mirror of
				https://github.com/sqlite/sqlite.git
				synced 2025-11-03 16:53:36 +03:00 
			
		
		
		
	SQLITE_OMIT_VIRTUALTABLE defined. FossilOrigin-Name: 136bf323e42dc90e1780199a381bcbb084b069eca5c7343ee6fc6e2550831536
		
			
				
	
	
		
			4238 lines
		
	
	
		
			130 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4238 lines
		
	
	
		
			130 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
** 2001 September 15
 | 
						|
**
 | 
						|
** The author disclaims copyright to this source code.  In place of
 | 
						|
** a legal notice, here is a blessing:
 | 
						|
**
 | 
						|
**    May you do good and not evil.
 | 
						|
**    May you find forgiveness for yourself and forgive others.
 | 
						|
**    May you share freely, never taking more than you give.
 | 
						|
**
 | 
						|
*************************************************************************
 | 
						|
** This file contains code for implementations of the r-tree and r*-tree
 | 
						|
** algorithms packaged as an SQLite virtual table module.
 | 
						|
*/
 | 
						|
 | 
						|
/*
 | 
						|
** Database Format of R-Tree Tables
 | 
						|
** --------------------------------
 | 
						|
**
 | 
						|
** The data structure for a single virtual r-tree table is stored in three 
 | 
						|
** native SQLite tables declared as follows. In each case, the '%' character
 | 
						|
** in the table name is replaced with the user-supplied name of the r-tree
 | 
						|
** table.
 | 
						|
**
 | 
						|
**   CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
 | 
						|
**   CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
 | 
						|
**   CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER)
 | 
						|
**
 | 
						|
** The data for each node of the r-tree structure is stored in the %_node
 | 
						|
** table. For each node that is not the root node of the r-tree, there is
 | 
						|
** an entry in the %_parent table associating the node with its parent.
 | 
						|
** And for each row of data in the table, there is an entry in the %_rowid
 | 
						|
** table that maps from the entries rowid to the id of the node that it
 | 
						|
** is stored on.
 | 
						|
**
 | 
						|
** The root node of an r-tree always exists, even if the r-tree table is
 | 
						|
** empty. The nodeno of the root node is always 1. All other nodes in the
 | 
						|
** table must be the same size as the root node. The content of each node
 | 
						|
** is formatted as follows:
 | 
						|
**
 | 
						|
**   1. If the node is the root node (node 1), then the first 2 bytes
 | 
						|
**      of the node contain the tree depth as a big-endian integer.
 | 
						|
**      For non-root nodes, the first 2 bytes are left unused.
 | 
						|
**
 | 
						|
**   2. The next 2 bytes contain the number of entries currently 
 | 
						|
**      stored in the node.
 | 
						|
**
 | 
						|
**   3. The remainder of the node contains the node entries. Each entry
 | 
						|
**      consists of a single 8-byte integer followed by an even number
 | 
						|
**      of 4-byte coordinates. For leaf nodes the integer is the rowid
 | 
						|
**      of a record. For internal nodes it is the node number of a
 | 
						|
**      child page.
 | 
						|
*/
 | 
						|
 | 
						|
#if !defined(SQLITE_CORE) \
 | 
						|
  || (defined(SQLITE_ENABLE_RTREE) && !defined(SQLITE_OMIT_VIRTUALTABLE))
 | 
						|
 | 
						|
#ifndef SQLITE_CORE
 | 
						|
  #include "sqlite3ext.h"
 | 
						|
  SQLITE_EXTENSION_INIT1
 | 
						|
#else
 | 
						|
  #include "sqlite3.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
#include <assert.h>
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
#ifndef SQLITE_AMALGAMATION
 | 
						|
#include "sqlite3rtree.h"
 | 
						|
typedef sqlite3_int64 i64;
 | 
						|
typedef sqlite3_uint64 u64;
 | 
						|
typedef unsigned char u8;
 | 
						|
typedef unsigned short u16;
 | 
						|
typedef unsigned int u32;
 | 
						|
#endif
 | 
						|
 | 
						|
/*  The following macro is used to suppress compiler warnings.
 | 
						|
*/
 | 
						|
#ifndef UNUSED_PARAMETER
 | 
						|
# define UNUSED_PARAMETER(x) (void)(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef struct Rtree Rtree;
 | 
						|
typedef struct RtreeCursor RtreeCursor;
 | 
						|
typedef struct RtreeNode RtreeNode;
 | 
						|
typedef struct RtreeCell RtreeCell;
 | 
						|
typedef struct RtreeConstraint RtreeConstraint;
 | 
						|
typedef struct RtreeMatchArg RtreeMatchArg;
 | 
						|
typedef struct RtreeGeomCallback RtreeGeomCallback;
 | 
						|
typedef union RtreeCoord RtreeCoord;
 | 
						|
typedef struct RtreeSearchPoint RtreeSearchPoint;
 | 
						|
 | 
						|
/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
 | 
						|
#define RTREE_MAX_DIMENSIONS 5
 | 
						|
 | 
						|
/* Size of hash table Rtree.aHash. This hash table is not expected to
 | 
						|
** ever contain very many entries, so a fixed number of buckets is 
 | 
						|
** used.
 | 
						|
*/
 | 
						|
#define HASHSIZE 97
 | 
						|
 | 
						|
/* The xBestIndex method of this virtual table requires an estimate of
 | 
						|
** the number of rows in the virtual table to calculate the costs of
 | 
						|
** various strategies. If possible, this estimate is loaded from the
 | 
						|
** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum).
 | 
						|
** Otherwise, if no sqlite_stat1 entry is available, use 
 | 
						|
** RTREE_DEFAULT_ROWEST.
 | 
						|
*/
 | 
						|
#define RTREE_DEFAULT_ROWEST 1048576
 | 
						|
#define RTREE_MIN_ROWEST         100
 | 
						|
 | 
						|
/* 
 | 
						|
** An rtree virtual-table object.
 | 
						|
*/
 | 
						|
struct Rtree {
 | 
						|
  sqlite3_vtab base;          /* Base class.  Must be first */
 | 
						|
  sqlite3 *db;                /* Host database connection */
 | 
						|
  int iNodeSize;              /* Size in bytes of each node in the node table */
 | 
						|
  u8 nDim;                    /* Number of dimensions */
 | 
						|
  u8 nDim2;                   /* Twice the number of dimensions */
 | 
						|
  u8 eCoordType;              /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
 | 
						|
  u8 nBytesPerCell;           /* Bytes consumed per cell */
 | 
						|
  u8 inWrTrans;               /* True if inside write transaction */
 | 
						|
  int iDepth;                 /* Current depth of the r-tree structure */
 | 
						|
  char *zDb;                  /* Name of database containing r-tree table */
 | 
						|
  char *zName;                /* Name of r-tree table */ 
 | 
						|
  u32 nBusy;                  /* Current number of users of this structure */
 | 
						|
  i64 nRowEst;                /* Estimated number of rows in this table */
 | 
						|
  u32 nCursor;                /* Number of open cursors */
 | 
						|
 | 
						|
  /* List of nodes removed during a CondenseTree operation. List is
 | 
						|
  ** linked together via the pointer normally used for hash chains -
 | 
						|
  ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 
 | 
						|
  ** headed by the node (leaf nodes have RtreeNode.iNode==0).
 | 
						|
  */
 | 
						|
  RtreeNode *pDeleted;
 | 
						|
  int iReinsertHeight;        /* Height of sub-trees Reinsert() has run on */
 | 
						|
 | 
						|
  /* Blob I/O on xxx_node */
 | 
						|
  sqlite3_blob *pNodeBlob;
 | 
						|
 | 
						|
  /* Statements to read/write/delete a record from xxx_node */
 | 
						|
  sqlite3_stmt *pWriteNode;
 | 
						|
  sqlite3_stmt *pDeleteNode;
 | 
						|
 | 
						|
  /* Statements to read/write/delete a record from xxx_rowid */
 | 
						|
  sqlite3_stmt *pReadRowid;
 | 
						|
  sqlite3_stmt *pWriteRowid;
 | 
						|
  sqlite3_stmt *pDeleteRowid;
 | 
						|
 | 
						|
  /* Statements to read/write/delete a record from xxx_parent */
 | 
						|
  sqlite3_stmt *pReadParent;
 | 
						|
  sqlite3_stmt *pWriteParent;
 | 
						|
  sqlite3_stmt *pDeleteParent;
 | 
						|
 | 
						|
  RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ 
 | 
						|
};
 | 
						|
 | 
						|
/* Possible values for Rtree.eCoordType: */
 | 
						|
#define RTREE_COORD_REAL32 0
 | 
						|
#define RTREE_COORD_INT32  1
 | 
						|
 | 
						|
/*
 | 
						|
** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
 | 
						|
** only deal with integer coordinates.  No floating point operations
 | 
						|
** will be done.
 | 
						|
*/
 | 
						|
#ifdef SQLITE_RTREE_INT_ONLY
 | 
						|
  typedef sqlite3_int64 RtreeDValue;       /* High accuracy coordinate */
 | 
						|
  typedef int RtreeValue;                  /* Low accuracy coordinate */
 | 
						|
# define RTREE_ZERO 0
 | 
						|
#else
 | 
						|
  typedef double RtreeDValue;              /* High accuracy coordinate */
 | 
						|
  typedef float RtreeValue;                /* Low accuracy coordinate */
 | 
						|
# define RTREE_ZERO 0.0
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** When doing a search of an r-tree, instances of the following structure
 | 
						|
** record intermediate results from the tree walk.
 | 
						|
**
 | 
						|
** The id is always a node-id.  For iLevel>=1 the id is the node-id of
 | 
						|
** the node that the RtreeSearchPoint represents.  When iLevel==0, however,
 | 
						|
** the id is of the parent node and the cell that RtreeSearchPoint
 | 
						|
** represents is the iCell-th entry in the parent node.
 | 
						|
*/
 | 
						|
struct RtreeSearchPoint {
 | 
						|
  RtreeDValue rScore;    /* The score for this node.  Smallest goes first. */
 | 
						|
  sqlite3_int64 id;      /* Node ID */
 | 
						|
  u8 iLevel;             /* 0=entries.  1=leaf node.  2+ for higher */
 | 
						|
  u8 eWithin;            /* PARTLY_WITHIN or FULLY_WITHIN */
 | 
						|
  u8 iCell;              /* Cell index within the node */
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
** The minimum number of cells allowed for a node is a third of the 
 | 
						|
** maximum. In Gutman's notation:
 | 
						|
**
 | 
						|
**     m = M/3
 | 
						|
**
 | 
						|
** If an R*-tree "Reinsert" operation is required, the same number of
 | 
						|
** cells are removed from the overfull node and reinserted into the tree.
 | 
						|
*/
 | 
						|
#define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
 | 
						|
#define RTREE_REINSERT(p) RTREE_MINCELLS(p)
 | 
						|
#define RTREE_MAXCELLS 51
 | 
						|
 | 
						|
/*
 | 
						|
** The smallest possible node-size is (512-64)==448 bytes. And the largest
 | 
						|
** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
 | 
						|
** Therefore all non-root nodes must contain at least 3 entries. Since 
 | 
						|
** 3^40 is greater than 2^64, an r-tree structure always has a depth of
 | 
						|
** 40 or less.
 | 
						|
*/
 | 
						|
#define RTREE_MAX_DEPTH 40
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Number of entries in the cursor RtreeNode cache.  The first entry is
 | 
						|
** used to cache the RtreeNode for RtreeCursor.sPoint.  The remaining
 | 
						|
** entries cache the RtreeNode for the first elements of the priority queue.
 | 
						|
*/
 | 
						|
#define RTREE_CACHE_SZ  5
 | 
						|
 | 
						|
/* 
 | 
						|
** An rtree cursor object.
 | 
						|
*/
 | 
						|
struct RtreeCursor {
 | 
						|
  sqlite3_vtab_cursor base;         /* Base class.  Must be first */
 | 
						|
  u8 atEOF;                         /* True if at end of search */
 | 
						|
  u8 bPoint;                        /* True if sPoint is valid */
 | 
						|
  int iStrategy;                    /* Copy of idxNum search parameter */
 | 
						|
  int nConstraint;                  /* Number of entries in aConstraint */
 | 
						|
  RtreeConstraint *aConstraint;     /* Search constraints. */
 | 
						|
  int nPointAlloc;                  /* Number of slots allocated for aPoint[] */
 | 
						|
  int nPoint;                       /* Number of slots used in aPoint[] */
 | 
						|
  int mxLevel;                      /* iLevel value for root of the tree */
 | 
						|
  RtreeSearchPoint *aPoint;         /* Priority queue for search points */
 | 
						|
  RtreeSearchPoint sPoint;          /* Cached next search point */
 | 
						|
  RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */
 | 
						|
  u32 anQueue[RTREE_MAX_DEPTH+1];   /* Number of queued entries by iLevel */
 | 
						|
};
 | 
						|
 | 
						|
/* Return the Rtree of a RtreeCursor */
 | 
						|
#define RTREE_OF_CURSOR(X)   ((Rtree*)((X)->base.pVtab))
 | 
						|
 | 
						|
/*
 | 
						|
** A coordinate can be either a floating point number or a integer.  All
 | 
						|
** coordinates within a single R-Tree are always of the same time.
 | 
						|
*/
 | 
						|
union RtreeCoord {
 | 
						|
  RtreeValue f;      /* Floating point value */
 | 
						|
  int i;             /* Integer value */
 | 
						|
  u32 u;             /* Unsigned for byte-order conversions */
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
 | 
						|
** formatted as a RtreeDValue (double or int64). This macro assumes that local
 | 
						|
** variable pRtree points to the Rtree structure associated with the
 | 
						|
** RtreeCoord.
 | 
						|
*/
 | 
						|
#ifdef SQLITE_RTREE_INT_ONLY
 | 
						|
# define DCOORD(coord) ((RtreeDValue)coord.i)
 | 
						|
#else
 | 
						|
# define DCOORD(coord) (                           \
 | 
						|
    (pRtree->eCoordType==RTREE_COORD_REAL32) ?      \
 | 
						|
      ((double)coord.f) :                           \
 | 
						|
      ((double)coord.i)                             \
 | 
						|
  )
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** A search constraint.
