
|       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
 | |
|       if( rc ){
 | |
|         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
 | |
|           p->rc = rc;
 | |
|           sqlite3DbFree(db, p->zErrMsg);
 | |
|           p->zErrMsg = 0;
 | |
|         }
 | |
|         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
 | |
|         sqlite3CloseSavepoints(db);
 | |
|         db->autoCommit = 1;
 | |
|         p->nChange = 0;
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
 | |
|     ** has been rolled back, update the database connection change-counter. 
 | |
|     */
 | |
|     if( p->changeCntOn ){
 | |
|       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
 | |
|         sqlite3VdbeSetChanges(db, p->nChange);
 | |
|       }else{
 | |
|         sqlite3VdbeSetChanges(db, 0);
 | |
|       }
 | |
|       p->nChange = 0;
 | |
|     }
 | |
| 
 | |
|     /* Release the locks */
 | |
|     sqlite3VdbeLeave(p);
 | |
|   }
 | |
| 
 | |
|   /* We have successfully halted and closed the VM.  Record this fact. */
 | |
|   if( p->pc>=0 ){
 | |
|     db->nVdbeActive--;
 | |
|     if( !p->readOnly ) db->nVdbeWrite--;
 | |
|     if( p->bIsReader ) db->nVdbeRead--;
 | |
|     assert( db->nVdbeActive>=db->nVdbeRead );
 | |
|     assert( db->nVdbeRead>=db->nVdbeWrite );
 | |
|     assert( db->nVdbeWrite>=0 );
 | |
|   }
 | |
|   p->iVdbeMagic = VDBE_MAGIC_HALT;
 | |
|   checkActiveVdbeCnt(db);
 | |
|   if( db->mallocFailed ){
 | |
|     p->rc = SQLITE_NOMEM_BKPT;
 | |
|   }
 | |
| 
 | |
|   /* If the auto-commit flag is set to true, then any locks that were held
 | |
|   ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 
 | |
|   ** to invoke any required unlock-notify callbacks.
 | |
|   */
 | |
|   if( db->autoCommit ){
 | |
|     sqlite3ConnectionUnlocked(db);
 | |
|   }
 | |
| 
 | |
|   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
 | |
|   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Each VDBE holds the result of the most recent sqlite3_step() call
 | |
| ** in p->rc.  This routine sets that result back to SQLITE_OK.
 | |
| */
 | |
| void sqlite3VdbeResetStepResult(Vdbe *p){
 | |
|   p->rc = SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Copy the error code and error message belonging to the VDBE passed
 | |
| ** as the first argument to its database handle (so that they will be 
 | |
| ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
 | |
| **
 | |
| ** This function does not clear the VDBE error code or message, just
 | |
| ** copies them to the database handle.
 | |
| */
 | |
| int sqlite3VdbeTransferError(Vdbe *p){
 | |
|   sqlite3 *db = p->db;
 | |
|   int rc = p->rc;
 | |
|   if( p->zErrMsg ){
 | |
|     db->bBenignMalloc++;
 | |
|     sqlite3BeginBenignMalloc();
 | |
|     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
 | |
|     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
 | |
|     sqlite3EndBenignMalloc();
 | |
|     db->bBenignMalloc--;
 | |
|   }else if( db->pErr ){
 | |
|     sqlite3ValueSetNull(db->pErr);
 | |
|   }
 | |
|   db->errCode = rc;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_SQLLOG
 | |
| /*
 | |
| ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 
 | |
| ** invoke it.
 | |
| */
 | |
| static void vdbeInvokeSqllog(Vdbe *v){
 | |
|   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
 | |
|     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
 | |
|     assert( v->db->init.busy==0 );
 | |
|     if( zExpanded ){
 | |
|       sqlite3GlobalConfig.xSqllog(
 | |
|           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
 | |
|       );
 | |
|       sqlite3DbFree(v->db, zExpanded);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #else
 | |
| # define vdbeInvokeSqllog(x)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Clean up a VDBE after execution but do not delete the VDBE just yet.
 | |
| ** Write any error messages into *pzErrMsg.  Return the result code.
 | |
| **
 | |
| ** After this routine is run, the VDBE should be ready to be executed
 | |
| ** again.
 | |
| **
 | |
| ** To look at it another way, this routine resets the state of the
 | |
| ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
 | |
| ** VDBE_MAGIC_INIT.
 | |
| */
 | |
| int sqlite3VdbeReset(Vdbe *p){
 | |
| #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
 | |
|   int i;
 | |
| #endif
 | |
| 
 | |
|   sqlite3 *db;
 | |
|   db = p->db;
 | |
| 
 | |
|   /* If the VM did not run to completion or if it encountered an
 | |
|   ** error, then it might not have been halted properly.  So halt
 | |
|   ** it now.
 | |
|   */
 | |
|   sqlite3VdbeHalt(p);
 | |
| 
 | |
|   /* If the VDBE has been run even partially, then transfer the error code
 | |
|   ** and error message from the VDBE into the main database structure.  But
 | |
|   ** if the VDBE has just been set to run but has not actually executed any
 | |
|   ** instructions yet, leave the main database error information unchanged.
 | |
|   */
 | |
|   if( p->pc>=0 ){
 | |
|     vdbeInvokeSqllog(p);
 | |
|     if( db->pErr || p->zErrMsg ){
 | |
|       sqlite3VdbeTransferError(p);
 | |
|     }else{
 | |
|       db->errCode = p->rc;
 | |
|     }
 | |
|     if( p->runOnlyOnce ) p->expired = 1;
 | |
|   }else if( p->rc && p->expired ){
 | |
|     /* The expired flag was set on the VDBE before the first call
 | |
|     ** to sqlite3_step(). For consistency (since sqlite3_step() was
 | |
|     ** called), set the database error in this case as well.
 | |
|     */
 | |
|     sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
 | |
|   }
 | |
| 
 | |
|   /* Reset register contents and reclaim error message memory.
 | |
|   */
 | |
| #ifdef SQLITE_DEBUG
 | |
|   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 
 | |
|   ** Vdbe.aMem[] arrays have already been cleaned up.  */
 | |
|   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
 | |
|   if( p->aMem ){
 | |
|     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
 | |
|   }
 | |
| #endif
 | |
|   if( p->zErrMsg ){
 | |
|     sqlite3DbFree(db, p->zErrMsg);
 | |
|     p->zErrMsg = 0;
 | |
|   }
 | |
|   p->pResultSet = 0;
 | |
| #ifdef SQLITE_DEBUG
 | |
|   p->nWrite = 0;
 | |
| #endif
 | |
| 
 | |
|   /* Save profiling information from this VDBE run.
 | |
|   */
 | |
| #ifdef VDBE_PROFILE
 | |
|   {
 | |
|     FILE *out = fopen("vdbe_profile.out", "a");
 | |
|     if( out ){
 | |
|       fprintf(out, "---- ");
 | |
|       for(i=0; i<p->nOp; i++){
 | |
|         fprintf(out, "%02x", p->aOp[i].opcode);
 | |
|       }
 | |
|       fprintf(out, "\n");
 | |
|       if( p->zSql ){
 | |
|         char c, pc = 0;
 | |
|         fprintf(out, "-- ");
 | |
|         for(i=0; (c = p->zSql[i])!=0; i++){
 | |
|           if( pc=='\n' ) fprintf(out, "-- ");
 | |
|           putc(c, out);
 | |
|           pc = c;
 | |
|         }
 | |
|         if( pc!='\n' ) fprintf(out, "\n");
 | |
|       }
 | |
|       for(i=0; i<p->nOp; i++){
 | |
|         char zHdr[100];
 | |
|         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
 | |
|            p->aOp[i].cnt,
 | |
|            p->aOp[i].cycles,
 | |
|            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
 | |
|         );
 | |
|         fprintf(out, "%s", zHdr);
 | |
|         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
 | |
|       }
 | |
|       fclose(out);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   p->iVdbeMagic = VDBE_MAGIC_RESET;
 | |
|   return p->rc & db->errMask;
 | |
| }
 | |
|  
 | |
| /*
 | |
| ** Clean up and delete a VDBE after execution.  Return an integer which is
 | |
| ** the result code.  Write any error message text into *pzErrMsg.
 | |
| */
 | |
| int sqlite3VdbeFinalize(Vdbe *p){
 | |
|   int rc = SQLITE_OK;
 | |
|   if( p->iVdbeMagic==VDBE_MAGIC_RUN || p->iVdbeMagic==VDBE_MAGIC_HALT ){
 | |
|     rc = sqlite3VdbeReset(p);
 | |
|     assert( (rc & p->db->errMask)==rc );
 | |
|   }
 | |
|   sqlite3VdbeDelete(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If parameter iOp is less than zero, then invoke the destructor for
 | |
| ** all auxiliary data pointers currently cached by the VM passed as
 | |
| ** the first argument.
 | |
| **
 | |
| ** Or, if iOp is greater than or equal to zero, then the destructor is
 | |
| ** only invoked for those auxiliary data pointers created by the user 
 | |
| ** function invoked by the OP_Function opcode at instruction iOp of 
 | |
| ** VM pVdbe, and only then if:
 | |
| **
 | |
| **    * the associated function parameter is the 32nd or later (counting
 | |
| **      from left to right), or
 | |
| **
 | |
| **    * the corresponding bit in argument mask is clear (where the first
 | |
| **      function parameter corresponds to bit 0 etc.).
 | |
| */
 | |
| void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
 | |
|   while( *pp ){
 | |
|     AuxData *pAux = *pp;
 | |
|     if( (iOp<0)
 | |
|      || (pAux->iAuxOp==iOp
 | |
|           && pAux->iAuxArg>=0
 | |
|           && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
 | |
|     ){
 | |
|       testcase( pAux->iAuxArg==31 );
 | |
|       if( pAux->xDeleteAux ){
 | |
|         pAux->xDeleteAux(pAux->pAux);
 | |
|       }
 | |
|       *pp = pAux->pNextAux;
 | |
|       sqlite3DbFree(db, pAux);
 | |
|     }else{
 | |
|       pp= &pAux->pNextAux;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free all memory associated with the Vdbe passed as the second argument,
 | |
| ** except for object itself, which is preserved.