 | 
						|
*/
 | 
						|
struct RtreeConstraint {
 | 
						|
  int iCoord;                     /* Index of constrained coordinate */
 | 
						|
  int op;                         /* Constraining operation */
 | 
						|
  union {
 | 
						|
    RtreeDValue rValue;             /* Constraint value. */
 | 
						|
    int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*);
 | 
						|
    int (*xQueryFunc)(sqlite3_rtree_query_info*);
 | 
						|
  } u;
 | 
						|
  sqlite3_rtree_query_info *pInfo;  /* xGeom and xQueryFunc argument */
 | 
						|
};
 | 
						|
 | 
						|
/* Possible values for RtreeConstraint.op */
 | 
						|
#define RTREE_EQ    0x41  /* A */
 | 
						|
#define RTREE_LE    0x42  /* B */
 | 
						|
#define RTREE_LT    0x43  /* C */
 | 
						|
#define RTREE_GE    0x44  /* D */
 | 
						|
#define RTREE_GT    0x45  /* E */
 | 
						|
#define RTREE_MATCH 0x46  /* F: Old-style sqlite3_rtree_geometry_callback() */
 | 
						|
#define RTREE_QUERY 0x47  /* G: New-style sqlite3_rtree_query_callback() */
 | 
						|
 | 
						|
 | 
						|
/* 
 | 
						|
** An rtree structure node.
 | 
						|
*/
 | 
						|
struct RtreeNode {
 | 
						|
  RtreeNode *pParent;         /* Parent node */
 | 
						|
  i64 iNode;                  /* The node number */
 | 
						|
  int nRef;                   /* Number of references to this node */
 | 
						|
  int isDirty;                /* True if the node needs to be written to disk */
 | 
						|
  u8 *zData;                  /* Content of the node, as should be on disk */
 | 
						|
  RtreeNode *pNext;           /* Next node in this hash collision chain */
 | 
						|
};
 | 
						|
 | 
						|
/* Return the number of cells in a node  */
 | 
						|
#define NCELL(pNode) readInt16(&(pNode)->zData[2])
 | 
						|
 | 
						|
/* 
 | 
						|
** A single cell from a node, deserialized
 | 
						|
*/
 | 
						|
struct RtreeCell {
 | 
						|
  i64 iRowid;                                 /* Node or entry ID */
 | 
						|
  RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2];  /* Bounding box coordinates */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** This object becomes the sqlite3_user_data() for the SQL functions
 | 
						|
** that are created by sqlite3_rtree_geometry_callback() and
 | 
						|
** sqlite3_rtree_query_callback() and which appear on the right of MATCH
 | 
						|
** operators in order to constrain a search.
 | 
						|
**
 | 
						|
** xGeom and xQueryFunc are the callback functions.  Exactly one of 
 | 
						|
** xGeom and xQueryFunc fields is non-NULL, depending on whether the
 | 
						|
** SQL function was created using sqlite3_rtree_geometry_callback() or
 | 
						|
** sqlite3_rtree_query_callback().
 | 
						|
** 
 | 
						|
** This object is deleted automatically by the destructor mechanism in
 | 
						|
** sqlite3_create_function_v2().
 | 
						|
*/
 | 
						|
struct RtreeGeomCallback {
 | 
						|
  int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*);
 | 
						|
  int (*xQueryFunc)(sqlite3_rtree_query_info*);
 | 
						|
  void (*xDestructor)(void*);
 | 
						|
  void *pContext;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
** An instance of this structure (in the form of a BLOB) is returned by
 | 
						|
** the SQL functions that sqlite3_rtree_geometry_callback() and
 | 
						|
** sqlite3_rtree_query_callback() create, and is read as the right-hand
 | 
						|
** operand to the MATCH operator of an R-Tree.
 | 
						|
*/
 | 
						|
struct RtreeMatchArg {
 | 
						|
  u32 iSize;                  /* Size of this object */
 | 
						|
  RtreeGeomCallback cb;       /* Info about the callback functions */
 | 
						|
  int nParam;                 /* Number of parameters to the SQL function */
 | 
						|
  sqlite3_value **apSqlParam; /* Original SQL parameter values */
 | 
						|
  RtreeDValue aParam[1];      /* Values for parameters to the SQL function */
 | 
						|
};
 | 
						|
 | 
						|
#ifndef MAX
 | 
						|
# define MAX(x,y) ((x) < (y) ? (y) : (x))
 | 
						|
#endif
 | 
						|
#ifndef MIN
 | 
						|
# define MIN(x,y) ((x) > (y) ? (y) : (x))
 | 
						|
#endif
 | 
						|
 | 
						|
/* What version of GCC is being used.  0 means GCC is not being used .
 | 
						|
** Note that the GCC_VERSION macro will also be set correctly when using
 | 
						|
** clang, since clang works hard to be gcc compatible.  So the gcc
 | 
						|
** optimizations will also work when compiling with clang.
 | 
						|
*/
 | 
						|
#ifndef GCC_VERSION
 | 
						|
#if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
 | 
						|
# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
 | 
						|
#else
 | 
						|
# define GCC_VERSION 0
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
/* The testcase() macro should already be defined in the amalgamation.  If
 | 
						|
** it is not, make it a no-op.
 | 
						|
*/
 | 
						|
#ifndef SQLITE_AMALGAMATION
 | 
						|
# define testcase(X)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** Macros to determine whether the machine is big or little endian,
 | 
						|
** and whether or not that determination is run-time or compile-time.
 | 
						|
**
 | 
						|
** For best performance, an attempt is made to guess at the byte-order
 | 
						|
** using C-preprocessor macros.  If that is unsuccessful, or if
 | 
						|
** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
 | 
						|
** at run-time.
 | 
						|
*/
 | 
						|
#ifndef SQLITE_BYTEORDER
 | 
						|
#if defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
 | 
						|
    defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
 | 
						|
    defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
 | 
						|
    defined(__arm__)
 | 
						|
# define SQLITE_BYTEORDER    1234
 | 
						|
#elif defined(sparc)    || defined(__ppc__)
 | 
						|
# define SQLITE_BYTEORDER    4321
 | 
						|
#else
 | 
						|
# define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* What version of MSVC is being used.  0 means MSVC is not being used */
 | 
						|
#ifndef MSVC_VERSION
 | 
						|
#if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
 | 
						|
# define MSVC_VERSION _MSC_VER
 | 
						|
#else
 | 
						|
# define MSVC_VERSION 0
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** Functions to deserialize a 16 bit integer, 32 bit real number and
 | 
						|
** 64 bit integer. The deserialized value is returned.
 | 
						|
*/
 | 
						|
static int readInt16(u8 *p){
 | 
						|
  return (p[0]<<8) + p[1];
 | 
						|
}
 | 
						|
static void readCoord(u8 *p, RtreeCoord *pCoord){
 | 
						|
  assert( ((((char*)p) - (char*)0)&3)==0 );  /* p is always 4-byte aligned */
 | 
						|
#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
 | 
						|
  pCoord->u = _byteswap_ulong(*(u32*)p);
 | 
						|
#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
 | 
						|
  pCoord->u = __builtin_bswap32(*(u32*)p);
 | 
						|
#elif SQLITE_BYTEORDER==4321
 | 
						|
  pCoord->u = *(u32*)p;
 | 
						|
#else
 | 
						|
  pCoord->u = (
 | 
						|
    (((u32)p[0]) << 24) + 
 | 
						|
    (((u32)p[1]) << 16) + 
 | 
						|
    (((u32)p[2]) <<  8) + 
 | 
						|
    (((u32)p[3]) <<  0)
 | 
						|
  );
 | 
						|
#endif
 | 
						|
}
 | 
						|
static i64 readInt64(u8 *p){
 | 
						|
#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
 | 
						|
  u64 x;
 | 
						|
  memcpy(&x, p, 8);
 | 
						|
  return (i64)_byteswap_uint64(x);
 | 
						|
#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
 | 
						|
  u64 x;
 | 
						|
  memcpy(&x, p, 8);
 | 
						|
  return (i64)__builtin_bswap64(x);
 | 
						|
#elif SQLITE_BYTEORDER==4321
 | 
						|
  i64 x;
 | 
						|
  memcpy(&x, p, 8);
 | 
						|
  return x;
 | 
						|
#else
 | 
						|
  return (i64)(
 | 
						|
    (((u64)p[0]) << 56) + 
 | 
						|
    (((u64)p[1]) << 48) + 
 | 
						|
    (((u64)p[2]) << 40) + 
 | 
						|
    (((u64)p[3]) << 32) + 
 | 
						|
    (((u64)p[4]) << 24) + 
 | 
						|
    (((u64)p[5]) << 16) + 
 | 
						|
    (((u64)p[6]) <<  8) + 
 | 
						|
    (((u64)p[7]) <<  0)
 | 
						|
  );
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Functions to serialize a 16 bit integer, 32 bit real number and
 | 
						|
** 64 bit integer. The value returned is the number of bytes written
 | 
						|
** to the argument buffer (always 2, 4 and 8 respectively).
 | 
						|
*/
 | 
						|
static void writeInt16(u8 *p, int i){
 | 
						|
  p[0] = (i>> 8)&0xFF;
 | 
						|
  p[1] = (i>> 0)&0xFF;
 | 
						|
}
 | 
						|
static int writeCoord(u8 *p, RtreeCoord *pCoord){
 | 
						|
  u32 i;
 | 
						|
  assert( ((((char*)p) - (char*)0)&3)==0 );  /* p is always 4-byte aligned */
 | 
						|
  assert( sizeof(RtreeCoord)==4 );
 | 
						|
  assert( sizeof(u32)==4 );
 | 
						|
#if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
 | 
						|
  i = __builtin_bswap32(pCoord->u);
 | 
						|
  memcpy(p, &i, 4);
 | 
						|
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
 | 
						|
  i = _byteswap_ulong(pCoord->u);
 | 
						|
  memcpy(p, &i, 4);
 | 
						|
#elif SQLITE_BYTEORDER==4321
 | 
						|
  i = pCoord->u;
 | 
						|
  memcpy(p, &i, 4);
 | 
						|
#else
 | 
						|
  i = pCoord->u;
 | 
						|
  p[0] = (i>>24)&0xFF;
 | 
						|
  p[1] = (i>>16)&0xFF;
 | 
						|
  p[2] = (i>> 8)&0xFF;
 | 
						|
  p[3] = (i>> 0)&0xFF;
 | 
						|
#endif
 | 
						|
  return 4;
 | 
						|
}
 | 
						|
static int writeInt64(u8 *p, i64 i){
 | 
						|
#if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
 | 
						|
  i = (i64)__builtin_bswap64((u64)i);
 | 
						|
  memcpy(p, &i, 8);
 | 
						|
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
 | 
						|
  i = (i64)_byteswap_uint64((u64)i);
 | 
						|
  memcpy(p, &i, 8);
 | 
						|
#elif SQLITE_BYTEORDER==4321
 | 
						|
  memcpy(p, &i, 8);
 | 
						|
#else
 | 
						|
  p[0] = (i>>56)&0xFF;
 | 
						|
  p[1] = (i>>48)&0xFF;
 | 
						|
  p[2] = (i>>40)&0xFF;
 | 
						|
  p[3] = (i>>32)&0xFF;
 | 
						|
  p[4] = (i>>24)&0xFF;
 | 
						|
  p[5] = (i>>16)&0xFF;
 | 
						|
  p[6] = (i>> 8)&0xFF;
 | 
						|
  p[7] = (i>> 0)&0xFF;
 | 
						|
#endif
 | 
						|
  return 8;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Increment the reference count of node p.
 | 
						|
*/
 | 
						|
static void nodeReference(RtreeNode *p){
 | 
						|
  if( p ){
 | 
						|
    p->nRef++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Clear the content of node p (set all bytes to 0x00).
 | 
						|
*/
 | 
						|
static void nodeZero(Rtree *pRtree, RtreeNode *p){
 | 
						|
  memset(&p->zData[2], 0, pRtree->iNodeSize-2);
 | 
						|
  p->isDirty = 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Given a node number iNode, return the corresponding key to use
 | 
						|
** in the Rtree.aHash table.
 | 
						|
*/
 | 
						|
static int nodeHash(i64 iNode){
 | 
						|
  return iNode % HASHSIZE;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Search the node hash table for node iNode. If found, return a pointer
 | 
						|
** to it. Otherwise, return 0.
 | 
						|
*/
 | 
						|
static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
 | 
						|
  RtreeNode *p;
 | 
						|
  for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
 | 
						|
  return p;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Add node pNode to the node hash table.
 | 
						|
*/
 | 
						|
static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
 | 
						|
  int iHash;
 | 
						|
  assert( pNode->pNext==0 );
 | 
						|
  iHash = nodeHash(pNode->iNode);
 | 
						|
  pNode->pNext = pRtree->aHash[iHash];
 | 
						|
  pRtree->aHash[iHash] = pNode;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Remove node pNode from the node hash table.
 | 
						|
*/
 | 
						|
static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
 | 
						|
  RtreeNode **pp;
 | 
						|
  if( pNode->iNode!=0 ){
 | 
						|
    pp = &pRtree->aHash[nodeHash(pNode->iNode)];
 | 
						|
    for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
 | 
						|
    *pp = pNode->pNext;
 | 
						|
    pNode->pNext = 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
 | 
						|
** indicating that node has not yet been assigned a node number. It is
 | 
						|
** assigned a node number when nodeWrite() is called to write the
 | 
						|
** node contents out to the database.
 | 
						|
*/
 | 
						|
static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
 | 
						|
  RtreeNode *pNode;
 | 
						|
  pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
 | 
						|
  if( pNode ){
 | 
						|
    memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
 | 
						|
    pNode->zData = (u8 *)&pNode[1];
 | 
						|
    pNode->nRef = 1;
 | 
						|
    pNode->pParent = pParent;
 | 
						|
    pNode->isDirty = 1;
 | 
						|
    nodeReference(pParent);
 | 
						|
  }
 | 
						|
  return pNode;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Clear the Rtree.pNodeBlob object
 | 
						|
*/
 | 
						|
static void nodeBlobReset(Rtree *pRtree){
 | 
						|
  if( pRtree->pNodeBlob && pRtree->inWrTrans==0 && pRtree->nCursor==0 ){
 | 
						|
    sqlite3_blob *pBlob = pRtree->pNodeBlob;
 | 
						|
    pRtree->pNodeBlob = 0;
 | 
						|
    sqlite3_blob_close(pBlob);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Obtain a reference to an r-tree node.
 | 
						|
*/
 | 
						|
static int nodeAcquire(
 | 
						|
  Rtree *pRtree,             /* R-tree structure */
 | 
						|
  i64 iNode,                 /* Node number to load */
 | 
						|
  RtreeNode *pParent,        /* Either the parent node or NULL */
 | 
						|
  RtreeNode **ppNode         /* OUT: Acquired node */
 | 
						|
){
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  RtreeNode *pNode = 0;
 | 
						|
 | 
						|
  /* Check if the requested node is already in the hash table. If so,
 | 
						|
  ** increase its reference count and return it.
 | 
						|
  */
 | 
						|
  if( (pNode = nodeHashLookup(pRtree, iNode)) ){
 | 
						|
    assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
 | 
						|
    if( pParent && !pNode->pParent ){
 | 
						|
      nodeReference(pParent);
 | 
						|
      pNode->pParent = pParent;
 | 
						|
    }
 | 
						|
    pNode->nRef++;
 | 
						|
    *ppNode = pNode;
 | 
						|
    return SQLITE_OK;
 | 
						|
  }
 | 
						|
 | 
						|
  if( pRtree->pNodeBlob ){
 | 
						|
    sqlite3_blob *pBlob = pRtree->pNodeBlob;
 | 
						|
    pRtree->pNodeBlob = 0;
 | 
						|
    rc = sqlite3_blob_reopen(pBlob, iNode);
 | 
						|
    pRtree->pNodeBlob = pBlob;
 | 
						|
    if( rc ){
 | 
						|
      nodeBlobReset(pRtree);
 | 
						|
      if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( pRtree->pNodeBlob==0 ){
 | 
						|
    char *zTab = sqlite3_mprintf("%s_node", pRtree->zName);
 | 
						|
    if( zTab==0 ) return SQLITE_NOMEM;
 | 
						|
    rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, zTab, "data", iNode, 0,
 | 
						|
                           &pRtree->pNodeBlob);
 | 
						|
    sqlite3_free(zTab);
 | 
						|
  }
 | 
						|
  if( rc ){
 | 
						|
    nodeBlobReset(pRtree);
 | 
						|
    *ppNode = 0;
 | 
						|
    /* If unable to open an sqlite3_blob on the desired row, that can only
 | 
						|
    ** be because the shadow tables hold erroneous data. */
 | 
						|
    if( rc==SQLITE_ERROR ) rc = SQLITE_CORRUPT_VTAB;
 | 
						|
  }else if( pRtree->iNodeSize==sqlite3_blob_bytes(pRtree->pNodeBlob) ){
 | 
						|
    pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
 | 
						|
    if( !pNode ){
 | 
						|
      rc = SQLITE_NOMEM;
 | 
						|
    }else{
 | 
						|
      pNode->pParent = pParent;
 | 
						|
      pNode->zData = (u8 *)&pNode[1];
 | 
						|
      pNode->nRef = 1;
 | 
						|
      pNode->iNode = iNode;
 | 
						|
      pNode->isDirty = 0;
 | 
						|
      pNode->pNext = 0;
 | 
						|
      rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData,
 | 
						|
                             pRtree->iNodeSize, 0);
 | 
						|
      nodeReference(pParent);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* If the root node was just loaded, set pRtree->iDepth to the height
 | 
						|
  ** of the r-tree structure. A height of zero means all data is stored on
 | 
						|
  ** the root node. A height of one means the children of the root node
 | 
						|
  ** are the leaves, and so on. If the depth as specified on the root node
 | 
						|
  ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
 | 
						|
  */
 | 
						|
  if( pNode && iNode==1 ){
 | 
						|
    pRtree->iDepth = readInt16(pNode->zData);
 | 
						|
    if( pRtree->iDepth>RTREE_MAX_DEPTH ){
 | 
						|
      rc = SQLITE_CORRUPT_VTAB;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* If no error has occurred so far, check if the "number of entries"
 | 
						|
  ** field on the node is too large. If so, set the return code to 
 | 
						|
  ** SQLITE_CORRUPT_VTAB.
 | 
						|
  */
 | 
						|
  if( pNode && rc==SQLITE_OK ){
 | 
						|
    if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
 | 
						|
      rc = SQLITE_CORRUPT_VTAB;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    if( pNode!=0 ){
 | 
						|
      nodeHashInsert(pRtree, pNode);
 | 
						|
    }else{
 | 
						|
      rc = SQLITE_CORRUPT_VTAB;
 | 
						|
    }
 | 
						|
    *ppNode = pNode;
 | 
						|
  }else{
 | 
						|
    sqlite3_free(pNode);
 | 
						|
    *ppNode = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Overwrite cell iCell of node pNode with the contents of pCell.
 | 
						|
*/
 | 
						|
static void nodeOverwriteCell(
 | 
						|
  Rtree *pRtree,             /* The overall R-Tree */
 | 
						|
  RtreeNode *pNode,          /* The node into which the cell is to be written */
 | 
						|
  RtreeCell *pCell,          /* The cell to write */
 | 
						|
  int iCell                  /* Index into pNode into which pCell is written */
 | 
						|
){
 | 
						|
  int ii;
 | 
						|
  u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
 | 
						|
  p += writeInt64(p, pCell->iRowid);
 | 
						|
  for(ii=0; ii<pRtree->nDim2; ii++){
 | 
						|
    p += writeCoord(p, &pCell->aCoord[ii]);
 | 
						|
  }
 | 
						|
  pNode->isDirty = 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Remove the cell with index iCell from node pNode.
 | 
						|
*/
 | 
						|
static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
 | 
						|
  u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
 | 
						|
  u8 *pSrc = &pDst[pRtree->nBytesPerCell];
 | 
						|
  int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
 | 
						|
  memmove(pDst, pSrc, nByte);
 | 
						|
  writeInt16(&pNode->zData[2], NCELL(pNode)-1);
 | 
						|
  pNode->isDirty = 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Insert the contents of cell pCell into node pNode. If the insert
 | 
						|
** is successful, return SQLITE_OK.
 | 
						|
**
 | 
						|
** If there is not enough free space in pNode, return SQLITE_FULL.
 | 
						|
*/
 | 
						|
static int nodeInsertCell(
 | 
						|
  Rtree *pRtree,                /* The overall R-Tree */
 | 
						|
  RtreeNode *pNode,             /* Write new cell into this node */
 | 
						|
  RtreeCell *pCell              /* The cell to be inserted */
 | 
						|
){
 | 
						|
  int nCell;                    /* Current number of cells in pNode */
 | 
						|
  int nMaxCell;                 /* Maximum number of cells for pNode */
 | 
						|
 | 
						|
  nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
 | 
						|
  nCell = NCELL(pNode);
 | 
						|
 | 
						|
  assert( nCell<=nMaxCell );
 | 
						|
  if( nCell<nMaxCell ){
 | 
						|
    nodeOverwriteCell(pRtree, pNode, pCell, nCell);
 | 
						|
    writeInt16(&pNode->zData[2], nCell+1);
 | 
						|
    pNode->isDirty = 1;
 | 
						|
  }
 | 
						|
 | 
						|
  return (nCell==nMaxCell);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** If the node is dirty, write it out to the database.
 | 
						|
*/
 | 
						|
static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  if( pNode->isDirty ){
 | 
						|
    sqlite3_stmt *p = pRtree->pWriteNode;
 | 
						|
    if( pNode->iNode ){
 | 
						|
      sqlite3_bind_int64(p, 1, pNode->iNode);
 | 
						|
    }else{
 | 
						|
      sqlite3_bind_null(p, 1);
 | 
						|
    }
 | 
						|
    sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
 | 
						|
    sqlite3_step(p);
 | 
						|
    pNode->isDirty = 0;
 | 
						|
    rc = sqlite3_reset(p);
 | 
						|
    if( pNode->iNode==0 && rc==SQLITE_OK ){
 | 
						|
      pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
 | 
						|
      nodeHashInsert(pRtree, pNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Release a reference to a node. If the node is dirty and the reference
 | 
						|
** count drops to zero, the node data is written to the database.
 | 
						|
*/
 | 
						|
static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  if( pNode ){
 | 
						|
    assert( pNode->nRef>0 );
 | 
						|
    pNode->nRef--;
 | 
						|
    if( pNode->nRef==0 ){
 | 
						|
      if( pNode->iNode==1 ){
 | 
						|
        pRtree->iDepth = -1;
 | 
						|
      }
 | 
						|
      if( pNode->pParent ){
 | 
						|
        rc = nodeRelease(pRtree, pNode->pParent);
 | 
						|
      }
 | 
						|
      if( rc==SQLITE_OK ){
 | 
						|
        rc = nodeWrite(pRtree, pNode);
 | 
						|
      }
 | 
						|
      nodeHashDelete(pRtree, pNode);
 | 
						|
      sqlite3_free(pNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return the 64-bit integer value associated with cell iCell of
 | 
						|
** node pNode. If pNode is a leaf node, this is a rowid. If it is
 | 
						|
** an internal node, then the 64-bit integer is a child page number.
 | 
						|
*/
 | 
						|
static i64 nodeGetRowid(
 | 
						|
  Rtree *pRtree,       /* The overall R-Tree */
 | 
						|
  RtreeNode *pNode,    /* The node from which to extract the ID */
 | 
						|
  int iCell            /* The cell index from which to extract the ID */
 | 
						|
){
 | 
						|
  assert( iCell<NCELL(pNode) );
 | 
						|
  return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return coordinate iCoord from cell iCell in node pNode.