 | |
| **
 | |
| ** The difference between this function and sqlite3VdbeDelete() is that
 | |
| ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
 | |
| ** the database connection and frees the object itself.
 | |
| */
 | |
| void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
 | |
|   SubProgram *pSub, *pNext;
 | |
|   assert( p->db==0 || p->db==db );
 | |
|   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
 | |
|   for(pSub=p->pProgram; pSub; pSub=pNext){
 | |
|     pNext = pSub->pNext;
 | |
|     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
 | |
|     sqlite3DbFree(db, pSub);
 | |
|   }
 | |
|   if( p->iVdbeMagic!=VDBE_MAGIC_INIT ){
 | |
|     releaseMemArray(p->aVar, p->nVar);
 | |
|     sqlite3DbFree(db, p->pVList);
 | |
|     sqlite3DbFree(db, p->pFree);
 | |
|   }
 | |
|   vdbeFreeOpArray(db, p->aOp, p->nOp);
 | |
|   sqlite3DbFree(db, p->aColName);
 | |
|   sqlite3DbFree(db, p->zSql);
 | |
| #ifdef SQLITE_ENABLE_NORMALIZE
 | |
|   sqlite3DbFree(db, p->zNormSql);
 | |
|   {
 | |
|     DblquoteStr *pThis, *pNext;
 | |
|     for(pThis=p->pDblStr; pThis; pThis=pNext){
 | |
|       pNext = pThis->pNextStr;
 | |
|       sqlite3DbFree(db, pThis);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
 | |
|   {
 | |
|     int i;
 | |
|     for(i=0; i<p->nScan; i++){
 | |
|       sqlite3DbFree(db, p->aScan[i].zName);
 | |
|     }
 | |
|     sqlite3DbFree(db, p->aScan);
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete an entire VDBE.
 | |
| */
 | |
| void sqlite3VdbeDelete(Vdbe *p){
 | |
|   sqlite3 *db;
 | |
| 
 | |
|   assert( p!=0 );
 | |
|   db = p->db;
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   sqlite3VdbeClearObject(db, p);
 | |
|   if( p->pPrev ){
 | |
|     p->pPrev->pNext = p->pNext;
 | |
|   }else{
 | |
|     assert( db->pVdbe==p );
 | |
|     db->pVdbe = p->pNext;
 | |
|   }
 | |
|   if( p->pNext ){
 | |
|     p->pNext->pPrev = p->pPrev;
 | |
|   }
 | |
|   p->iVdbeMagic = VDBE_MAGIC_DEAD;
 | |
|   p->db = 0;
 | |
|   sqlite3DbFreeNN(db, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The cursor "p" has a pending seek operation that has not yet been
 | |
| ** carried out.  Seek the cursor now.  If an error occurs, return
 | |
| ** the appropriate error code.
 | |
| */
 | |
| int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
 | |
|   int res, rc;
 | |
| #ifdef SQLITE_TEST
 | |
|   extern int sqlite3_search_count;
 | |
| #endif
 | |
|   assert( p->deferredMoveto );
 | |
|   assert( p->isTable );
 | |
|   assert( p->eCurType==CURTYPE_BTREE );
 | |
|   rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
 | |
|   if( rc ) return rc;
 | |
|   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
 | |
| #ifdef SQLITE_TEST
 | |
|   sqlite3_search_count++;
 | |
| #endif
 | |
|   p->deferredMoveto = 0;
 | |
|   p->cacheStatus = CACHE_STALE;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Something has moved cursor "p" out of place.  Maybe the row it was
 | |
| ** pointed to was deleted out from under it.  Or maybe the btree was
 | |
| ** rebalanced.  Whatever the cause, try to restore "p" to the place it
 | |
| ** is supposed to be pointing.  If the row was deleted out from under the
 | |
| ** cursor, set the cursor to point to a NULL row.
 | |
| */
 | |
| static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
 | |
|   int isDifferentRow, rc;
 | |
|   assert( p->eCurType==CURTYPE_BTREE );
 | |
|   assert( p->uc.pCursor!=0 );
 | |
|   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
 | |
|   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
 | |
|   p->cacheStatus = CACHE_STALE;
 | |
|   if( isDifferentRow ) p->nullRow = 1;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Check to ensure that the cursor is valid.  Restore the cursor
 | |
| ** if need be.  Return any I/O error from the restore operation.
 | |
| */
 | |
| int sqlite3VdbeCursorRestore(VdbeCursor *p){
 | |
|   assert( p->eCurType==CURTYPE_BTREE );
 | |
|   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
 | |
|     return handleMovedCursor(p);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make sure the cursor p is ready to read or write the row to which it
 | |
| ** was last positioned.  Return an error code if an OOM fault or I/O error
 | |
| ** prevents us from positioning the cursor to its correct position.
 | |
| **
 | |
| ** If a MoveTo operation is pending on the given cursor, then do that
 | |
| ** MoveTo now.  If no move is pending, check to see if the row has been
 | |
| ** deleted out from under the cursor and if it has, mark the row as
 | |
| ** a NULL row.
 | |
| **
 | |
| ** If the cursor is already pointing to the correct row and that row has
 | |
| ** not been deleted out from under the cursor, then this routine is a no-op.
 | |
| */
 | |
| int sqlite3VdbeCursorMoveto(VdbeCursor **pp, u32 *piCol){
 | |
|   VdbeCursor *p = *pp;
 | |
|   assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
 | |
|   if( p->deferredMoveto ){
 | |
|     u32 iMap;
 | |
|     assert( !p->isEphemeral );
 | |
|     if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){
 | |
|       *pp = p->pAltCursor;
 | |
|       *piCol = iMap - 1;
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
|     return sqlite3VdbeFinishMoveto(p);
 | |
|   }
 | |
|   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
 | |
|     return handleMovedCursor(p);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following functions:
 | |
| **
 | |
| ** sqlite3VdbeSerialType()
 | |
| ** sqlite3VdbeSerialTypeLen()
 | |
| ** sqlite3VdbeSerialLen()
 | |
| ** sqlite3VdbeSerialPut()
 | |
| ** sqlite3VdbeSerialGet()
 | |
| **
 | |
| ** encapsulate the code that serializes values for storage in SQLite
 | |
| ** data and index records. Each serialized value consists of a
 | |
| ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
 | |
| ** integer, stored as a varint.
 | |
| **
 | |
| ** In an SQLite index record, the serial type is stored directly before
 | |
| ** the blob of data that it corresponds to. In a table record, all serial
 | |
| ** types are stored at the start of the record, and the blobs of data at
 | |
| ** the end. Hence these functions allow the caller to handle the
 | |
| ** serial-type and data blob separately.
 | |
| **
 | |
| ** The following table describes the various storage classes for data:
 | |
| **
 | |
| **   serial type        bytes of data      type
 | |
| **   --------------     ---------------    ---------------
 | |
| **      0                     0            NULL
 | |
| **      1                     1            signed integer
 | |
| **      2                     2            signed integer
 | |
| **      3                     3            signed integer
 | |
| **      4                     4            signed integer
 | |
| **      5                     6            signed integer
 | |
| **      6                     8            signed integer
 | |
| **      7                     8            IEEE float
 | |
| **      8                     0            Integer constant 0
 | |
| **      9                     0            Integer constant 1
 | |
| **     10,11                               reserved for expansion
 | |
| **    N>=12 and even       (N-12)/2        BLOB
 | |
| **    N>=13 and odd        (N-13)/2        text
 | |
| **
 | |
| ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
 | |
| ** of SQLite will not understand those serial types.
 | |
| */
 | |
| 
 | |
| #if 0 /* Inlined into the OP_MakeRecord opcode */
 | |
| /*
 | |
| ** Return the serial-type for the value stored in pMem.
 | |
| **
 | |
| ** This routine might convert a large MEM_IntReal value into MEM_Real.
 | |
| **
 | |
| ** 2019-07-11:  The primary user of this subroutine was the OP_MakeRecord
 | |
| ** opcode in the byte-code engine.  But by moving this routine in-line, we
 | |
| ** can omit some redundant tests and make that opcode a lot faster.  So
 | |
| ** this routine is now only used by the STAT3 logic and STAT3 support has
 | |
| ** ended.  The code is kept here for historical reference only.
 | |
| */
 | |
| u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
 | |
|   int flags = pMem->flags;
 | |
|   u32 n;
 | |
| 
 | |
|   assert( pLen!=0 );
 | |
|   if( flags&MEM_Null ){
 | |
|     *pLen = 0;
 | |
|     return 0;
 | |
|   }
 | |
|   if( flags&(MEM_Int|MEM_IntReal) ){
 | |
|     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
 | |
| #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
 | |
|     i64 i = pMem->u.i;
 | |
|     u64 u;
 | |
|     testcase( flags & MEM_Int );
 | |
|     testcase( flags & MEM_IntReal );
 | |
|     if( i<0 ){
 | |
|       u = ~i;
 | |
|     }else{
 | |
|       u = i;
 | |
|     }
 | |
|     if( u<=127 ){
 | |
|       if( (i&1)==i && file_format>=4 ){
 | |
|         *pLen = 0;
 | |
|         return 8+(u32)u;
 | |
|       }else{
 | |
|         *pLen = 1;
 | |
|         return 1;
 | |
|       }
 | |
|     }
 | |
|     if( u<=32767 ){ *pLen = 2; return 2; }
 | |
|     if( u<=8388607 ){ *pLen = 3; return 3; }
 | |
|     if( u<=2147483647 ){ *pLen = 4; return 4; }
 | |
|     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
 | |
|     *pLen = 8;
 | |
|     if( flags&MEM_IntReal ){
 | |
|       /* If the value is IntReal and is going to take up 8 bytes to store
 | |
|       ** as an integer, then we might as well make it an 8-byte floating
 | |
|       ** point value */
 | |
|       pMem->u.r = (double)pMem->u.i;
 | |
|       pMem->flags &= ~MEM_IntReal;
 | |
|       pMem->flags |= MEM_Real;
 | |
|       return 7;
 | |
|     }
 | |
|     return 6;
 | |
|   }
 | |
|   if( flags&MEM_Real ){
 | |
|     *pLen = 8;
 | |
|     return 7;
 | |
|   }
 | |
|   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
 | |
|   assert( pMem->n>=0 );
 | |
|   n = (u32)pMem->n;
 | |
|   if( flags & MEM_Zero ){
 | |
|     n += pMem->u.nZero;
 | |
|   }
 | |
|   *pLen = n;
 | |
|   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
 | |
| }
 | |
| #endif /* inlined into OP_MakeRecord */
 | |
| 
 | |
| /*
 | |
| ** The sizes for serial types less than 128
 | |
| */
 | |
| static const u8 sqlite3SmallTypeSizes[] = {
 | |
|         /*  0   1   2   3   4   5   6   7   8   9 */   
 | |
| /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
 | |
| /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
 | |
| /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
 | |
| /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
 | |
| /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
 | |
| /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
 | |
| /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
 | |
| /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
 | |
| /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
 | |
| /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
 | |
| /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
 | |
| /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
 | |
| /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Return the length of the data corresponding to the supplied serial-type.