 | 
						|
*/
 | 
						|
static void nodeGetCoord(
 | 
						|
  Rtree *pRtree,               /* The overall R-Tree */
 | 
						|
  RtreeNode *pNode,            /* The node from which to extract a coordinate */
 | 
						|
  int iCell,                   /* The index of the cell within the node */
 | 
						|
  int iCoord,                  /* Which coordinate to extract */
 | 
						|
  RtreeCoord *pCoord           /* OUT: Space to write result to */
 | 
						|
){
 | 
						|
  readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Deserialize cell iCell of node pNode. Populate the structure pointed
 | 
						|
** to by pCell with the results.
 | 
						|
*/
 | 
						|
static void nodeGetCell(
 | 
						|
  Rtree *pRtree,               /* The overall R-Tree */
 | 
						|
  RtreeNode *pNode,            /* The node containing the cell to be read */
 | 
						|
  int iCell,                   /* Index of the cell within the node */
 | 
						|
  RtreeCell *pCell             /* OUT: Write the cell contents here */
 | 
						|
){
 | 
						|
  u8 *pData;
 | 
						|
  RtreeCoord *pCoord;
 | 
						|
  int ii = 0;
 | 
						|
  pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
 | 
						|
  pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell);
 | 
						|
  pCoord = pCell->aCoord;
 | 
						|
  do{
 | 
						|
    readCoord(pData, &pCoord[ii]);
 | 
						|
    readCoord(pData+4, &pCoord[ii+1]);
 | 
						|
    pData += 8;
 | 
						|
    ii += 2;
 | 
						|
  }while( ii<pRtree->nDim2 );
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Forward declaration for the function that does the work of
 | 
						|
** the virtual table module xCreate() and xConnect() methods.
 | 
						|
*/
 | 
						|
static int rtreeInit(
 | 
						|
  sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int
 | 
						|
);
 | 
						|
 | 
						|
/* 
 | 
						|
** Rtree virtual table module xCreate method.
 | 
						|
*/
 | 
						|
static int rtreeCreate(
 | 
						|
  sqlite3 *db,
 | 
						|
  void *pAux,
 | 
						|
  int argc, const char *const*argv,
 | 
						|
  sqlite3_vtab **ppVtab,
 | 
						|
  char **pzErr
 | 
						|
){
 | 
						|
  return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
** Rtree virtual table module xConnect method.
 | 
						|
*/
 | 
						|
static int rtreeConnect(
 | 
						|
  sqlite3 *db,
 | 
						|
  void *pAux,
 | 
						|
  int argc, const char *const*argv,
 | 
						|
  sqlite3_vtab **ppVtab,
 | 
						|
  char **pzErr
 | 
						|
){
 | 
						|
  return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Increment the r-tree reference count.
 | 
						|
*/
 | 
						|
static void rtreeReference(Rtree *pRtree){
 | 
						|
  pRtree->nBusy++;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Decrement the r-tree reference count. When the reference count reaches
 | 
						|
** zero the structure is deleted.
 | 
						|
*/
 | 
						|
static void rtreeRelease(Rtree *pRtree){
 | 
						|
  pRtree->nBusy--;
 | 
						|
  if( pRtree->nBusy==0 ){
 | 
						|
    pRtree->inWrTrans = 0;
 | 
						|
    pRtree->nCursor = 0;
 | 
						|
    nodeBlobReset(pRtree);
 | 
						|
    sqlite3_finalize(pRtree->pWriteNode);
 | 
						|
    sqlite3_finalize(pRtree->pDeleteNode);
 | 
						|
    sqlite3_finalize(pRtree->pReadRowid);
 | 
						|
    sqlite3_finalize(pRtree->pWriteRowid);
 | 
						|
    sqlite3_finalize(pRtree->pDeleteRowid);
 | 
						|
    sqlite3_finalize(pRtree->pReadParent);
 | 
						|
    sqlite3_finalize(pRtree->pWriteParent);
 | 
						|
    sqlite3_finalize(pRtree->pDeleteParent);
 | 
						|
    sqlite3_free(pRtree);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
** Rtree virtual table module xDisconnect method.
 | 
						|
*/
 | 
						|
static int rtreeDisconnect(sqlite3_vtab *pVtab){
 | 
						|
  rtreeRelease((Rtree *)pVtab);
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
** Rtree virtual table module xDestroy method.
 | 
						|
*/
 | 
						|
static int rtreeDestroy(sqlite3_vtab *pVtab){
 | 
						|
  Rtree *pRtree = (Rtree *)pVtab;
 | 
						|
  int rc;
 | 
						|
  char *zCreate = sqlite3_mprintf(
 | 
						|
    "DROP TABLE '%q'.'%q_node';"
 | 
						|
    "DROP TABLE '%q'.'%q_rowid';"
 | 
						|
    "DROP TABLE '%q'.'%q_parent';",
 | 
						|
    pRtree->zDb, pRtree->zName, 
 | 
						|
    pRtree->zDb, pRtree->zName,
 | 
						|
    pRtree->zDb, pRtree->zName
 | 
						|
  );
 | 
						|
  if( !zCreate ){
 | 
						|
    rc = SQLITE_NOMEM;
 | 
						|
  }else{
 | 
						|
    nodeBlobReset(pRtree);
 | 
						|
    rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
 | 
						|
    sqlite3_free(zCreate);
 | 
						|
  }
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    rtreeRelease(pRtree);
 | 
						|
  }
 | 
						|
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
** Rtree virtual table module xOpen method.
 | 
						|
*/
 | 
						|
static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
 | 
						|
  int rc = SQLITE_NOMEM;
 | 
						|
  Rtree *pRtree = (Rtree *)pVTab;
 | 
						|
  RtreeCursor *pCsr;
 | 
						|
 | 
						|
  pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor));
 | 
						|
  if( pCsr ){
 | 
						|
    memset(pCsr, 0, sizeof(RtreeCursor));
 | 
						|
    pCsr->base.pVtab = pVTab;
 | 
						|
    rc = SQLITE_OK;
 | 
						|
    pRtree->nCursor++;
 | 
						|
  }
 | 
						|
  *ppCursor = (sqlite3_vtab_cursor *)pCsr;
 | 
						|
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Free the RtreeCursor.aConstraint[] array and its contents.
 | 
						|
*/
 | 
						|
static void freeCursorConstraints(RtreeCursor *pCsr){
 | 
						|
  if( pCsr->aConstraint ){
 | 
						|
    int i;                        /* Used to iterate through constraint array */
 | 
						|
    for(i=0; i<pCsr->nConstraint; i++){
 | 
						|
      sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo;
 | 
						|
      if( pInfo ){
 | 
						|
        if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser);
 | 
						|
        sqlite3_free(pInfo);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    sqlite3_free(pCsr->aConstraint);
 | 
						|
    pCsr->aConstraint = 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
** Rtree virtual table module xClose method.
 | 
						|
*/
 | 
						|
static int rtreeClose(sqlite3_vtab_cursor *cur){
 | 
						|
  Rtree *pRtree = (Rtree *)(cur->pVtab);
 | 
						|
  int ii;
 | 
						|
  RtreeCursor *pCsr = (RtreeCursor *)cur;
 | 
						|
  assert( pRtree->nCursor>0 );
 | 
						|
  freeCursorConstraints(pCsr);
 | 
						|
  sqlite3_free(pCsr->aPoint);
 | 
						|
  for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]);
 | 
						|
  sqlite3_free(pCsr);
 | 
						|
  pRtree->nCursor--;
 | 
						|
  nodeBlobReset(pRtree);
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Rtree virtual table module xEof method.
 | 
						|
**
 | 
						|
** Return non-zero if the cursor does not currently point to a valid 
 | 
						|
** record (i.e if the scan has finished), or zero otherwise.
 | 
						|
*/
 | 
						|
static int rtreeEof(sqlite3_vtab_cursor *cur){
 | 
						|
  RtreeCursor *pCsr = (RtreeCursor *)cur;
 | 
						|
  return pCsr->atEOF;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Convert raw bits from the on-disk RTree record into a coordinate value.
 | 
						|
** The on-disk format is big-endian and needs to be converted for little-
 | 
						|
** endian platforms.  The on-disk record stores integer coordinates if
 | 
						|
** eInt is true and it stores 32-bit floating point records if eInt is
 | 
						|
** false.  a[] is the four bytes of the on-disk record to be decoded.
 | 
						|
** Store the results in "r".
 | 
						|
**
 | 
						|
** There are five versions of this macro.  The last one is generic.  The
 | 
						|
** other four are various architectures-specific optimizations.
 | 
						|
*/
 | 
						|
#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
 | 
						|
#define RTREE_DECODE_COORD(eInt, a, r) {                        \
 | 
						|
    RtreeCoord c;    /* Coordinate decoded */                   \
 | 
						|
    c.u = _byteswap_ulong(*(u32*)a);                            \
 | 
						|
    r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
 | 
						|
}
 | 
						|
#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
 | 
						|
#define RTREE_DECODE_COORD(eInt, a, r) {                        \
 | 
						|
    RtreeCoord c;    /* Coordinate decoded */                   \
 | 
						|
    c.u = __builtin_bswap32(*(u32*)a);                          \
 | 
						|
    r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
 | 
						|
}
 | 
						|
#elif SQLITE_BYTEORDER==1234
 | 
						|
#define RTREE_DECODE_COORD(eInt, a, r) {                        \
 | 
						|
    RtreeCoord c;    /* Coordinate decoded */                   \
 | 
						|
    memcpy(&c.u,a,4);                                           \
 | 
						|
    c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)|                   \
 | 
						|
          ((c.u&0xff)<<24)|((c.u&0xff00)<<8);                   \
 | 
						|
    r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
 | 
						|
}
 | 
						|
#elif SQLITE_BYTEORDER==4321
 | 
						|
#define RTREE_DECODE_COORD(eInt, a, r) {                        \
 | 
						|
    RtreeCoord c;    /* Coordinate decoded */                   \
 | 
						|
    memcpy(&c.u,a,4);                                           \
 | 
						|
    r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
 | 
						|
}
 | 
						|
#else
 | 
						|
#define RTREE_DECODE_COORD(eInt, a, r) {                        \
 | 
						|
    RtreeCoord c;    /* Coordinate decoded */                   \
 | 
						|
    c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16)                     \
 | 
						|
           +((u32)a[2]<<8) + a[3];                              \
 | 
						|
    r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** Check the RTree node or entry given by pCellData and p against the MATCH
 | 
						|
** constraint pConstraint.  
 | 
						|
*/
 | 
						|
static int rtreeCallbackConstraint(
 | 
						|
  RtreeConstraint *pConstraint,  /* The constraint to test */
 | 
						|
  int eInt,                      /* True if RTree holding integer coordinates */
 | 
						|
  u8 *pCellData,                 /* Raw cell content */
 | 
						|
  RtreeSearchPoint *pSearch,     /* Container of this cell */
 | 
						|
  sqlite3_rtree_dbl *prScore,    /* OUT: score for the cell */
 | 
						|
  int *peWithin                  /* OUT: visibility of the cell */
 | 
						|
){
 | 
						|
  sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */
 | 
						|
  int nCoord = pInfo->nCoord;                           /* No. of coordinates */
 | 
						|
  int rc;                                             /* Callback return code */
 | 
						|
  RtreeCoord c;                                       /* Translator union */
 | 
						|
  sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2];   /* Decoded coordinates */
 | 
						|
 | 
						|
  assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY );
 | 
						|
  assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 );
 | 
						|
 | 
						|
  if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){
 | 
						|
    pInfo->iRowid = readInt64(pCellData);
 | 
						|
  }
 | 
						|
  pCellData += 8;
 | 
						|
#ifndef SQLITE_RTREE_INT_ONLY
 | 
						|
  if( eInt==0 ){
 | 
						|
    switch( nCoord ){
 | 
						|
      case 10:  readCoord(pCellData+36, &c); aCoord[9] = c.f;
 | 
						|
                readCoord(pCellData+32, &c); aCoord[8] = c.f;
 | 
						|
      case 8:   readCoord(pCellData+28, &c); aCoord[7] = c.f;
 | 
						|
                readCoord(pCellData+24, &c); aCoord[6] = c.f;
 | 
						|
      case 6:   readCoord(pCellData+20, &c); aCoord[5] = c.f;
 | 
						|
                readCoord(pCellData+16, &c); aCoord[4] = c.f;
 | 
						|
      case 4:   readCoord(pCellData+12, &c); aCoord[3] = c.f;
 | 
						|
                readCoord(pCellData+8,  &c); aCoord[2] = c.f;
 | 
						|
      default:  readCoord(pCellData+4,  &c); aCoord[1] = c.f;
 | 
						|
                readCoord(pCellData,    &c); aCoord[0] = c.f;
 | 
						|
    }
 | 
						|
  }else
 | 
						|
#endif
 | 
						|
  {
 | 
						|
    switch( nCoord ){
 | 
						|
      case 10:  readCoord(pCellData+36, &c); aCoord[9] = c.i;
 | 
						|
                readCoord(pCellData+32, &c); aCoord[8] = c.i;
 | 
						|
      case 8:   readCoord(pCellData+28, &c); aCoord[7] = c.i;
 | 
						|
                readCoord(pCellData+24, &c); aCoord[6] = c.i;
 | 
						|
      case 6:   readCoord(pCellData+20, &c); aCoord[5] = c.i;
 | 
						|
                readCoord(pCellData+16, &c); aCoord[4] = c.i;
 | 
						|
      case 4:   readCoord(pCellData+12, &c); aCoord[3] = c.i;
 | 
						|
                readCoord(pCellData+8,  &c); aCoord[2] = c.i;
 | 
						|
      default:  readCoord(pCellData+4,  &c); aCoord[1] = c.i;
 | 
						|
                readCoord(pCellData,    &c); aCoord[0] = c.i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( pConstraint->op==RTREE_MATCH ){
 | 
						|
    int eWithin = 0;
 | 
						|
    rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo,
 | 
						|
                              nCoord, aCoord, &eWithin);
 | 
						|
    if( eWithin==0 ) *peWithin = NOT_WITHIN;
 | 
						|
    *prScore = RTREE_ZERO;
 | 
						|
  }else{
 | 
						|
    pInfo->aCoord = aCoord;
 | 
						|
    pInfo->iLevel = pSearch->iLevel - 1;
 | 
						|
    pInfo->rScore = pInfo->rParentScore = pSearch->rScore;
 | 
						|
    pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin;
 | 
						|
    rc = pConstraint->u.xQueryFunc(pInfo);
 | 
						|
    if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin;