 | |
| */
 | |
| u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
 | |
|   if( serial_type>=128 ){
 | |
|     return (serial_type-12)/2;
 | |
|   }else{
 | |
|     assert( serial_type<12 
 | |
|             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
 | |
|     return sqlite3SmallTypeSizes[serial_type];
 | |
|   }
 | |
| }
 | |
| u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
 | |
|   assert( serial_type<128 );
 | |
|   return sqlite3SmallTypeSizes[serial_type];  
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If we are on an architecture with mixed-endian floating 
 | |
| ** points (ex: ARM7) then swap the lower 4 bytes with the 
 | |
| ** upper 4 bytes.  Return the result.
 | |
| **
 | |
| ** For most architectures, this is a no-op.
 | |
| **
 | |
| ** (later):  It is reported to me that the mixed-endian problem
 | |
| ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
 | |
| ** that early versions of GCC stored the two words of a 64-bit
 | |
| ** float in the wrong order.  And that error has been propagated
 | |
| ** ever since.  The blame is not necessarily with GCC, though.
 | |
| ** GCC might have just copying the problem from a prior compiler.
 | |
| ** I am also told that newer versions of GCC that follow a different
 | |
| ** ABI get the byte order right.
 | |
| **
 | |
| ** Developers using SQLite on an ARM7 should compile and run their
 | |
| ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
 | |
| ** enabled, some asserts below will ensure that the byte order of
 | |
| ** floating point values is correct.
 | |
| **
 | |
| ** (2007-08-30)  Frank van Vugt has studied this problem closely
 | |
| ** and has send his findings to the SQLite developers.  Frank
 | |
| ** writes that some Linux kernels offer floating point hardware
 | |
| ** emulation that uses only 32-bit mantissas instead of a full 
 | |
| ** 48-bits as required by the IEEE standard.  (This is the
 | |
| ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
 | |
| ** byte swapping becomes very complicated.  To avoid problems,
 | |
| ** the necessary byte swapping is carried out using a 64-bit integer
 | |
| ** rather than a 64-bit float.  Frank assures us that the code here
 | |
| ** works for him.  We, the developers, have no way to independently
 | |
| ** verify this, but Frank seems to know what he is talking about
 | |
| ** so we trust him.
 | |
| */
 | |
| #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
 | |
| static u64 floatSwap(u64 in){
 | |
|   union {
 | |
|     u64 r;
 | |
|     u32 i[2];
 | |
|   } u;
 | |
|   u32 t;
 | |
| 
 | |
|   u.r = in;
 | |
|   t = u.i[0];
 | |
|   u.i[0] = u.i[1];
 | |
|   u.i[1] = t;
 | |
|   return u.r;
 | |
| }
 | |
| # define swapMixedEndianFloat(X)  X = floatSwap(X)
 | |
| #else
 | |
| # define swapMixedEndianFloat(X)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Write the serialized data blob for the value stored in pMem into 
 | |
| ** buf. It is assumed that the caller has allocated sufficient space.
 | |
| ** Return the number of bytes written.
 | |
| **
 | |
| ** nBuf is the amount of space left in buf[].  The caller is responsible
 | |
| ** for allocating enough space to buf[] to hold the entire field, exclusive
 | |
| ** of the pMem->u.nZero bytes for a MEM_Zero value.
 | |
| **
 | |
| ** Return the number of bytes actually written into buf[].  The number
 | |
| ** of bytes in the zero-filled tail is included in the return value only
 | |
| ** if those bytes were zeroed in buf[].
 | |
| */ 
 | |
| u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
 | |
|   u32 len;
 | |
| 
 | |
|   /* Integer and Real */
 | |
|   if( serial_type<=7 && serial_type>0 ){
 | |
|     u64 v;
 | |
|     u32 i;
 | |
|     if( serial_type==7 ){
 | |
|       assert( sizeof(v)==sizeof(pMem->u.r) );
 | |
|       memcpy(&v, &pMem->u.r, sizeof(v));
 | |
|       swapMixedEndianFloat(v);
 | |
|     }else{
 | |
|       v = pMem->u.i;
 | |
|     }
 | |
|     len = i = sqlite3SmallTypeSizes[serial_type];
 | |
|     assert( i>0 );
 | |
|     do{
 | |
|       buf[--i] = (u8)(v&0xFF);
 | |
|       v >>= 8;
 | |
|     }while( i );
 | |
|     return len;
 | |
|   }
 | |
| 
 | |
|   /* String or blob */
 | |
|   if( serial_type>=12 ){
 | |
|     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
 | |
|              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
 | |
|     len = pMem->n;
 | |
|     if( len>0 ) memcpy(buf, pMem->z, len);
 | |
|     return len;
 | |
|   }
 | |
| 
 | |
|   /* NULL or constants 0 or 1 */
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* Input "x" is a sequence of unsigned characters that represent a
 | |
| ** big-endian integer.  Return the equivalent native integer
 | |
| */
 | |
| #define ONE_BYTE_INT(x)    ((i8)(x)[0])
 | |
| #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
 | |
| #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
 | |
| #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
 | |
| #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
 | |
| 
 | |
| /*
 | |
| ** Deserialize the data blob pointed to by buf as serial type serial_type
 | |
| ** and store the result in pMem.  Return the number of bytes read.
 | |
| **
 | |
| ** This function is implemented as two separate routines for performance.
 | |
| ** The few cases that require local variables are broken out into a separate
 | |
| ** routine so that in most cases the overhead of moving the stack pointer
 | |
| ** is avoided.
 | |
| */ 
 | |
| static u32 serialGet(
 | |
|   const unsigned char *buf,     /* Buffer to deserialize from */
 | |
|   u32 serial_type,              /* Serial type to deserialize */
 | |
|   Mem *pMem                     /* Memory cell to write value into */
 | |
| ){
 | |
|   u64 x = FOUR_BYTE_UINT(buf);
 | |
|   u32 y = FOUR_BYTE_UINT(buf+4);
 | |
|   x = (x<<32) + y;
 | |
|   if( serial_type==6 ){
 | |
|     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
 | |
|     ** twos-complement integer. */
 | |
|     pMem->u.i = *(i64*)&x;
 | |
|     pMem->flags = MEM_Int;
 | |
|     testcase( pMem->u.i<0 );
 | |
|   }else{
 | |
|     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
 | |
|     ** floating point number. */
 | |
| #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
 | |
|     /* Verify that integers and floating point values use the same
 | |
|     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
 | |
|     ** defined that 64-bit floating point values really are mixed
 | |
|     ** endian.
 | |
|     */
 | |
|     static const u64 t1 = ((u64)0x3ff00000)<<32;
 | |
|     static const double r1 = 1.0;
 | |
|     u64 t2 = t1;
 | |
|     swapMixedEndianFloat(t2);
 | |
|     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
 | |
| #endif
 | |
|     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
 | |
|     swapMixedEndianFloat(x);
 | |
|     memcpy(&pMem->u.r, &x, sizeof(x));
 | |
|     pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
 | |
|   }
 | |
|   return 8;
 | |
| }
 | |
| u32 sqlite3VdbeSerialGet(
 | |
|   const unsigned char *buf,     /* Buffer to deserialize from */
 | |
|   u32 serial_type,              /* Serial type to deserialize */
 | |
|   Mem *pMem                     /* Memory cell to write value into */
 | |
| ){
 | |
|   switch( serial_type ){
 | |
|     case 10: { /* Internal use only: NULL with virtual table
 | |
|                ** UPDATE no-change flag set */
 | |
|       pMem->flags = MEM_Null|MEM_Zero;
 | |
|       pMem->n = 0;
 | |
|       pMem->u.nZero = 0;
 | |
|       break;
 | |
|     }
 | |
|     case 11:   /* Reserved for future use */
 | |
|     case 0: {  /* Null */
 | |
|       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
 | |
|       pMem->flags = MEM_Null;
 | |
|       break;
 | |
|     }
 | |
|     case 1: {
 | |
|       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
 | |
|       ** integer. */
 | |
|       pMem->u.i = ONE_BYTE_INT(buf);
 | |
|       pMem->flags = MEM_Int;
 | |
|       testcase( pMem->u.i<0 );
 | |
|       return 1;
 | |
|     }
 | |
|     case 2: { /* 2-byte signed integer */
 | |
|       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
 | |
|       ** twos-complement integer. */
 | |
|       pMem->u.i = TWO_BYTE_INT(buf);
 | |
|       pMem->flags = MEM_Int;
 | |
|       testcase( pMem->u.i<0 );
 | |
|       return 2;
 | |
|     }
 | |
|     case 3: { /* 3-byte signed integer */
 | |
|       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
 | |
|       ** twos-complement integer. */
 | |
|       pMem->u.i = THREE_BYTE_INT(buf);
 | |
|       pMem->flags = MEM_Int;
 | |
|       testcase( pMem->u.i<0 );
 | |
|       return 3;
 | |
|     }
 | |
|     case 4: { /* 4-byte signed integer */
 | |
|       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
 | |
|       ** twos-complement integer. */
 | |
|       pMem->u.i = FOUR_BYTE_INT(buf);
 | |
| #ifdef __HP_cc 
 | |
|       /* Work around a sign-extension bug in the HP compiler for HP/UX */
 | |
|       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
 | |
| #endif
 | |
|       pMem->flags = MEM_Int;
 | |
|       testcase( pMem->u.i<0 );
 | |
|       return 4;
 | |
|     }
 | |
|     case 5: { /* 6-byte signed integer */
 | |
|       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
 | |
|       ** twos-complement integer. */
 | |
|       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
 | |
|       pMem->flags = MEM_Int;
 | |
|       testcase( pMem->u.i<0 );
 | |
|       return 6;
 | |
|     }
 | |
|     case 6:   /* 8-byte signed integer */
 | |
|     case 7: { /* IEEE floating point */
 | |
|       /* These use local variables, so do them in a separate routine
 | |
|       ** to avoid having to move the frame pointer in the common case */
 | |
|       return serialGet(buf,serial_type,pMem);
 | |
|     }
 | |
|     case 8:    /* Integer 0 */
 | |
|     case 9: {  /* Integer 1 */
 | |
|       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
 | |
|       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
 | |
|       pMem->u.i = serial_type-8;
 | |
|       pMem->flags = MEM_Int;
 | |
|       return 0;
 | |
|     }
 | |
|     default: {
 | |
|       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
 | |
|       ** length.