 | 
						|
    if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){
 | 
						|
      *prScore = pInfo->rScore;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
** Check the internal RTree node given by pCellData against constraint p.
 | 
						|
** If this constraint cannot be satisfied by any child within the node,
 | 
						|
** set *peWithin to NOT_WITHIN.
 | 
						|
*/
 | 
						|
static void rtreeNonleafConstraint(
 | 
						|
  RtreeConstraint *p,        /* The constraint to test */
 | 
						|
  int eInt,                  /* True if RTree holds integer coordinates */
 | 
						|
  u8 *pCellData,             /* Raw cell content as appears on disk */
 | 
						|
  int *peWithin              /* Adjust downward, as appropriate */
 | 
						|
){
 | 
						|
  sqlite3_rtree_dbl val;     /* Coordinate value convert to a double */
 | 
						|
 | 
						|
  /* p->iCoord might point to either a lower or upper bound coordinate
 | 
						|
  ** in a coordinate pair.  But make pCellData point to the lower bound.
 | 
						|
  */
 | 
						|
  pCellData += 8 + 4*(p->iCoord&0xfe);
 | 
						|
 | 
						|
  assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
 | 
						|
      || p->op==RTREE_GT || p->op==RTREE_EQ );
 | 
						|
  assert( ((((char*)pCellData) - (char*)0)&3)==0 );  /* 4-byte aligned */
 | 
						|
  switch( p->op ){
 | 
						|
    case RTREE_LE:
 | 
						|
    case RTREE_LT:
 | 
						|
    case RTREE_EQ:
 | 
						|
      RTREE_DECODE_COORD(eInt, pCellData, val);
 | 
						|
      /* val now holds the lower bound of the coordinate pair */
 | 
						|
      if( p->u.rValue>=val ) return;
 | 
						|
      if( p->op!=RTREE_EQ ) break;  /* RTREE_LE and RTREE_LT end here */
 | 
						|
      /* Fall through for the RTREE_EQ case */
 | 
						|
 | 
						|
    default: /* RTREE_GT or RTREE_GE,  or fallthrough of RTREE_EQ */
 | 
						|
      pCellData += 4;
 | 
						|
      RTREE_DECODE_COORD(eInt, pCellData, val);
 | 
						|
      /* val now holds the upper bound of the coordinate pair */
 | 
						|
      if( p->u.rValue<=val ) return;
 | 
						|
  }
 | 
						|
  *peWithin = NOT_WITHIN;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Check the leaf RTree cell given by pCellData against constraint p.
 | 
						|
** If this constraint is not satisfied, set *peWithin to NOT_WITHIN.
 | 
						|
** If the constraint is satisfied, leave *peWithin unchanged.
 | 
						|
**
 | 
						|
** The constraint is of the form:  xN op $val
 | 
						|
**
 | 
						|
** The op is given by p->op.  The xN is p->iCoord-th coordinate in
 | 
						|
** pCellData.  $val is given by p->u.rValue.
 | 
						|
*/
 | 
						|
static void rtreeLeafConstraint(
 | 
						|
  RtreeConstraint *p,        /* The constraint to test */
 | 
						|
  int eInt,                  /* True if RTree holds integer coordinates */
 | 
						|
  u8 *pCellData,             /* Raw cell content as appears on disk */
 | 
						|
  int *peWithin              /* Adjust downward, as appropriate */
 | 
						|
){
 | 
						|
  RtreeDValue xN;      /* Coordinate value converted to a double */
 | 
						|
 | 
						|
  assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
 | 
						|
      || p->op==RTREE_GT || p->op==RTREE_EQ );
 | 
						|
  pCellData += 8 + p->iCoord*4;
 | 
						|
  assert( ((((char*)pCellData) - (char*)0)&3)==0 );  /* 4-byte aligned */
 | 
						|
  RTREE_DECODE_COORD(eInt, pCellData, xN);
 | 
						|
  switch( p->op ){
 | 
						|
    case RTREE_LE: if( xN <= p->u.rValue ) return;  break;
 | 
						|
    case RTREE_LT: if( xN <  p->u.rValue ) return;  break;
 | 
						|
    case RTREE_GE: if( xN >= p->u.rValue ) return;  break;
 | 
						|
    case RTREE_GT: if( xN >  p->u.rValue ) return;  break;
 | 
						|
    default:       if( xN == p->u.rValue ) return;  break;
 | 
						|
  }
 | 
						|
  *peWithin = NOT_WITHIN;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** One of the cells in node pNode is guaranteed to have a 64-bit 
 | 
						|
** integer value equal to iRowid. Return the index of this cell.
 | 
						|
*/
 | 
						|
static int nodeRowidIndex(
 | 
						|
  Rtree *pRtree, 
 | 
						|
  RtreeNode *pNode, 
 | 
						|
  i64 iRowid,
 | 
						|
  int *piIndex
 | 
						|
){
 | 
						|
  int ii;
 | 
						|
  int nCell = NCELL(pNode);
 | 
						|
  assert( nCell<200 );
 | 
						|
  for(ii=0; ii<nCell; ii++){
 | 
						|
    if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
 | 
						|
      *piIndex = ii;
 | 
						|
      return SQLITE_OK;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return SQLITE_CORRUPT_VTAB;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return the index of the cell containing a pointer to node pNode
 | 
						|
** in its parent. If pNode is the root node, return -1.
 | 
						|
*/
 | 
						|
static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
 | 
						|
  RtreeNode *pParent = pNode->pParent;
 | 
						|
  if( pParent ){
 | 
						|
    return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex);
 | 
						|
  }
 | 
						|
  *piIndex = -1;
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Compare two search points.  Return negative, zero, or positive if the first
 | 
						|
** is less than, equal to, or greater than the second.
 | 
						|
**
 | 
						|
** The rScore is the primary key.  Smaller rScore values come first.
 | 
						|
** If the rScore is a tie, then use iLevel as the tie breaker with smaller
 | 
						|
** iLevel values coming first.  In this way, if rScore is the same for all
 | 
						|
** SearchPoints, then iLevel becomes the deciding factor and the result
 | 
						|
** is a depth-first search, which is the desired default behavior.
 | 
						|
*/
 | 
						|
static int rtreeSearchPointCompare(
 | 
						|
  const RtreeSearchPoint *pA,
 | 
						|
  const RtreeSearchPoint *pB
 | 
						|
){
 | 
						|
  if( pA->rScore<pB->rScore ) return -1;
 | 
						|
  if( pA->rScore>pB->rScore ) return +1;
 | 
						|
  if( pA->iLevel<pB->iLevel ) return -1;
 | 
						|
  if( pA->iLevel>pB->iLevel ) return +1;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Interchange two search points in a cursor.
 | 
						|
*/
 | 
						|
static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){
 | 
						|
  RtreeSearchPoint t = p->aPoint[i];
 | 
						|
  assert( i<j );
 | 
						|
  p->aPoint[i] = p->aPoint[j];
 | 
						|
  p->aPoint[j] = t;
 | 
						|
  i++; j++;
 | 
						|
  if( i<RTREE_CACHE_SZ ){
 | 
						|
    if( j>=RTREE_CACHE_SZ ){
 | 
						|
      nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
 | 
						|
      p->aNode[i] = 0;
 | 
						|
    }else{
 | 
						|
      RtreeNode *pTemp = p->aNode[i];
 | 
						|
      p->aNode[i] = p->aNode[j];
 | 
						|
      p->aNode[j] = pTemp;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return the search point with the lowest current score.
 | 
						|
*/
 | 
						|
static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){
 | 
						|
  return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Get the RtreeNode for the search point with the lowest score.
 | 
						|
*/
 | 
						|
static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){
 | 
						|
  sqlite3_int64 id;
 | 
						|
  int ii = 1 - pCur->bPoint;
 | 
						|
  assert( ii==0 || ii==1 );
 | 
						|
  assert( pCur->bPoint || pCur->nPoint );
 | 
						|
  if( pCur->aNode[ii]==0 ){
 | 
						|
    assert( pRC!=0 );
 | 
						|
    id = ii ? pCur->aPoint[0].id : pCur->sPoint.id;
 | 
						|
    *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]);
 | 
						|
  }
 | 
						|
  return pCur->aNode[ii];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Push a new element onto the priority queue
 | 
						|
*/
 | 
						|
static RtreeSearchPoint *rtreeEnqueue(
 | 
						|
  RtreeCursor *pCur,    /* The cursor */
 | 
						|
  RtreeDValue rScore,   /* Score for the new search point */
 | 
						|
  u8 iLevel             /* Level for the new search point */
 | 
						|
){
 | 
						|
  int i, j;
 | 
						|
  RtreeSearchPoint *pNew;
 | 
						|
  if( pCur->nPoint>=pCur->nPointAlloc ){
 | 
						|
    int nNew = pCur->nPointAlloc*2 + 8;
 | 
						|
    pNew = sqlite3_realloc(pCur->aPoint, nNew*sizeof(pCur->aPoint[0]));
 | 
						|
    if( pNew==0 ) return 0;
 | 
						|
    pCur->aPoint = pNew;
 | 
						|
    pCur->nPointAlloc = nNew;
 | 
						|
  }
 | 
						|
  i = pCur->nPoint++;
 | 
						|
  pNew = pCur->aPoint + i;
 | 
						|
  pNew->rScore = rScore;
 | 
						|
  pNew->iLevel = iLevel;
 | 
						|
  assert( iLevel<=RTREE_MAX_DEPTH );
 | 
						|
  while( i>0 ){
 | 
						|
    RtreeSearchPoint *pParent;
 | 
						|
    j = (i-1)/2;
 | 
						|
    pParent = pCur->aPoint + j;
 | 
						|
    if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break;
 | 
						|
    rtreeSearchPointSwap(pCur, j, i);
 | 
						|
    i = j;
 | 
						|
    pNew = pParent;
 | 
						|
  }
 | 
						|
  return pNew;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Allocate a new RtreeSearchPoint and return a pointer to it.  Return
 | 
						|
** NULL if malloc fails.
 | 
						|
*/
 | 
						|
static RtreeSearchPoint *rtreeSearchPointNew(
 | 
						|
  RtreeCursor *pCur,    /* The cursor */
 | 
						|
  RtreeDValue rScore,   /* Score for the new search point */
 | 
						|
  u8 iLevel             /* Level for the new search point */
 | 
						|
){
 | 
						|
  RtreeSearchPoint *pNew, *pFirst;
 | 
						|
  pFirst = rtreeSearchPointFirst(pCur);
 | 
						|
  pCur->anQueue[iLevel]++;
 | 
						|
  if( pFirst==0
 | 
						|
   || pFirst->rScore>rScore 
 | 
						|
   || (pFirst->rScore==rScore && pFirst->iLevel>iLevel)
 | 
						|
  ){
 | 
						|
    if( pCur->bPoint ){
 | 
						|
      int ii;
 | 
						|
      pNew = rtreeEnqueue(pCur, rScore, iLevel);
 | 
						|
      if( pNew==0 ) return 0;
 | 
						|
      ii = (int)(pNew - pCur->aPoint) + 1;
 | 
						|
      if( ii<RTREE_CACHE_SZ ){
 | 
						|
        assert( pCur->aNode[ii]==0 );
 | 
						|
        pCur->aNode[ii] = pCur->aNode[0];
 | 
						|
       }else{
 | 
						|
        nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]);
 | 
						|
      }
 | 
						|
      pCur->aNode[0] = 0;
 | 
						|
      *pNew = pCur->sPoint;
 | 
						|
    }
 | 
						|
    pCur->sPoint.rScore = rScore;
 | 
						|
    pCur->sPoint.iLevel = iLevel;
 | 
						|
    pCur->bPoint = 1;
 | 
						|
    return &pCur->sPoint;
 | 
						|
  }else{
 | 
						|
    return rtreeEnqueue(pCur, rScore, iLevel);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
/* Tracing routines for the RtreeSearchPoint queue */
 | 
						|
static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){
 | 
						|
  if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); }
 | 
						|
  printf(" %d.%05lld.%02d %g %d",
 | 
						|
    p->iLevel, p->id, p->iCell, p->rScore, p->eWithin
 | 
						|
  );
 | 
						|
  idx++;
 | 
						|
  if( idx<RTREE_CACHE_SZ ){
 | 
						|
    printf(" %p\n", pCur->aNode[idx]);
 | 
						|
  }else{
 | 
						|
    printf("\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
static void traceQueue(RtreeCursor *pCur, const char *zPrefix){
 | 
						|
  int ii;
 | 
						|
  printf("=== %9s ", zPrefix);
 | 
						|
  if( pCur->bPoint ){
 | 
						|
    tracePoint(&pCur->sPoint, -1, pCur);
 | 
						|
  }
 | 
						|
  for(ii=0; ii<pCur->nPoint; ii++){
 | 
						|
    if( ii>0 || pCur->bPoint ) printf("              ");
 | 
						|
    tracePoint(&pCur->aPoint[ii], ii, pCur);
 | 
						|
  }
 | 
						|
}
 | 
						|
# define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B)
 | 
						|
#else
 | 
						|
# define RTREE_QUEUE_TRACE(A,B)   /* no-op */
 | 
						|
#endif
 | 
						|
 | 
						|
/* Remove the search point with the lowest current score.