 | |
|       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
 | |
|       ** (N-13)/2 bytes in length. */
 | |
|       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
 | |
|       pMem->z = (char *)buf;
 | |
|       pMem->n = (serial_type-12)/2;
 | |
|       pMem->flags = aFlag[serial_type&1];
 | |
|       return pMem->n;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| /*
 | |
| ** This routine is used to allocate sufficient space for an UnpackedRecord
 | |
| ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
 | |
| ** the first argument is a pointer to KeyInfo structure pKeyInfo.
 | |
| **
 | |
| ** The space is either allocated using sqlite3DbMallocRaw() or from within
 | |
| ** the unaligned buffer passed via the second and third arguments (presumably
 | |
| ** stack space). If the former, then *ppFree is set to a pointer that should
 | |
| ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 
 | |
| ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
 | |
| ** before returning.
 | |
| **
 | |
| ** If an OOM error occurs, NULL is returned.
 | |
| */
 | |
| UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
 | |
|   KeyInfo *pKeyInfo               /* Description of the record */
 | |
| ){
 | |
|   UnpackedRecord *p;              /* Unpacked record to return */
 | |
|   int nByte;                      /* Number of bytes required for *p */
 | |
|   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
 | |
|   p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
 | |
|   if( !p ) return 0;
 | |
|   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
 | |
|   assert( pKeyInfo->aSortFlags!=0 );
 | |
|   p->pKeyInfo = pKeyInfo;
 | |
|   p->nField = pKeyInfo->nKeyField + 1;
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given the nKey-byte encoding of a record in pKey[], populate the 
 | |
| ** UnpackedRecord structure indicated by the fourth argument with the
 | |
| ** contents of the decoded record.
 | |
| */ 
 | |
| void sqlite3VdbeRecordUnpack(
 | |
|   KeyInfo *pKeyInfo,     /* Information about the record format */
 | |
|   int nKey,              /* Size of the binary record */
 | |
|   const void *pKey,      /* The binary record */
 | |
|   UnpackedRecord *p      /* Populate this structure before returning. */
 | |
| ){
 | |
|   const unsigned char *aKey = (const unsigned char *)pKey;
 | |
|   u32 d; 
 | |
|   u32 idx;                        /* Offset in aKey[] to read from */
 | |
|   u16 u;                          /* Unsigned loop counter */
 | |
|   u32 szHdr;
 | |
|   Mem *pMem = p->aMem;
 | |
| 
 | |
|   p->default_rc = 0;
 | |
|   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
 | |
|   idx = getVarint32(aKey, szHdr);
 | |
|   d = szHdr;
 | |
|   u = 0;
 | |
|   while( idx<szHdr && d<=(u32)nKey ){
 | |
|     u32 serial_type;
 | |
| 
 | |
|     idx += getVarint32(&aKey[idx], serial_type);
 | |
|     pMem->enc = pKeyInfo->enc;
 | |
|     pMem->db = pKeyInfo->db;
 | |
|     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
 | |
|     pMem->szMalloc = 0;
 | |
|     pMem->z = 0;
 | |
|     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
 | |
|     pMem++;
 | |
|     if( (++u)>=p->nField ) break;
 | |
|   }
 | |
|   if( d>(u32)nKey && u ){
 | |
|     assert( CORRUPT_DB );
 | |
|     /* In a corrupt record entry, the last pMem might have been set up using 
 | |
|     ** uninitialized memory. Overwrite its value with NULL, to prevent
 | |
|     ** warnings from MSAN. */
 | |
|     sqlite3VdbeMemSetNull(pMem-1);
 | |
|   }
 | |
|   assert( u<=pKeyInfo->nKeyField + 1 );
 | |
|   p->nField = u;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** This function compares two index or table record keys in the same way
 | |
| ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
 | |
| ** this function deserializes and compares values using the
 | |
| ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
 | |
| ** in assert() statements to ensure that the optimized code in
 | |
| ** sqlite3VdbeRecordCompare() returns results with these two primitives.
 | |
| **
 | |
| ** Return true if the result of comparison is equivalent to desiredResult.
 | |
| ** Return false if there is a disagreement.
 | |
| */
 | |
| static int vdbeRecordCompareDebug(
 | |
|   int nKey1, const void *pKey1, /* Left key */
 | |
|   const UnpackedRecord *pPKey2, /* Right key */
 | |
|   int desiredResult             /* Correct answer */
 | |
| ){
 | |
|   u32 d1;            /* Offset into aKey[] of next data element */
 | |
|   u32 idx1;          /* Offset into aKey[] of next header element */
 | |
|   u32 szHdr1;        /* Number of bytes in header */
 | |
|   int i = 0;
 | |
|   int rc = 0;
 | |
|   const unsigned char *aKey1 = (const unsigned char *)pKey1;
 | |
|   KeyInfo *pKeyInfo;
 | |
|   Mem mem1;
 | |
| 
 | |
|   pKeyInfo = pPKey2->pKeyInfo;
 | |
|   if( pKeyInfo->db==0 ) return 1;
 | |
|   mem1.enc = pKeyInfo->enc;
 | |
|   mem1.db = pKeyInfo->db;
 | |
|   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
 | |
|   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
 | |
| 
 | |
|   /* Compilers may complain that mem1.u.i is potentially uninitialized.
 | |
|   ** We could initialize it, as shown here, to silence those complaints.
 | |
|   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 
 | |
|   ** the unnecessary initialization has a measurable negative performance
 | |
|   ** impact, since this routine is a very high runner.  And so, we choose
 | |
|   ** to ignore the compiler warnings and leave this variable uninitialized.
 | |
|   */
 | |
|   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
 | |
|   
 | |
|   idx1 = getVarint32(aKey1, szHdr1);
 | |
|   if( szHdr1>98307 ) return SQLITE_CORRUPT;
 | |
|   d1 = szHdr1;
 | |
|   assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
 | |
|   assert( pKeyInfo->aSortFlags!=0 );
 | |
|   assert( pKeyInfo->nKeyField>0 );
 | |
|   assert( idx1<=szHdr1 || CORRUPT_DB );
 | |
|   do{
 | |
|     u32 serial_type1;
 | |
| 
 | |
|     /* Read the serial types for the next element in each key. */
 | |
|     idx1 += getVarint32( aKey1+idx1, serial_type1 );
 | |
| 
 | |
|     /* Verify that there is enough key space remaining to avoid
 | |
|     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
 | |
|     ** always be greater than or equal to the amount of required key space.
 | |
|     ** Use that approximation to avoid the more expensive call to
 | |
|     ** sqlite3VdbeSerialTypeLen() in the common case.
 | |
|     */
 | |
|     if( d1+(u64)serial_type1+2>(u64)nKey1
 | |
|      && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 
 | |
|     ){
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* Extract the values to be compared.
 | |
|     */
 | |
|     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
 | |
| 
 | |
|     /* Do the comparison
 | |
|     */
 | |
|     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
 | |
|                            pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
 | |
|     if( rc!=0 ){
 | |
|       assert( mem1.szMalloc==0 );  /* See comment below */
 | |
|       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
 | |
|        && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) 
 | |
|       ){
 | |
|         rc = -rc;
 | |
|       }
 | |
|       if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
 | |
|         rc = -rc;  /* Invert the result for DESC sort order. */
 | |
|       }
 | |
|       goto debugCompareEnd;
 | |
|     }
 | |
|     i++;
 | |
|   }while( idx1<szHdr1 && i<pPKey2->nField );
 | |
| 
 | |
|   /* No memory allocation is ever used on mem1.  Prove this using
 | |
|   ** the following assert().  If the assert() fails, it indicates a
 | |
|   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
 | |
|   */
 | |
|   assert( mem1.szMalloc==0 );
 | |
| 
 | |
|   /* rc==0 here means that one of the keys ran out of fields and
 | |
|   ** all the fields up to that point were equal. Return the default_rc
 | |
|   ** value.  */
 | |
|   rc = pPKey2->default_rc;
 | |
| 
 | |
| debugCompareEnd:
 | |
|   if( desiredResult==0 && rc==0 ) return 1;
 | |
|   if( desiredResult<0 && rc<0 ) return 1;
 | |
|   if( desiredResult>0 && rc>0 ) return 1;
 | |
|   if( CORRUPT_DB ) return 1;
 | |
|   if( pKeyInfo->db->mallocFailed ) return 1;
 | |
|   return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** Count the number of fields (a.k.a. columns) in the record given by
 | |
| ** pKey,nKey.  The verify that this count is less than or equal to the
 | |
| ** limit given by pKeyInfo->nAllField.
 | |
| **
 | |
| ** If this constraint is not satisfied, it means that the high-speed
 | |
| ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
 | |
| ** not work correctly.  If this assert() ever fires, it probably means
 | |
| ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
 | |
| ** incorrectly.
 | |
| */
 | |
| static void vdbeAssertFieldCountWithinLimits(
 | |
|   int nKey, const void *pKey,   /* The record to verify */ 
 | |
|   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
 | |
| ){
 | |
|   int nField = 0;
 | |
|   u32 szHdr;
 | |
|   u32 idx;
 | |
|   u32 notUsed;
 | |
|   const unsigned char *aKey = (const unsigned char*)pKey;
 | |
| 
 | |
|   if( CORRUPT_DB ) return;
 | |
|   idx = getVarint32(aKey, szHdr);
 | |
|   assert( nKey>=0 );
 | |
|   assert( szHdr<=(u32)nKey );
 | |
|   while( idx<szHdr ){
 | |
|     idx += getVarint32(aKey+idx, notUsed);
 | |
|     nField++;
 | |
|   }
 | |
|   assert( nField <= pKeyInfo->nAllField );
 | |
| }
 | |
| #else
 | |
| # define vdbeAssertFieldCountWithinLimits(A,B,C)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Both *pMem1 and *pMem2 contain string values. Compare the two values
 | |
| ** using the collation sequence pColl. As usual, return a negative , zero
 | |
| ** or positive value if *pMem1 is less than, equal to or greater than 
 | |
| ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
 | |
| */
 | |
| static int vdbeCompareMemString(
 | |
|   const Mem *pMem1,
 | |
|   const Mem *pMem2,
 | |
|   const CollSeq *pColl,
 | |
|   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
 | |
| ){
 | |
|   if( pMem1->enc==pColl->enc ){
 | |
|     /* The strings are already in the correct encoding.  Call the
 | |
|      ** comparison function directly */
 | |
|     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
 | |
|   }else{
 | |
|     int rc;
 | |
|     const void *v1, *v2;
 | |
|     Mem c1;
 | |
|     Mem c2;
 | |
|     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
 | |
|     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
 | |
|     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
 | |
|     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
 | |
|     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
 | |
|     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
 | |
|     if( (v1==0 || v2==0) ){
 | |
|       if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
 | |
|       rc = 0;
 | |
|     }else{
 | |
|       rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
 | |
|     }
 | |
|     sqlite3VdbeMemRelease(&c1);
 | |
|     sqlite3VdbeMemRelease(&c2);
 | |
|     return rc;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The input pBlob is guaranteed to be a Blob that is not marked
 | |
| ** with MEM_Zero.  Return true if it could be a zero-blob.
 | |
| */
 | |
| static int isAllZero(const char *z, int n){
 | |
|   int i;
 | |
|   for(i=0; i<n; i++){
 | |
|     if( z[i] ) return 0;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compare two blobs.  Return negative, zero, or positive if the first
 | |
| ** is less than, equal to, or greater than the second, respectively.
 | |
| ** If one blob is a prefix of the other, then the shorter is the lessor.
 | |
| */
 | |
| SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
 | |
|   int c;
 | |
|   int n1 = pB1->n;
 | |
|   int n2 = pB2->n;
 | |
| 
 | |
|   /* It is possible to have a Blob value that has some non-zero content
 | |
|   ** followed by zero content.  But that only comes up for Blobs formed
 | |
|   ** by the OP_MakeRecord opcode, and such Blobs never get passed into
 | |
|   ** sqlite3MemCompare(). */
 | |
|   assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
 | |
|   assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
 | |
| 
 | |
|   if( (pB1->flags|pB2->flags) & MEM_Zero ){
 | |
|     if( pB1->flags & pB2->flags & MEM_Zero ){
 | |
|       return pB1->u.nZero - pB2->u.nZero;
 | |
|     }else if( pB1->flags & MEM_Zero ){
 | |
|       if( !isAllZero(pB2->z, pB2->n) ) return -1;
 | |
|       return pB1->u.nZero - n2;
 | |
|     }else{
 | |
|       if( !isAllZero(pB1->z, pB1->n) ) return +1;
 | |
|       return n1 - pB2->u.nZero;
 | |
|     }
 | |
|   }
 | |
|   c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
 | |
|   if( c ) return c;
 | |
|   return n1 - n2;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
 | |
| ** number.  Return negative, zero, or positive if the first (i64) is less than,
 | |
| ** equal to, or greater than the second (double).
 | |
| */
 | |
| int sqlite3IntFloatCompare(i64 i, double r){
 | |
|   if( sizeof(LONGDOUBLE_TYPE)>8 ){
 | |
|     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
 | |
|     testcase( x<r );
 | |
|     testcase( x>r );
 | |
|     testcase( x==r );
 | |
|     if( x<r ) return -1;
 | |
|     if( x>r ) return +1;  /*NO_TEST*/ /* work around bugs in gcov */
 | |
|     return 0;             /*NO_TEST*/ /* work around bugs in gcov */
 | |
|   }else{
 | |
|     i64 y;
 | |
|     double s;
 | |
|     if( r<-9223372036854775808.0 ) return +1;
 | |
|     if( r>=9223372036854775808.0 ) return -1;
 | |
|     y = (i64)r;
 | |
|     if( i<y ) return -1;
 | |
|     if( i>y ) return +1;
 | |
|     s = (double)i;
 | |
|     if( s<r ) return -1;
 | |
|     if( s>r ) return +1;
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compare the values contained by the two memory cells, returning
 | |
| ** negative, zero or positive if pMem1 is less than, equal to, or greater
 | |
| ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
 | |
| ** and reals) sorted numerically, followed by text ordered by the collating
 | |
| ** sequence pColl and finally blob's ordered by memcmp().
 | |
| **
 | |
| ** Two NULL values are considered equal by this function.
 | |
| */
 | |
| int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
 | |
|   int f1, f2;
 | |
|   int combined_flags;
 | |
| 
 | |
|   f1 = pMem1->flags;
 | |
|   f2 = pMem2->flags;
 | |
|   combined_flags = f1|f2;
 | |
|   assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
 | |
|  
 | |
|   /* If one value is NULL, it is less than the other. If both values
 | |
|   ** are NULL, return 0.
 | |
|   */
 | |
|   if( combined_flags&MEM_Null ){
 | |
|     return (f2&MEM_Null) - (f1&MEM_Null);
 | |
|   }
 | |
| 
 | |
|   /* At least one of the two values is a number
 | |
|   */
 | |
|   if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
 | |
|     testcase( combined_flags & MEM_Int );
 | |
|     testcase( combined_flags & MEM_Real );
 | |
|     testcase( combined_flags & MEM_IntReal );
 | |
|     if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
 | |
|       testcase( f1 & f2 & MEM_Int );
 | |
|       testcase( f1 & f2 & MEM_IntReal );
 | |
|       if( pMem1->u.i < pMem2->u.i ) return -1;
 | |
|       if( pMem1->u.i > pMem2->u.i ) return +1;
 | |
|       return 0;
 | |
|     }
 | |
|     if( (f1 & f2 & MEM_Real)!=0 ){
 | |
|       if( pMem1->u.r < pMem2->u.r ) return -1;
 | |
|       if( pMem1->u.r > pMem2->u.r ) return +1;
 | |
|       return 0;
 | |
|     }
 | |
|     if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
 | |
|       testcase( f1 & MEM_Int );
 | |
|       testcase( f1 & MEM_IntReal );
 | |
|       if( (f2&MEM_Real)!=0 ){
 | |
|         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
 | |
|       }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
 | |
|         if( pMem1->u.i < pMem2->u.i ) return -1;
 | |
|         if( pMem1->u.i > pMem2->u.i ) return +1;
 | |
|         return 0;
 | |
|       }else{
 | |
|         return -1;
 | |
|       }
 | |
|     }
 | |
|     if( (f1&MEM_Real)!=0 ){
 | |
|       if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
 | |
|         testcase( f2 & MEM_Int );
 | |
|         testcase( f2 & MEM_IntReal );
 | |
|         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
 | |
|       }else{
 | |
|         return -1;
 | |
|       }
 | |
|     }
 | |
|     return +1;
 | |
|   }
 | |
| 
 | |
|   /* If one value is a string and the other is a blob, the string is less.
 | |
|   ** If both are strings, compare using the collating functions.
 | |
|   */
 | |
|   if( combined_flags&MEM_Str ){
 | |
|     if( (f1 & MEM_Str)==0 ){
 | |
|       return 1;
 | |
|     }
 | |
|     if( (f2 & MEM_Str)==0 ){
 | |
|       return -1;
 | |
|     }
 | |
| 
 | |
|     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
 | |
|     assert( pMem1->enc==SQLITE_UTF8 || 
 | |
|             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
 | |
| 
 | |
|     /* The collation sequence must be defined at this point, even if
 | |
|     ** the user deletes the collation sequence after the vdbe program is
 | |
|     ** compiled (this was not always the case).
 | |
|     */
 | |
|     assert( !pColl || pColl->xCmp );
 | |
| 
 | |
|     if( pColl ){
 | |
|       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
 | |
|     }
 | |
|     /* If a NULL pointer was passed as the collate function, fall through
 | |
|     ** to the blob case and use memcmp().  */
 | |
|   }
 | |
|  
 | |
|   /* Both values must be blobs.  Compare using memcmp().  */
 | |
|   return sqlite3BlobCompare(pMem1, pMem2);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The first argument passed to this function is a serial-type that
 | |
| ** corresponds to an integer - all values between 1 and 9 inclusive 
 | |
| ** except 7. The second points to a buffer containing an integer value
 | |
| ** serialized according to serial_type. This function deserializes
 | |
| ** and returns the value.
 | |
| */
 | |
| static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
 | |
|   u32 y;
 | |
|   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
 | |
|   switch( serial_type ){
 | |
|     case 0:
 | |
|     case 1:
 | |
|       testcase( aKey[0]&0x80 );
 | |
|       return ONE_BYTE_INT(aKey);
 | |
|     case 2:
 | |
|       testcase( aKey[0]&0x80 );
 | |
|       return TWO_BYTE_INT(aKey);
 | |
|     case 3:
 | |
|       testcase( aKey[0]&0x80 );
 | |
|       return THREE_BYTE_INT(aKey);
 | |
|     case 4: {
 | |
|       testcase( aKey[0]&0x80 );
 | |
|       y = FOUR_BYTE_UINT(aKey);
 | |
|       return (i64)*(int*)&y;
 | |
|     }
 | |
|     case 5: {
 | |
|       testcase( aKey[0]&0x80 );
 | |
|       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
 | |
|     }
 | |
|     case 6: {
 | |
|       u64 x = FOUR_BYTE_UINT(aKey);
 | |
|       testcase( aKey[0]&0x80 );
 | |
|       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
 | |
|       return (i64)*(i64*)&x;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return (serial_type - 8);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function compares the two table rows or index records
 | |
| ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
 | |
| ** or positive integer if key1 is less than, equal to or 
 | |
| ** greater than key2.  The {nKey1, pKey1} key must be a blob
 | |
| ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
 | |
| ** key must be a parsed key such as obtained from
 | |
| ** sqlite3VdbeParseRecord.