 | 
						|
*/
 | 
						|
static void rtreeSearchPointPop(RtreeCursor *p){
 | 
						|
  int i, j, k, n;
 | 
						|
  i = 1 - p->bPoint;
 | 
						|
  assert( i==0 || i==1 );
 | 
						|
  if( p->aNode[i] ){
 | 
						|
    nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
 | 
						|
    p->aNode[i] = 0;
 | 
						|
  }
 | 
						|
  if( p->bPoint ){
 | 
						|
    p->anQueue[p->sPoint.iLevel]--;
 | 
						|
    p->bPoint = 0;
 | 
						|
  }else if( p->nPoint ){
 | 
						|
    p->anQueue[p->aPoint[0].iLevel]--;
 | 
						|
    n = --p->nPoint;
 | 
						|
    p->aPoint[0] = p->aPoint[n];
 | 
						|
    if( n<RTREE_CACHE_SZ-1 ){
 | 
						|
      p->aNode[1] = p->aNode[n+1];
 | 
						|
      p->aNode[n+1] = 0;
 | 
						|
    }
 | 
						|
    i = 0;
 | 
						|
    while( (j = i*2+1)<n ){
 | 
						|
      k = j+1;
 | 
						|
      if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){
 | 
						|
        if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){
 | 
						|
          rtreeSearchPointSwap(p, i, k);
 | 
						|
          i = k;
 | 
						|
        }else{
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }else{
 | 
						|
        if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){
 | 
						|
          rtreeSearchPointSwap(p, i, j);
 | 
						|
          i = j;
 | 
						|
        }else{
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Continue the search on cursor pCur until the front of the queue
 | 
						|
** contains an entry suitable for returning as a result-set row,
 | 
						|
** or until the RtreeSearchPoint queue is empty, indicating that the
 | 
						|
** query has completed.
 | 
						|
*/
 | 
						|
static int rtreeStepToLeaf(RtreeCursor *pCur){
 | 
						|
  RtreeSearchPoint *p;
 | 
						|
  Rtree *pRtree = RTREE_OF_CURSOR(pCur);
 | 
						|
  RtreeNode *pNode;
 | 
						|
  int eWithin;
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  int nCell;
 | 
						|
  int nConstraint = pCur->nConstraint;
 | 
						|
  int ii;
 | 
						|
  int eInt;
 | 
						|
  RtreeSearchPoint x;
 | 
						|
 | 
						|
  eInt = pRtree->eCoordType==RTREE_COORD_INT32;
 | 
						|
  while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){
 | 
						|
    pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc);
 | 
						|
    if( rc ) return rc;
 | 
						|
    nCell = NCELL(pNode);
 | 
						|
    assert( nCell<200 );
 | 
						|
    while( p->iCell<nCell ){
 | 
						|
      sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1;
 | 
						|
      u8 *pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell);
 | 
						|
      eWithin = FULLY_WITHIN;
 | 
						|
      for(ii=0; ii<nConstraint; ii++){
 | 
						|
        RtreeConstraint *pConstraint = pCur->aConstraint + ii;
 | 
						|
        if( pConstraint->op>=RTREE_MATCH ){
 | 
						|
          rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p,
 | 
						|
                                       &rScore, &eWithin);
 | 
						|
          if( rc ) return rc;
 | 
						|
        }else if( p->iLevel==1 ){
 | 
						|
          rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin);
 | 
						|
        }else{
 | 
						|
          rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin);
 | 
						|
        }
 | 
						|
        if( eWithin==NOT_WITHIN ) break;
 | 
						|
      }
 | 
						|
      p->iCell++;
 | 
						|
      if( eWithin==NOT_WITHIN ) continue;
 | 
						|
      x.iLevel = p->iLevel - 1;
 | 
						|
      if( x.iLevel ){
 | 
						|
        x.id = readInt64(pCellData);
 | 
						|
        x.iCell = 0;
 | 
						|
      }else{
 | 
						|
        x.id = p->id;
 | 
						|
        x.iCell = p->iCell - 1;
 | 
						|
      }
 | 
						|
      if( p->iCell>=nCell ){
 | 
						|
        RTREE_QUEUE_TRACE(pCur, "POP-S:");
 | 
						|
        rtreeSearchPointPop(pCur);
 | 
						|
      }
 | 
						|
      if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO;
 | 
						|
      p = rtreeSearchPointNew(pCur, rScore, x.iLevel);
 | 
						|
      if( p==0 ) return SQLITE_NOMEM;
 | 
						|
      p->eWithin = (u8)eWithin;
 | 
						|
      p->id = x.id;
 | 
						|
      p->iCell = x.iCell;
 | 
						|
      RTREE_QUEUE_TRACE(pCur, "PUSH-S:");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if( p->iCell>=nCell ){
 | 
						|
      RTREE_QUEUE_TRACE(pCur, "POP-Se:");
 | 
						|
      rtreeSearchPointPop(pCur);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  pCur->atEOF = p==0;
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
** Rtree virtual table module xNext method.
 | 
						|
*/
 | 
						|
static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
 | 
						|
  RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
 | 
						|
  /* Move to the next entry that matches the configured constraints. */
 | 
						|
  RTREE_QUEUE_TRACE(pCsr, "POP-Nx:");
 | 
						|
  rtreeSearchPointPop(pCsr);
 | 
						|
  rc = rtreeStepToLeaf(pCsr);
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
** Rtree virtual table module xRowid method.
 | 
						|
*/
 | 
						|
static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
 | 
						|
  RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
 | 
						|
  RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
 | 
						|
  if( rc==SQLITE_OK && p ){
 | 
						|
    *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell);
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
** Rtree virtual table module xColumn method.
 | 
						|
*/
 | 
						|
static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
 | 
						|
  Rtree *pRtree = (Rtree *)cur->pVtab;
 | 
						|
  RtreeCursor *pCsr = (RtreeCursor *)cur;
 | 
						|
  RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
 | 
						|
  RtreeCoord c;
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
 | 
						|
 | 
						|
  if( rc ) return rc;
 | 
						|
  if( p==0 ) return SQLITE_OK;
 | 
						|
  if( i==0 ){
 | 
						|
    sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
 | 
						|
  }else{
 | 
						|
    nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
 | 
						|
#ifndef SQLITE_RTREE_INT_ONLY
 | 
						|
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
 | 
						|
      sqlite3_result_double(ctx, c.f);
 | 
						|
    }else
 | 
						|
#endif
 | 
						|
    {
 | 
						|
      assert( pRtree->eCoordType==RTREE_COORD_INT32 );
 | 
						|
      sqlite3_result_int(ctx, c.i);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
** Use nodeAcquire() to obtain the leaf node containing the record with 
 | 
						|
** rowid iRowid. If successful, set *ppLeaf to point to the node and
 | 
						|
** return SQLITE_OK. If there is no such record in the table, set
 | 
						|
** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
 | 
						|
** to zero and return an SQLite error code.
 | 
						|
*/
 | 
						|
static int findLeafNode(
 | 
						|
  Rtree *pRtree,              /* RTree to search */
 | 
						|
  i64 iRowid,                 /* The rowid searching for */
 | 
						|
  RtreeNode **ppLeaf,         /* Write the node here */
 | 
						|
  sqlite3_int64 *piNode       /* Write the node-id here */
 | 
						|
){
 | 
						|
  int rc;
 | 
						|
  *ppLeaf = 0;
 | 
						|
  sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
 | 
						|
  if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
 | 
						|
    i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
 | 
						|
    if( piNode ) *piNode = iNode;
 | 
						|
    rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
 | 
						|
    sqlite3_reset(pRtree->pReadRowid);
 | 
						|
  }else{
 | 
						|
    rc = sqlite3_reset(pRtree->pReadRowid);
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This function is called to configure the RtreeConstraint object passed
 | 
						|
** as the second argument for a MATCH constraint. The value passed as the
 | 
						|
** first argument to this function is the right-hand operand to the MATCH
 | 
						|
** operator.
 | 
						|
*/
 | 
						|
static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){
 | 
						|
  RtreeMatchArg *pBlob, *pSrc;       /* BLOB returned by geometry function */
 | 
						|
  sqlite3_rtree_query_info *pInfo;   /* Callback information */
 | 
						|
 | 
						|
  pSrc = sqlite3_value_pointer(pValue, "RtreeMatchArg");
 | 
						|
  if( pSrc==0 ) return SQLITE_ERROR;
 | 
						|
  pInfo = (sqlite3_rtree_query_info*)
 | 
						|
                sqlite3_malloc64( sizeof(*pInfo)+pSrc->iSize );
 | 
						|
  if( !pInfo ) return SQLITE_NOMEM;
 | 
						|
  memset(pInfo, 0, sizeof(*pInfo));
 | 
						|
  pBlob = (RtreeMatchArg*)&pInfo[1];
 | 
						|
  memcpy(pBlob, pSrc, pSrc->iSize);
 | 
						|
  pInfo->pContext = pBlob->cb.pContext;
 | 
						|
  pInfo->nParam = pBlob->nParam;
 | 
						|
  pInfo->aParam = pBlob->aParam;
 | 
						|
  pInfo->apSqlParam = pBlob->apSqlParam;
 | 
						|
 | 
						|
  if( pBlob->cb.xGeom ){
 | 
						|
    pCons->u.xGeom = pBlob->cb.xGeom;
 | 
						|
  }else{
 | 
						|
    pCons->op = RTREE_QUERY;
 | 
						|
    pCons->u.xQueryFunc = pBlob->cb.xQueryFunc;
 | 
						|
  }
 | 
						|
  pCons->pInfo = pInfo;
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
** Rtree virtual table module xFilter method.
 | 
						|
*/
 | 
						|
static int rtreeFilter(
 | 
						|
  sqlite3_vtab_cursor *pVtabCursor, 
 | 
						|
  int idxNum, const char *idxStr,
 | 
						|
  int argc, sqlite3_value **argv
 | 
						|
){
 | 
						|
  Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
 | 
						|
  RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
 | 
						|
  RtreeNode *pRoot = 0;
 | 
						|
  int ii;
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  int iCell = 0;
 | 
						|
 | 
						|
  rtreeReference(pRtree);
 | 
						|
 | 
						|
  /* Reset the cursor to the same state as rtreeOpen() leaves it in. */
 | 
						|
  freeCursorConstraints(pCsr);
 | 
						|
  sqlite3_free(pCsr->aPoint);
 | 
						|
  memset(pCsr, 0, sizeof(RtreeCursor));
 | 
						|
  pCsr->base.pVtab = (sqlite3_vtab*)pRtree;
 | 
						|
 | 
						|
  pCsr->iStrategy = idxNum;
 | 
						|
  if( idxNum==1 ){
 | 
						|
    /* Special case - lookup by rowid. */
 | 
						|
    RtreeNode *pLeaf;        /* Leaf on which the required cell resides */
 | 
						|
    RtreeSearchPoint *p;     /* Search point for the leaf */
 | 
						|
    i64 iRowid = sqlite3_value_int64(argv[0]);
 | 
						|
    i64 iNode = 0;
 | 
						|
    rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode);
 | 
						|
    if( rc==SQLITE_OK && pLeaf!=0 ){
 | 
						|
      p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0);
 | 
						|
      assert( p!=0 );  /* Always returns pCsr->sPoint */
 | 
						|
      pCsr->aNode[0] = pLeaf;
 | 
						|
      p->id = iNode;
 | 
						|
      p->eWithin = PARTLY_WITHIN;
 | 
						|
      rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell);
 | 
						|
      p->iCell = (u8)iCell;
 | 
						|
      RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:");
 | 
						|
    }else{
 | 
						|
      pCsr->atEOF = 1;
 | 
						|
    }
 | 
						|
  }else{
 | 
						|
    /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array 
 | 
						|
    ** with the configured constraints. 
 | 
						|
    */
 | 
						|
    rc = nodeAcquire(pRtree, 1, 0, &pRoot);
 | 
						|
    if( rc==SQLITE_OK && argc>0 ){
 | 
						|
      pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc);
 | 
						|
      pCsr->nConstraint = argc;
 | 
						|
      if( !pCsr->aConstraint ){
 | 
						|
        rc = SQLITE_NOMEM;
 | 
						|
      }else{
 | 
						|
        memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc);
 | 
						|
        memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1));
 | 
						|
        assert( (idxStr==0 && argc==0)
 | 
						|
                || (idxStr && (int)strlen(idxStr)==argc*2) );
 | 
						|
        for(ii=0; ii<argc; ii++){
 | 
						|
          RtreeConstraint *p = &pCsr->aConstraint[ii];
 | 
						|
          p->op = idxStr[ii*2];
 | 
						|
          p->iCoord = idxStr[ii*2+1]-'0';
 | 
						|
          if( p->op>=RTREE_MATCH ){
 | 
						|
            /* A MATCH operator. The right-hand-side must be a blob that
 | 
						|
            ** can be cast into an RtreeMatchArg object. One created using
 | 
						|
            ** an sqlite3_rtree_geometry_callback() SQL user function.
 | 
						|
            */
 | 
						|
            rc = deserializeGeometry(argv[ii], p);
 | 
						|
            if( rc!=SQLITE_OK ){
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            p->pInfo->nCoord = pRtree->nDim2;
 | 
						|
            p->pInfo->anQueue = pCsr->anQueue;
 | 
						|
            p->pInfo->mxLevel = pRtree->iDepth + 1;
 | 
						|
          }else{
 | 
						|
#ifdef SQLITE_RTREE_INT_ONLY
 | 
						|
            p->u.rValue = sqlite3_value_int64(argv[ii]);
 | 
						|
#else
 | 
						|
            p->u.rValue = sqlite3_value_double(argv[ii]);
 | 
						|
#endif
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      RtreeSearchPoint *pNew;
 | 
						|
      pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1));
 | 
						|
      if( pNew==0 ) return SQLITE_NOMEM;
 | 
						|
      pNew->id = 1;
 | 
						|
      pNew->iCell = 0;
 | 
						|
      pNew->eWithin = PARTLY_WITHIN;
 | 
						|
      assert( pCsr->bPoint==1 );
 | 
						|
      pCsr->aNode[0] = pRoot;
 | 
						|
      pRoot = 0;
 | 
						|
      RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:");
 | 
						|
      rc = rtreeStepToLeaf(pCsr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  nodeRelease(pRtree, pRoot);
 | 
						|
  rtreeRelease(pRtree);
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Rtree virtual table module xBestIndex method. There are three
 | 
						|
** table scan strategies to choose from (in order from most to 
 | 
						|
** least desirable):
 | 
						|
**
 | 
						|
**   idxNum     idxStr        Strategy
 | 
						|
**   ------------------------------------------------
 | 
						|
**     1        Unused        Direct lookup by rowid.
 | 
						|
**     2        See below     R-tree query or full-table scan.
 | 
						|
**   ------------------------------------------------
 | 
						|
**
 | 
						|
** If strategy 1 is used, then idxStr is not meaningful. If strategy
 | 
						|
** 2 is used, idxStr is formatted to contain 2 bytes for each 
 | 
						|
** constraint used. The first two bytes of idxStr correspond to 
 | 
						|
** the constraint in sqlite3_index_info.aConstraintUsage[] with
 | 
						|
** (argvIndex==1) etc.
 | 
						|
**
 | 
						|
** The first of each pair of bytes in idxStr identifies the constraint
 | 
						|
** operator as follows:
 | 
						|
**
 | 
						|
**   Operator    Byte Value
 | 
						|
**   ----------------------
 | 
						|
**      =        0x41 ('A')
 | 
						|
**     <=        0x42 ('B')
 | 
						|
**      <        0x43 ('C')
 | 
						|
**     >=        0x44 ('D')
 | 
						|
**      >        0x45 ('E')
 | 
						|
**   MATCH       0x46 ('F')
 | 
						|
**   ----------------------
 | 
						|
**
 | 
						|
** The second of each pair of bytes identifies the coordinate column
 | 
						|
** to which the constraint applies. The leftmost coordinate column
 | 
						|
** is 'a', the second from the left 'b' etc.
 | 
						|
*/
 | 
						|
static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
 | 
						|
  Rtree *pRtree = (Rtree*)tab;
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  int ii;
 | 
						|
  int bMatch = 0;                 /* True if there exists a MATCH constraint */
 | 
						|
  i64 nRow;                       /* Estimated rows returned by this scan */
 | 
						|
 | 
						|
  int iIdx = 0;
 | 
						|
  char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
 | 
						|
  memset(zIdxStr, 0, sizeof(zIdxStr));
 | 
						|
 | 
						|
  /* Check if there exists a MATCH constraint - even an unusable one. If there
 | 
						|
  ** is, do not consider the lookup-by-rowid plan as using such a plan would
 | 
						|
  ** require the VDBE to evaluate the MATCH constraint, which is not currently
 | 
						|
  ** possible. */
 | 
						|
  for(ii=0; ii<pIdxInfo->nConstraint; ii++){
 | 
						|
    if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){
 | 
						|
      bMatch = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert( pIdxInfo->idxStr==0 );
 | 
						|
  for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
 | 
						|
    struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
 | 
						|
 | 
						|
    if( bMatch==0 && p->usable 
 | 
						|
     && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ 
 | 
						|
    ){
 | 
						|
      /* We have an equality constraint on the rowid. Use strategy 1. */
 | 
						|
      int jj;
 | 
						|
      for(jj=0; jj<ii; jj++){
 | 
						|
        pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
 | 
						|
        pIdxInfo->aConstraintUsage[jj].omit = 0;
 | 
						|
      }
 | 
						|
      pIdxInfo->idxNum = 1;
 | 
						|
      pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
 | 
						|
      pIdxInfo->aConstraintUsage[jj].omit = 1;
 | 
						|
 | 
						|
      /* This strategy involves a two rowid lookups on an B-Tree structures
 | 
						|
      ** and then a linear search of an R-Tree node. This should be 
 | 
						|
      ** considered almost as quick as a direct rowid lookup (for which 
 | 
						|
      ** sqlite uses an internal cost of 0.0). It is expected to return
 | 
						|
      ** a single row.
 | 
						|
      */ 
 | 
						|
      pIdxInfo->estimatedCost = 30.0;
 | 
						|
      pIdxInfo->estimatedRows = 1;
 | 
						|
      return SQLITE_OK;
 | 
						|
    }
 | 
						|
 | 
						|
    if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){
 | 
						|
      u8 op;
 | 
						|
      switch( p->op ){
 | 
						|
        case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
 | 
						|
        case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break;
 | 
						|
        case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
 | 
						|
        case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
 | 
						|
        case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
 | 
						|
        default:
 | 
						|
          assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH );
 | 
						|
          op = RTREE_MATCH; 
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      zIdxStr[iIdx++] = op;
 | 
						|
      zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0');
 | 
						|
      pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
 | 
						|
      pIdxInfo->aConstraintUsage[ii].omit = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  pIdxInfo->idxNum = 2;
 | 
						|
  pIdxInfo->needToFreeIdxStr = 1;
 | 
						|
  if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
 | 
						|
    return SQLITE_NOMEM;
 | 
						|
  }
 | 
						|
 | 
						|
  nRow = pRtree->nRowEst >> (iIdx/2);
 | 
						|
  pIdxInfo->estimatedCost = (double)6.0 * (double)nRow;
 | 
						|
  pIdxInfo->estimatedRows = nRow;
 | 
						|
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return the N-dimensional volumn of the cell stored in *p.
 | 
						|
*/
 | 
						|
static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){
 | 
						|
  RtreeDValue area = (RtreeDValue)1;
 | 
						|
  assert( pRtree->nDim>=1 && pRtree->nDim<=5 );
 | 
						|
#ifndef SQLITE_RTREE_INT_ONLY
 | 
						|
  if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
 | 
						|
    switch( pRtree->nDim ){
 | 
						|
      case 5:  area  = p->aCoord[9].f - p->aCoord[8].f;
 | 
						|
      case 4:  area *= p->aCoord[7].f - p->aCoord[6].f;
 | 
						|
      case 3:  area *= p->aCoord[5].f - p->aCoord[4].f;
 | 
						|
      case 2:  area *= p->aCoord[3].f - p->aCoord[2].f;
 | 
						|
      default: area *= p->aCoord[1].f - p->aCoord[0].f;
 | 
						|
    }
 | 
						|
  }else
 | 
						|
#endif
 | 
						|
  {
 | 
						|
    switch( pRtree->nDim ){
 | 
						|
      case 5:  area  = p->aCoord[9].i - p->aCoord[8].i;
 | 
						|
      case 4:  area *= p->aCoord[7].i - p->aCoord[6].i;
 | 
						|
      case 3:  area *= p->aCoord[5].i - p->aCoord[4].i;
 | 
						|
      case 2:  area *= p->aCoord[3].i - p->aCoord[2].i;
 | 
						|
      default: area *= p->aCoord[1].i - p->aCoord[0].i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return area;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return the margin length of cell p. The margin length is the sum
 | 
						|
** of the objects size in each dimension.
 | 
						|
*/
 | 
						|
static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){
 | 
						|
  RtreeDValue margin = 0;
 | 
						|
  int ii = pRtree->nDim2 - 2;
 | 
						|
  do{
 | 
						|
    margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
 | 
						|
    ii -= 2;
 | 
						|
  }while( ii>=0 );
 | 
						|
  return margin;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Store the union of cells p1 and p2 in p1.
 | 
						|
*/
 | 
						|
static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
 | 
						|
  int ii = 0;
 | 
						|
  if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
 | 
						|
    do{
 | 
						|
      p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
 | 
						|
      p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
 | 
						|
      ii += 2;
 | 
						|
    }while( ii<pRtree->nDim2 );
 | 
						|
  }else{
 | 
						|
    do{
 | 
						|
      p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
 | 
						|
      p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
 | 
						|
      ii += 2;
 | 
						|
    }while( ii<pRtree->nDim2 );
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return true if the area covered by p2 is a subset of the area covered
 | 
						|
** by p1. False otherwise.
 | 
						|
*/
 | 
						|
static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
 | 
						|
  int ii;
 | 
						|
  int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
 | 
						|
  for(ii=0; ii<pRtree->nDim2; ii+=2){
 | 
						|
    RtreeCoord *a1 = &p1->aCoord[ii];
 | 
						|
    RtreeCoord *a2 = &p2->aCoord[ii];
 | 
						|
    if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f)) 
 | 
						|
     || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i)) 
 | 
						|
    ){
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return the amount cell p would grow by if it were unioned with pCell.
 | 
						|
*/
 | 
						|
static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
 | 
						|
  RtreeDValue area;
 | 
						|
  RtreeCell cell;
 | 
						|
  memcpy(&cell, p, sizeof(RtreeCell));
 | 
						|
  area = cellArea(pRtree, &cell);
 | 
						|
  cellUnion(pRtree, &cell, pCell);
 | 
						|
  return (cellArea(pRtree, &cell)-area);
 | 
						|
}
 | 
						|
 | 
						|
static RtreeDValue cellOverlap(
 | 
						|
  Rtree *pRtree, 
 | 
						|
  RtreeCell *p, 
 | 
						|
  RtreeCell *aCell, 
 | 
						|
  int nCell
 | 
						|
){
 | 
						|
  int ii;
 | 
						|
  RtreeDValue overlap = RTREE_ZERO;
 | 
						|
  for(ii=0; ii<nCell; ii++){
 | 
						|
    int jj;
 | 
						|
    RtreeDValue o = (RtreeDValue)1;
 | 
						|
    for(jj=0; jj<pRtree->nDim2; jj+=2){
 | 
						|
      RtreeDValue x1, x2;
 | 
						|
      x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
 | 
						|
      x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
 | 
						|
      if( x2<x1 ){
 | 
						|
        o = (RtreeDValue)0;
 | 
						|
        break;
 | 
						|
      }else{
 | 
						|
        o = o * (x2-x1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    overlap += o;
 | 
						|
  }
 | 
						|
  return overlap;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** This function implements the ChooseLeaf algorithm from Gutman[84].