 | |
| **
 | |
| ** If argument bSkip is non-zero, it is assumed that the caller has already
 | |
| ** determined that the first fields of the keys are equal.
 | |
| **
 | |
| ** Key1 and Key2 do not have to contain the same number of fields. If all 
 | |
| ** fields that appear in both keys are equal, then pPKey2->default_rc is 
 | |
| ** returned.
 | |
| **
 | |
| ** If database corruption is discovered, set pPKey2->errCode to 
 | |
| ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 
 | |
| ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
 | |
| ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
 | |
| */
 | |
| int sqlite3VdbeRecordCompareWithSkip(
 | |
|   int nKey1, const void *pKey1,   /* Left key */
 | |
|   UnpackedRecord *pPKey2,         /* Right key */
 | |
|   int bSkip                       /* If true, skip the first field */
 | |
| ){
 | |
|   u32 d1;                         /* Offset into aKey[] of next data element */
 | |
|   int i;                          /* Index of next field to compare */
 | |
|   u32 szHdr1;                     /* Size of record header in bytes */
 | |
|   u32 idx1;                       /* Offset of first type in header */
 | |
|   int rc = 0;                     /* Return value */
 | |
|   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
 | |
|   KeyInfo *pKeyInfo;
 | |
|   const unsigned char *aKey1 = (const unsigned char *)pKey1;
 | |
|   Mem mem1;
 | |
| 
 | |
|   /* If bSkip is true, then the caller has already determined that the first
 | |
|   ** two elements in the keys are equal. Fix the various stack variables so
 | |
|   ** that this routine begins comparing at the second field. */
 | |
|   if( bSkip ){
 | |
|     u32 s1;
 | |
|     idx1 = 1 + getVarint32(&aKey1[1], s1);
 | |
|     szHdr1 = aKey1[0];
 | |
|     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
 | |
|     i = 1;
 | |
|     pRhs++;
 | |
|   }else{
 | |
|     idx1 = getVarint32(aKey1, szHdr1);
 | |
|     d1 = szHdr1;
 | |
|     i = 0;
 | |
|   }
 | |
|   if( d1>(unsigned)nKey1 ){ 
 | |
|     pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
 | |
|     return 0;  /* Corruption */
 | |
|   }
 | |
| 
 | |
|   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
 | |
|   assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 
 | |
|        || CORRUPT_DB );
 | |
|   assert( pPKey2->pKeyInfo->aSortFlags!=0 );
 | |
|   assert( pPKey2->pKeyInfo->nKeyField>0 );
 | |
|   assert( idx1<=szHdr1 || CORRUPT_DB );
 | |
|   do{
 | |
|     u32 serial_type;
 | |
| 
 | |
|     /* RHS is an integer */
 | |
|     if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
 | |
|       testcase( pRhs->flags & MEM_Int );
 | |
|       testcase( pRhs->flags & MEM_IntReal );
 | |
|       serial_type = aKey1[idx1];
 | |
|       testcase( serial_type==12 );
 | |
|       if( serial_type>=10 ){
 | |
|         rc = +1;
 | |
|       }else if( serial_type==0 ){
 | |
|         rc = -1;
 | |
|       }else if( serial_type==7 ){
 | |
|         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
 | |
|         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
 | |
|       }else{
 | |
|         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
 | |
|         i64 rhs = pRhs->u.i;
 | |
|         if( lhs<rhs ){
 | |
|           rc = -1;
 | |
|         }else if( lhs>rhs ){
 | |
|           rc = +1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* RHS is real */
 | |
|     else if( pRhs->flags & MEM_Real ){
 | |
|       serial_type = aKey1[idx1];
 | |
|       if( serial_type>=10 ){
 | |
|         /* Serial types 12 or greater are strings and blobs (greater than
 | |
|         ** numbers). Types 10 and 11 are currently "reserved for future 
 | |
|         ** use", so it doesn't really matter what the results of comparing
 | |
|         ** them to numberic values are.  */
 | |
|         rc = +1;
 | |
|       }else if( serial_type==0 ){
 | |
|         rc = -1;
 | |
|       }else{
 | |
|         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
 | |
|         if( serial_type==7 ){
 | |
|           if( mem1.u.r<pRhs->u.r ){
 | |
|             rc = -1;
 | |
|           }else if( mem1.u.r>pRhs->u.r ){
 | |
|             rc = +1;
 | |
|           }
 | |
|         }else{
 | |
|           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* RHS is a string */
 | |
|     else if( pRhs->flags & MEM_Str ){
 | |
|       getVarint32NR(&aKey1[idx1], serial_type);
 | |
|       testcase( serial_type==12 );
 | |
|       if( serial_type<12 ){
 | |
|         rc = -1;
 | |
|       }else if( !(serial_type & 0x01) ){
 | |
|         rc = +1;
 | |
|       }else{
 | |
|         mem1.n = (serial_type - 12) / 2;
 | |
|         testcase( (d1+mem1.n)==(unsigned)nKey1 );
 | |
|         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
 | |
|         if( (d1+mem1.n) > (unsigned)nKey1
 | |
|          || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
 | |
|         ){
 | |
|           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
 | |
|           return 0;                /* Corruption */
 | |
|         }else if( pKeyInfo->aColl[i] ){
 | |
|           mem1.enc = pKeyInfo->enc;
 | |
|           mem1.db = pKeyInfo->db;
 | |
|           mem1.flags = MEM_Str;
 | |
|           mem1.z = (char*)&aKey1[d1];
 | |
|           rc = vdbeCompareMemString(
 | |
|               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
 | |
|           );
 | |
|         }else{
 | |
|           int nCmp = MIN(mem1.n, pRhs->n);
 | |
|           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
 | |
|           if( rc==0 ) rc = mem1.n - pRhs->n; 
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* RHS is a blob */
 | |
|     else if( pRhs->flags & MEM_Blob ){
 | |
|       assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
 | |
|       getVarint32NR(&aKey1[idx1], serial_type);
 | |
|       testcase( serial_type==12 );
 | |
|       if( serial_type<12 || (serial_type & 0x01) ){
 | |
|         rc = -1;
 | |
|       }else{
 | |
|         int nStr = (serial_type - 12) / 2;
 | |
|         testcase( (d1+nStr)==(unsigned)nKey1 );
 | |
|         testcase( (d1+nStr+1)==(unsigned)nKey1 );
 | |
|         if( (d1+nStr) > (unsigned)nKey1 ){
 | |
|           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
 | |
|           return 0;                /* Corruption */
 | |
|         }else if( pRhs->flags & MEM_Zero ){
 | |
|           if( !isAllZero((const char*)&aKey1[d1],nStr) ){
 | |
|             rc = 1;
 | |
|           }else{
 | |
|             rc = nStr - pRhs->u.nZero;
 | |
|           }
 | |
|         }else{
 | |
|           int nCmp = MIN(nStr, pRhs->n);
 | |
|           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
 | |
|           if( rc==0 ) rc = nStr - pRhs->n;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* RHS is null */
 | |
|     else{
 | |
|       serial_type = aKey1[idx1];
 | |
|       rc = (serial_type!=0);
 | |
|     }
 | |
| 
 | |
|     if( rc!=0 ){
 | |
|       int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
 | |
|       if( sortFlags ){
 | |
|         if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
 | |
|          || ((sortFlags & KEYINFO_ORDER_DESC)
 | |
|            !=(serial_type==0 || (pRhs->flags&MEM_Null)))
 | |
|         ){
 | |
|           rc = -rc;
 | |
|         }
 | |
|       }
 | |
|       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
 | |
|       assert( mem1.szMalloc==0 );  /* See comment below */
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     i++;
 | |
|     if( i==pPKey2->nField ) break;
 | |
|     pRhs++;
 | |
|     d1 += sqlite3VdbeSerialTypeLen(serial_type);
 | |
|     idx1 += sqlite3VarintLen(serial_type);
 | |
|   }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
 | |
| 
 | |
|   /* No memory allocation is ever used on mem1.  Prove this using
 | |
|   ** the following assert().  If the assert() fails, it indicates a
 | |
|   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
 | |
|   assert( mem1.szMalloc==0 );
 | |
| 
 | |
|   /* rc==0 here means that one or both of the keys ran out of fields and
 | |
|   ** all the fields up to that point were equal. Return the default_rc
 | |
|   ** value.  */
 | |
|   assert( CORRUPT_DB 
 | |
|        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 
 | |
|        || pPKey2->pKeyInfo->db->mallocFailed
 | |
|   );
 | |
|   pPKey2->eqSeen = 1;
 | |
|   return pPKey2->default_rc;
 | |
| }
 | |
| int sqlite3VdbeRecordCompare(
 | |
|   int nKey1, const void *pKey1,   /* Left key */
 | |
|   UnpackedRecord *pPKey2          /* Right key */
 | |
| ){
 | |
|   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This function is an optimized version of sqlite3VdbeRecordCompare() 
 | |
| ** that (a) the first field of pPKey2 is an integer, and (b) the 
 | |
| ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
 | |
| ** byte (i.e. is less than 128).
 | |
| **
 | |
| ** To avoid concerns about buffer overreads, this routine is only used
 | |
| ** on schemas where the maximum valid header size is 63 bytes or less.
 | |
| */
 | |
| static int vdbeRecordCompareInt(
 | |
|   int nKey1, const void *pKey1, /* Left key */
 | |
|   UnpackedRecord *pPKey2        /* Right key */
 | |
| ){
 | |
|   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
 | |
|   int serial_type = ((const u8*)pKey1)[1];
 | |
|   int res;
 | |
|   u32 y;
 | |
|   u64 x;
 | |
|   i64 v;
 | |
|   i64 lhs;
 | |
| 
 | |
|   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
 | |
|   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
 | |
|   switch( serial_type ){
 | |
|     case 1: { /* 1-byte signed integer */
 | |
|       lhs = ONE_BYTE_INT(aKey);
 | |
|       testcase( lhs<0 );
 | |
|       break;
 | |
|     }
 | |
|     case 2: { /* 2-byte signed integer */
 | |
|       lhs = TWO_BYTE_INT(aKey);
 | |
|       testcase( lhs<0 );
 | |
|       break;
 | |
|     }
 | |
|     case 3: { /* 3-byte signed integer */
 | |
|       lhs = THREE_BYTE_INT(aKey);
 | |
|       testcase( lhs<0 );
 | |
|       break;
 | |
|     }
 | |
|     case 4: { /* 4-byte signed integer */
 | |
|       y = FOUR_BYTE_UINT(aKey);
 | |
|       lhs = (i64)*(int*)&y;
 | |
|       testcase( lhs<0 );
 | |
|       break;
 | |
|     }
 | |
|     case 5: { /* 6-byte signed integer */
 | |
|       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
 | |
|       testcase( lhs<0 );
 | |
|       break;
 | |
|     }
 | |
|     case 6: { /* 8-byte signed integer */
 | |
|       x = FOUR_BYTE_UINT(aKey);
 | |
|       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
 | |
|       lhs = *(i64*)&x;
 | |
|       testcase( lhs<0 );
 | |
|       break;
 | |
|     }
 | |
|     case 8: 
 | |
|       lhs = 0;
 | |
|       break;
 | |
|     case 9:
 | |
|       lhs = 1;
 | |
|       break;
 | |
| 
 | |
|     /* This case could be removed without changing the results of running
 | |
|     ** this code. Including it causes gcc to generate a faster switch 
 | |
|     ** statement (since the range of switch targets now starts at zero and
 | |
|     ** is contiguous) but does not cause any duplicate code to be generated
 | |
|     ** (as gcc is clever enough to combine the two like cases). Other 
 | |
|     ** compilers might be similar.  */ 
 | |
|     case 0: case 7:
 | |
|       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
 | |
| 
 | |
|     default:
 | |
|       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
 | |
|   }
 | |
| 
 | |
|   v = pPKey2->aMem[0].u.i;
 | |
|   if( v>lhs ){
 | |
|     res = pPKey2->r1;
 | |
|   }else if( v<lhs ){
 | |
|     res = pPKey2->r2;
 | |
|   }else if( pPKey2->nField>1 ){
 | |
|     /* The first fields of the two keys are equal. Compare the trailing 
 | |
|     ** fields.  */
 | |
|     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
 | |
|   }else{
 | |
|     /* The first fields of the two keys are equal and there are no trailing
 | |
|     ** fields. Return pPKey2->default_rc in this case. */
 | |
|     res = pPKey2->default_rc;
 | |
|     pPKey2->eqSeen = 1;
 | |
|   }
 | |
| 
 | |
|   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is an optimized version of sqlite3VdbeRecordCompare() 
 | |
| ** that (a) the first field of pPKey2 is a string, that (b) the first field
 | |
| ** uses the collation sequence BINARY and (c) that the size-of-header varint 
 | |
| ** at the start of (pKey1/nKey1) fits in a single byte.
 | |
| */
 | |
| static int vdbeRecordCompareString(
 | |
|   int nKey1, const void *pKey1, /* Left key */
 | |
|   UnpackedRecord *pPKey2        /* Right key */
 | |
| ){
 | |
|   const u8 *aKey1 = (const u8*)pKey1;
 | |
|   int serial_type;
 | |
|   int res;
 | |
| 
 | |
|   assert( pPKey2->aMem[0].flags & MEM_Str );
 | |
|   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
 | |
|   serial_type = (u8)(aKey1[1]);
 | |
|   if( serial_type >= 0x80 ){
 | |
|     sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
 | |
|   }
 | |
|   if( serial_type<12 ){
 | |
|     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
 | |
|   }else if( !(serial_type & 0x01) ){ 
 | |
|     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
 | |
|   }else{
 | |
|     int nCmp;
 | |
|     int nStr;
 | |
|     int szHdr = aKey1[0];
 | |
| 
 | |
|     nStr = (serial_type-12) / 2;
 | |
|     if( (szHdr + nStr) > nKey1 ){
 | |
|       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
 | |
|       return 0;    /* Corruption */
 | |
|     }
 | |
|     nCmp = MIN( pPKey2->aMem[0].n, nStr );
 | |
|     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
 | |
| 
 | |
|     if( res>0 ){
 | |
|       res = pPKey2->r2;
 | |
|     }else if( res<0 ){
 | |
|       res = pPKey2->r1;
 | |
|     }else{
 | |
|       res = nStr - pPKey2->aMem[0].n;
 | |
|       if( res==0 ){
 | |
|         if( pPKey2->nField>1 ){
 | |
|           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
 | |
|         }else{
 | |
|           res = pPKey2->default_rc;
 | |
|           pPKey2->eqSeen = 1;
 | |
|         }
 | |
|       }else if( res>0 ){
 | |
|         res = pPKey2->r2;
 | |
|       }else{
 | |
|         res = pPKey2->r1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
 | |
|        || CORRUPT_DB
 | |
|        || pPKey2->pKeyInfo->db->mallocFailed
 | |
|   );
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
 | |
| ** suitable for comparing serialized records to the unpacked record passed
 | |
| ** as the only argument.
 | |
| */
 | |
| RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
 | |
|   /* varintRecordCompareInt() and varintRecordCompareString() both assume
 | |
|   ** that the size-of-header varint that occurs at the start of each record
 | |
|   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
 | |
|   ** also assumes that it is safe to overread a buffer by at least the 
 | |
|   ** maximum possible legal header size plus 8 bytes. Because there is
 | |
|   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
 | |
|   ** buffer passed to varintRecordCompareInt() this makes it convenient to
 | |
|   ** limit the size of the header to 64 bytes in cases where the first field
 | |
|   ** is an integer.
 | |
|   **
 | |
|   ** The easiest way to enforce this limit is to consider only records with
 | |
|   ** 13 fields or less. If the first field is an integer, the maximum legal
 | |
|   ** header size is (12*5 + 1 + 1) bytes.  */
 | |
|   if( p->pKeyInfo->nAllField<=13 ){
 | |
|     int flags = p->aMem[0].flags;
 | |
|     if( p->pKeyInfo->aSortFlags[0] ){
 | |
|       if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
 | |
|         return sqlite3VdbeRecordCompare;
 | |
|       }
 | |
|       p->r1 = 1;
 | |
|       p->r2 = -1;
 | |
|     }else{
 | |
|       p->r1 = -1;
 | |
|       p->r2 = 1;
 | |
|     }
 | |
|     if( (flags & MEM_Int) ){
 | |
|       return vdbeRecordCompareInt;
 | |
|     }
 | |
|     testcase( flags & MEM_Real );
 | |
|     testcase( flags & MEM_Null );
 | |
|     testcase( flags & MEM_Blob );
 | |
|     if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
 | |
|      && p->pKeyInfo->aColl[0]==0
 | |
|     ){
 | |
|       assert( flags & MEM_Str );
 | |
|       return vdbeRecordCompareString;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return sqlite3VdbeRecordCompare;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pCur points at an index entry created using the OP_MakeRecord opcode.
 | |
| ** Read the rowid (the last field in the record) and store it in *rowid.
 | |
| ** Return SQLITE_OK if everything works, or an error code otherwise.
 | |
| **
 | |
| ** pCur might be pointing to text obtained from a corrupt database file.
 | |
| ** So the content cannot be trusted.  Do appropriate checks on the content.
 | |
| */
 | |
| int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
 | |
|   i64 nCellKey = 0;
 | |
|   int rc;
 | |
|   u32 szHdr;        /* Size of the header */
 | |
|   u32 typeRowid;    /* Serial type of the rowid */
 | |
|   u32 lenRowid;     /* Size of the rowid */
 | |
|   Mem m, v;
 | |
| 
 | |
|   /* Get the size of the index entry.  Only indices entries of less
 | |
|   ** than 2GiB are support - anything large must be database corruption.
 | |
|   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
 | |
|   ** this code can safely assume that nCellKey is 32-bits  
 | |
|   */
 | |
|   assert( sqlite3BtreeCursorIsValid(pCur) );
 | |
|   nCellKey = sqlite3BtreePayloadSize(pCur);
 | |
|   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
 | |
| 
 | |
|   /* Read in the complete content of the index entry */
 | |
|   sqlite3VdbeMemInit(&m, db, 0);
 | |
|   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
 | |
|   if( rc ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   /* The index entry must begin with a header size */
 | |
|   getVarint32NR((u8*)m.z, szHdr);
 | |
|   testcase( szHdr==3 );
 | |
|   testcase( szHdr==m.n );
 | |
|   testcase( szHdr>0x7fffffff );
 | |
|   assert( m.n>=0 );
 | |
|   if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
 | |
|     goto idx_rowid_corruption;
 | |
|   }
 | |
| 
 | |
|   /* The last field of the index should be an integer - the ROWID.
 | |
|   ** Verify that the last entry really is an integer. */
 | |
|   getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
 | |
|   testcase( typeRowid==1 );
 | |
|   testcase( typeRowid==2 );
 | |
|   testcase( typeRowid==3 );
 | |
|   testcase( typeRowid==4 );
 | |
|   testcase( typeRowid==5 );
 | |
|   testcase( typeRowid==6 );
 | |
|   testcase( typeRowid==8 );
 | |
|   testcase( typeRowid==9 );
 | |
|   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
 | |
|     goto idx_rowid_corruption;
 | |
|   }
 | |
|   lenRowid = sqlite3SmallTypeSizes[typeRowid];
 | |
|   testcase( (u32)m.n==szHdr+lenRowid );
 | |
|   if( unlikely((u32)m.n<szHdr+lenRowid) ){
 | |
|     goto idx_rowid_corruption;
 | |
|   }
 | |
| 
 | |
|   /* Fetch the integer off the end of the index record */
 | |
|   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
 | |
|   *rowid = v.u.i;
 | |
|   sqlite3VdbeMemRelease(&m);
 | |
|   return SQLITE_OK;
 | |
| 
 | |
|   /* Jump here if database corruption is detected after m has been
 | |
|   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
 | |
| idx_rowid_corruption:
 | |
|   testcase( m.szMalloc!=0 );
 | |
|   sqlite3VdbeMemRelease(&m);
 | |
|   return SQLITE_CORRUPT_BKPT;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compare the key of the index entry that cursor pC is pointing to against
 | |
| ** the key string in pUnpacked.  Write into *pRes a number
 | |
| ** that is negative, zero, or positive if pC is less than, equal to,
 | |
| ** or greater than pUnpacked.  Return SQLITE_OK on success.
 | |
| **
 | |
| ** pUnpacked is either created without a rowid or is truncated so that it
 | |
| ** omits the rowid at the end.  The rowid at the end of the index entry
 | |
| ** is ignored as well.  Hence, this routine only compares the prefixes 
 | |
| ** of the keys prior to the final rowid, not the entire key.
 | |
| */
 | |
| int sqlite3VdbeIdxKeyCompare(
 | |
|   sqlite3 *db,                     /* Database connection */
 | |
|   VdbeCursor *pC,                  /* The cursor to compare against */
 | |
|   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
 | |
|   int *res                         /* Write the comparison result here */
 | |
| ){
 | |
|   i64 nCellKey = 0;
 | |
|   int rc;
 | |
|   BtCursor *pCur;
 | |
|   Mem m;
 | |
| 
 | |
|   assert( pC->eCurType==CURTYPE_BTREE );
 | |
|   pCur = pC->uc.pCursor;
 | |
|   assert( sqlite3BtreeCursorIsValid(pCur) );
 | |
|   nCellKey = sqlite3BtreePayloadSize(pCur);
 | |
|   /* nCellKey will always be between 0 and 0xffffffff because of the way
 | |
|   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
 | |
|   if( nCellKey<=0 || nCellKey>0x7fffffff ){
 | |
|     *res = 0;
 | |
|     return SQLITE_CORRUPT_BKPT;
 | |
|   }
 | |
|   sqlite3VdbeMemInit(&m, db, 0);
 | |
|   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
 | |
|   if( rc ){
 | |
|     return rc;
 | |
|   }
 | |
|   *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
 | |
|   sqlite3VdbeMemRelease(&m);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine sets the value to be returned by subsequent calls to
 | |
| ** sqlite3_changes() on the database handle 'db'. 
 | |
| */
 | |
| void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   db->nChange = nChange;
 | |
|   db->nTotalChange += nChange;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set a flag in the vdbe to update the change counter when it is finalised
 | |
| ** or reset.
 | |
| */
 | |
| void sqlite3VdbeCountChanges(Vdbe *v){
 | |
|   v->changeCntOn = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Mark every prepared statement associated with a database connection
 | |
| ** as expired.
 | |
| **
 | |
| ** An expired statement means that recompilation of the statement is
 | |
| ** recommend.  Statements expire when things happen that make their
 | |
| ** programs obsolete.  Removing user-defined functions or collating
 | |
| ** sequences, or changing an authorization function are the types of
 | |
| ** things that make prepared statements obsolete.
 | |
| **
 | |
| ** If iCode is 1, then expiration is advisory.  The statement should
 | |
| ** be reprepared before being restarted, but if it is already running
 | |
| ** it is allowed to run to completion.
 | |
| **
 | |
| ** Internally, this function just sets the Vdbe.expired flag on all
 | |
| ** prepared statements.  The flag is set to 1 for an immediate expiration
 | |
| ** and set to 2 for an advisory expiration.
 | |
| */
 | |
| void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
 | |
|   Vdbe *p;
 | |
|   for(p = db->pVdbe; p; p=p->pNext){
 | |
|     p->expired = iCode+1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the database associated with the Vdbe.
 | |
| */
 | |
| sqlite3 *sqlite3VdbeDb(Vdbe *v){
 | |
|   return v->db;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the SQLITE_PREPARE flags for a Vdbe.
 | |
| */
 | |
| u8 sqlite3VdbePrepareFlags(Vdbe *v){
 | |
|   return v->prepFlags;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to an sqlite3_value structure containing the value bound
 | |
| ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 
 | |
| ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
 | |
| ** constants) to the value before returning it.
 | |
| **
 | |
| ** The returned value must be freed by the caller using sqlite3ValueFree().
 | |
| */
 | |
| sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
 | |
|   assert( iVar>0 );
 | |
|   if( v ){
 | |
|     Mem *pMem = &v->aVar[iVar-1];
 | |
|     assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
 | |
|     if( 0==(pMem->flags & MEM_Null) ){
 | |
|       sqlite3_value *pRet = sqlite3ValueNew(v->db);
 | |
|       if( pRet ){
 | |
|         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
 | |
|         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
 | |
|       }
 | |
|       return pRet;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Configure SQL variable iVar so that binding a new value to it signals
 | |
| ** to sqlite3_reoptimize() that re-preparing the statement may result
 | |
| ** in a better query plan.
 | |
| */
 | |
| void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
 | |
|   assert( iVar>0 );
 | |
|   assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
 | |
|   if( iVar>=32 ){
 | |
|     v->expmask |= 0x80000000;
 | |
|   }else{
 | |
|     v->expmask |= ((u32)1 << (iVar-1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Cause a function to throw an error if it was call from OP_PureFunc
 | |
| ** rather than OP_Function.
 | |
| **
 | |
| ** OP_PureFunc means that the function must be deterministic, and should
 | |
| ** throw an error if it is given inputs that would make it non-deterministic.
 | |
| ** This routine is invoked by date/time functions that use non-deterministic
 | |
| ** features such as 'now'.
 | |
| */
 | |
| int sqlite3NotPureFunc(sqlite3_context *pCtx){
 | |
|   const VdbeOp *pOp;
 | |
| #ifdef SQLITE_ENABLE_STAT4
 | |
|   if( pCtx->pVdbe==0 ) return 1;
 | |
| #endif
 | |
|   pOp = pCtx->pVdbe->aOp + pCtx->iOp;
 | |
|   if( pOp->opcode==OP_PureFunc ){
 | |
|     const char *zContext;
 | |
|     char *zMsg;
 | |
|     if( pOp->p5 & NC_IsCheck ){
 | |
|       zContext = "a CHECK constraint";
 | |
|     }else if( pOp->p5 & NC_GenCol ){
 | |
|       zContext = "a generated column";
 | |
|     }else{
 | |
|       zContext = "an index";
 | |
|     }
 | |
|     zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
 | |
|                            pCtx->pFunc->zName, zContext);
 | |
|     sqlite3_result_error(pCtx, zMsg, -1);
 | |
|     sqlite3_free(zMsg);
 | |
|     return 0;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /*
 | |
| ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
 | |
| ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
 | |
| ** in memory obtained from sqlite3DbMalloc).
 | |
| */
 | |
| void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
 | |
|   if( pVtab->zErrMsg ){
 | |
|     sqlite3 *db = p->db;
 | |
|     sqlite3DbFree(db, p->zErrMsg);
 | |
|     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
 | |
|     sqlite3_free(pVtab->zErrMsg);
 | |
|     pVtab->zErrMsg = 0;
 | |
|   }
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
 | |
| 
 | |
| /*
 | |
| ** If the second argument is not NULL, release any allocations associated 
 | |
| ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
 | |
| ** structure itself, using sqlite3DbFree().
 | |
| **
 | |
| ** This function is used to free UnpackedRecord structures allocated by
 | |
| ** the vdbeUnpackRecord() function found in vdbeapi.c.
 | |
| */
 | |
| static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
 | |
|   if( p ){
 | |
|     int i;
 | |
|     for(i=0; i<nField; i++){
 | |
|       Mem *pMem = &p->aMem[i];
 | |
|       if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
 | |
|     }
 | |
|     sqlite3DbFreeNN(db, p);
 | |
|   }
 | |
| }
 | |
| #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
 | |
| /*
 | |
| ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
 | |
| ** then cursor passed as the second argument should point to the row about
 | |
| ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
 | |
| ** the required value will be read from the row the cursor points to.
 | |
| */
 | |
| void sqlite3VdbePreUpdateHook(
 | |
|   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
 | |
|   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
 | |
|   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
 | |
|   const char *zDb,                /* Database name */
 | |
|   Table *pTab,                    /* Modified table */
 | |
|   i64 iKey1,                      /* Initial key value */
 | |
|   int iReg,                       /* Register for new.* record */
 | |
|   int iBlobWrite
 | |
| ){
 | |
|   sqlite3 *db = v->db;
 | |
|   i64 iKey2;
 | |
|   PreUpdate preupdate;
 | |
|   const char *zTbl = pTab->zName;
 | |
|   static const u8 fakeSortOrder = 0;
 | |
| 
 | |
|   assert( db->pPreUpdate==0 );
 | |
|   memset(&preupdate, 0, sizeof(PreUpdate));
 | |
|   if( HasRowid(pTab)==0 ){
 | |
|     iKey1 = iKey2 = 0;
 | |
|     preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
 | |
|   }else{
 | |
|     if( op==SQLITE_UPDATE ){
 | |
|       iKey2 = v->aMem[iReg].u.i;
 | |
|     }else{
 | |
|       iKey2 = iKey1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert( pCsr->nField==pTab->nCol 
 | |
|        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
 | |
|   );
 | |
| 
 | |
|   preupdate.v = v;
 | |
|   preupdate.pCsr = pCsr;
 | |
|   preupdate.op = op;
 | |
|   preupdate.iNewReg = iReg;
 | |
|   preupdate.keyinfo.db = db;
 | |
|   preupdate.keyinfo.enc = ENC(db);
 | |
|   preupdate.keyinfo.nKeyField = pTab->nCol;
 | |
|   preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
 | |
|   preupdate.iKey1 = iKey1;
 | |
|   preupdate.iKey2 = iKey2;
 | |
|   preupdate.pTab = pTab;
 | |
|   preupdate.iBlobWrite = iBlobWrite;
 | |
| 
 | |
|   db->pPreUpdate = &preupdate;
 | |
|   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
 | |
|   db->pPreUpdate = 0;
 | |
|   sqlite3DbFree(db, preupdate.aRecord);
 | |
|   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
 | |
|   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
 | |
|   if( preupdate.aNew ){
 | |
|     int i;
 | |
|     for(i=0; i<pCsr->nField; i++){
 | |
|       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
 | |
|     }
 | |
|     sqlite3DbFreeNN(db, preupdate.aNew);
 | |
|   }
 | |
| }
 | |
| #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
 | 