 | 
						|
** ChooseSubTree in r*tree terminology.
 | 
						|
*/
 | 
						|
static int ChooseLeaf(
 | 
						|
  Rtree *pRtree,               /* Rtree table */
 | 
						|
  RtreeCell *pCell,            /* Cell to insert into rtree */
 | 
						|
  int iHeight,                 /* Height of sub-tree rooted at pCell */
 | 
						|
  RtreeNode **ppLeaf           /* OUT: Selected leaf page */
 | 
						|
){
 | 
						|
  int rc;
 | 
						|
  int ii;
 | 
						|
  RtreeNode *pNode = 0;
 | 
						|
  rc = nodeAcquire(pRtree, 1, 0, &pNode);
 | 
						|
 | 
						|
  for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
 | 
						|
    int iCell;
 | 
						|
    sqlite3_int64 iBest = 0;
 | 
						|
 | 
						|
    RtreeDValue fMinGrowth = RTREE_ZERO;
 | 
						|
    RtreeDValue fMinArea = RTREE_ZERO;
 | 
						|
 | 
						|
    int nCell = NCELL(pNode);
 | 
						|
    RtreeCell cell;
 | 
						|
    RtreeNode *pChild;
 | 
						|
 | 
						|
    RtreeCell *aCell = 0;
 | 
						|
 | 
						|
    /* Select the child node which will be enlarged the least if pCell
 | 
						|
    ** is inserted into it. Resolve ties by choosing the entry with
 | 
						|
    ** the smallest area.
 | 
						|
    */
 | 
						|
    for(iCell=0; iCell<nCell; iCell++){
 | 
						|
      int bBest = 0;
 | 
						|
      RtreeDValue growth;
 | 
						|
      RtreeDValue area;
 | 
						|
      nodeGetCell(pRtree, pNode, iCell, &cell);
 | 
						|
      growth = cellGrowth(pRtree, &cell, pCell);
 | 
						|
      area = cellArea(pRtree, &cell);
 | 
						|
      if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){
 | 
						|
        bBest = 1;
 | 
						|
      }
 | 
						|
      if( bBest ){
 | 
						|
        fMinGrowth = growth;
 | 
						|
        fMinArea = area;
 | 
						|
        iBest = cell.iRowid;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    sqlite3_free(aCell);
 | 
						|
    rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
 | 
						|
    nodeRelease(pRtree, pNode);
 | 
						|
    pNode = pChild;
 | 
						|
  }
 | 
						|
 | 
						|
  *ppLeaf = pNode;
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** A cell with the same content as pCell has just been inserted into
 | 
						|
** the node pNode. This function updates the bounding box cells in
 | 
						|
** all ancestor elements.
 | 
						|
*/
 | 
						|
static int AdjustTree(
 | 
						|
  Rtree *pRtree,                    /* Rtree table */
 | 
						|
  RtreeNode *pNode,                 /* Adjust ancestry of this node. */
 | 
						|
  RtreeCell *pCell                  /* This cell was just inserted */
 | 
						|
){
 | 
						|
  RtreeNode *p = pNode;
 | 
						|
  while( p->pParent ){
 | 
						|
    RtreeNode *pParent = p->pParent;
 | 
						|
    RtreeCell cell;
 | 
						|
    int iCell;
 | 
						|
 | 
						|
    if( nodeParentIndex(pRtree, p, &iCell) ){
 | 
						|
      return SQLITE_CORRUPT_VTAB;
 | 
						|
    }
 | 
						|
 | 
						|
    nodeGetCell(pRtree, pParent, iCell, &cell);
 | 
						|
    if( !cellContains(pRtree, &cell, pCell) ){
 | 
						|
      cellUnion(pRtree, &cell, pCell);
 | 
						|
      nodeOverwriteCell(pRtree, pParent, &cell, iCell);
 | 
						|
    }
 | 
						|
 
 | 
						|
    p = pParent;
 | 
						|
  }
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
 | 
						|
*/
 | 
						|
static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
 | 
						|
  sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
 | 
						|
  sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
 | 
						|
  sqlite3_step(pRtree->pWriteRowid);
 | 
						|
  return sqlite3_reset(pRtree->pWriteRowid);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Write mapping (iNode->iPar) to the <rtree>_parent table.
 | 
						|
*/
 | 
						|
static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
 | 
						|
  sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
 | 
						|
  sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
 | 
						|
  sqlite3_step(pRtree->pWriteParent);
 | 
						|
  return sqlite3_reset(pRtree->pWriteParent);
 | 
						|
}
 | 
						|
 | 
						|
static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Arguments aIdx, aDistance and aSpare all point to arrays of size
 | 
						|
** nIdx. The aIdx array contains the set of integers from 0 to 
 | 
						|
** (nIdx-1) in no particular order. This function sorts the values
 | 
						|
** in aIdx according to the indexed values in aDistance. For
 | 
						|
** example, assuming the inputs:
 | 
						|
**
 | 
						|
**   aIdx      = { 0,   1,   2,   3 }
 | 
						|
**   aDistance = { 5.0, 2.0, 7.0, 6.0 }
 | 
						|
**
 | 
						|
** this function sets the aIdx array to contain:
 | 
						|
**
 | 
						|
**   aIdx      = { 0,   1,   2,   3 }
 | 
						|
**
 | 
						|
** The aSpare array is used as temporary working space by the
 | 
						|
** sorting algorithm.
 | 
						|
*/
 | 
						|
static void SortByDistance(
 | 
						|
  int *aIdx, 
 | 
						|
  int nIdx, 
 | 
						|
  RtreeDValue *aDistance, 
 | 
						|
  int *aSpare
 | 
						|
){
 | 
						|
  if( nIdx>1 ){
 | 
						|
    int iLeft = 0;
 | 
						|
    int iRight = 0;
 | 
						|
 | 
						|
    int nLeft = nIdx/2;
 | 
						|
    int nRight = nIdx-nLeft;
 | 
						|
    int *aLeft = aIdx;
 | 
						|
    int *aRight = &aIdx[nLeft];
 | 
						|
 | 
						|
    SortByDistance(aLeft, nLeft, aDistance, aSpare);
 | 
						|
    SortByDistance(aRight, nRight, aDistance, aSpare);
 | 
						|
 | 
						|
    memcpy(aSpare, aLeft, sizeof(int)*nLeft);
 | 
						|
    aLeft = aSpare;
 | 
						|
 | 
						|
    while( iLeft<nLeft || iRight<nRight ){
 | 
						|
      if( iLeft==nLeft ){
 | 
						|
        aIdx[iLeft+iRight] = aRight[iRight];
 | 
						|
        iRight++;
 | 
						|
      }else if( iRight==nRight ){
 | 
						|
        aIdx[iLeft+iRight] = aLeft[iLeft];
 | 
						|
        iLeft++;
 | 
						|
      }else{
 | 
						|
        RtreeDValue fLeft = aDistance[aLeft[iLeft]];
 | 
						|
        RtreeDValue fRight = aDistance[aRight[iRight]];
 | 
						|
        if( fLeft<fRight ){
 | 
						|
          aIdx[iLeft+iRight] = aLeft[iLeft];
 | 
						|
          iLeft++;
 | 
						|
        }else{
 | 
						|
          aIdx[iLeft+iRight] = aRight[iRight];
 | 
						|
          iRight++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
#if 0
 | 
						|
    /* Check that the sort worked */
 | 
						|
    {
 | 
						|
      int jj;
 | 
						|
      for(jj=1; jj<nIdx; jj++){
 | 
						|
        RtreeDValue left = aDistance[aIdx[jj-1]];
 | 
						|
        RtreeDValue right = aDistance[aIdx[jj]];
 | 
						|
        assert( left<=right );
 | 
						|
      }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Arguments aIdx, aCell and aSpare all point to arrays of size
 | 
						|
** nIdx. The aIdx array contains the set of integers from 0 to 
 | 
						|
** (nIdx-1) in no particular order. This function sorts the values
 | 
						|
** in aIdx according to dimension iDim of the cells in aCell. The
 | 
						|
** minimum value of dimension iDim is considered first, the
 | 
						|
** maximum used to break ties.
 | 
						|
**
 | 
						|
** The aSpare array is used as temporary working space by the
 | 
						|
** sorting algorithm.
 | 
						|
*/
 | 
						|
static void SortByDimension(
 | 
						|
  Rtree *pRtree,
 | 
						|
  int *aIdx, 
 | 
						|
  int nIdx, 
 | 
						|
  int iDim, 
 | 
						|
  RtreeCell *aCell, 
 | 
						|
  int *aSpare
 | 
						|
){
 | 
						|
  if( nIdx>1 ){
 | 
						|
 | 
						|
    int iLeft = 0;
 | 
						|
    int iRight = 0;
 | 
						|
 | 
						|
    int nLeft = nIdx/2;
 | 
						|
    int nRight = nIdx-nLeft;
 | 
						|
    int *aLeft = aIdx;
 | 
						|
    int *aRight = &aIdx[nLeft];
 | 
						|
 | 
						|
    SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
 | 
						|
    SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);
 | 
						|
 | 
						|
    memcpy(aSpare, aLeft, sizeof(int)*nLeft);
 | 
						|
    aLeft = aSpare;
 | 
						|
    while( iLeft<nLeft || iRight<nRight ){
 | 
						|
      RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
 | 
						|
      RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
 | 
						|
      RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
 | 
						|
      RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
 | 
						|
      if( (iLeft!=nLeft) && ((iRight==nRight)
 | 
						|
       || (xleft1<xright1)
 | 
						|
       || (xleft1==xright1 && xleft2<xright2)
 | 
						|
      )){
 | 
						|
        aIdx[iLeft+iRight] = aLeft[iLeft];
 | 
						|
        iLeft++;
 | 
						|
      }else{
 | 
						|
        aIdx[iLeft+iRight] = aRight[iRight];
 | 
						|
        iRight++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
#if 0
 | 
						|
    /* Check that the sort worked */
 | 
						|
    {
 | 
						|
      int jj;
 | 
						|
      for(jj=1; jj<nIdx; jj++){
 | 
						|
        RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
 | 
						|
        RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
 | 
						|
        RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
 | 
						|
        RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
 | 
						|
        assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
 | 
						|
      }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
 | 
						|
*/
 | 
						|
static int splitNodeStartree(
 | 
						|
  Rtree *pRtree,
 | 
						|
  RtreeCell *aCell,
 | 
						|
  int nCell,
 | 
						|
  RtreeNode *pLeft,
 | 
						|
  RtreeNode *pRight,
 | 
						|
  RtreeCell *pBboxLeft,
 | 
						|
  RtreeCell *pBboxRight
 | 
						|
){
 | 
						|
  int **aaSorted;
 | 
						|
  int *aSpare;
 | 
						|
  int ii;
 | 
						|
 | 
						|
  int iBestDim = 0;
 | 
						|
  int iBestSplit = 0;
 | 
						|
  RtreeDValue fBestMargin = RTREE_ZERO;
 | 
						|
 | 
						|
  int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));
 | 
						|
 | 
						|
  aaSorted = (int **)sqlite3_malloc(nByte);
 | 
						|
  if( !aaSorted ){
 | 
						|
    return SQLITE_NOMEM;
 | 
						|
  }
 | 
						|
 | 
						|
  aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
 | 
						|
  memset(aaSorted, 0, nByte);
 | 
						|
  for(ii=0; ii<pRtree->nDim; ii++){
 | 
						|
    int jj;
 | 
						|
    aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
 | 
						|
    for(jj=0; jj<nCell; jj++){
 | 
						|
      aaSorted[ii][jj] = jj;
 | 
						|
    }
 | 
						|
    SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
 | 
						|
  }
 | 
						|
 | 
						|
  for(ii=0; ii<pRtree->nDim; ii++){
 | 
						|
    RtreeDValue margin = RTREE_ZERO;
 | 
						|
    RtreeDValue fBestOverlap = RTREE_ZERO;
 | 
						|
    RtreeDValue fBestArea = RTREE_ZERO;
 | 
						|
    int iBestLeft = 0;
 | 
						|
    int nLeft;
 | 
						|
 | 
						|
    for(
 | 
						|
      nLeft=RTREE_MINCELLS(pRtree); 
 | 
						|
      nLeft<=(nCell-RTREE_MINCELLS(pRtree)); 
 | 
						|
      nLeft++
 | 
						|
    ){
 | 
						|
      RtreeCell left;
 | 
						|
      RtreeCell right;
 | 
						|
      int kk;
 | 
						|
      RtreeDValue overlap;
 | 
						|
      RtreeDValue area;
 | 
						|
 | 
						|
      memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
 | 
						|
      memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
 | 
						|
      for(kk=1; kk<(nCell-1); kk++){
 | 
						|
        if( kk<nLeft ){
 | 
						|
          cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
 | 
						|
        }else{
 | 
						|
          cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      margin += cellMargin(pRtree, &left);
 | 
						|
      margin += cellMargin(pRtree, &right);
 | 
						|
      overlap = cellOverlap(pRtree, &left, &right, 1);
 | 
						|
      area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
 | 
						|
      if( (nLeft==RTREE_MINCELLS(pRtree))
 | 
						|
       || (overlap<fBestOverlap)
 | 
						|
       || (overlap==fBestOverlap && area<fBestArea)
 | 
						|
      ){
 | 
						|
        iBestLeft = nLeft;
 | 
						|
        fBestOverlap = overlap;
 | 
						|
        fBestArea = area;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if( ii==0 || margin<fBestMargin ){
 | 
						|
      iBestDim = ii;
 | 
						|
      fBestMargin = margin;
 | 
						|
      iBestSplit = iBestLeft;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
 | 
						|
  memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
 | 
						|
  for(ii=0; ii<nCell; ii++){
 | 
						|
    RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
 | 
						|
    RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
 | 
						|
    RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
 | 
						|
    nodeInsertCell(pRtree, pTarget, pCell);
 | 
						|
    cellUnion(pRtree, pBbox, pCell);
 | 
						|
  }
 | 
						|
 | 
						|
  sqlite3_free(aaSorted);
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int updateMapping(
 | 
						|
  Rtree *pRtree, 
 | 
						|
  i64 iRowid, 
 | 
						|
  RtreeNode *pNode, 
 | 
						|
  int iHeight
 | 
						|
){
 | 
						|
  int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
 | 
						|
  xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
 | 
						|
  if( iHeight>0 ){
 | 
						|
    RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
 | 
						|
    if( pChild ){
 | 
						|
      nodeRelease(pRtree, pChild->pParent);
 | 
						|
      nodeReference(pNode);
 | 
						|
      pChild->pParent = pNode;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return xSetMapping(pRtree, iRowid, pNode->iNode);
 | 
						|
}
 | 
						|
 | 
						|
static int SplitNode(
 | 
						|
  Rtree *pRtree,
 | 
						|
  RtreeNode *pNode,
 | 
						|
  RtreeCell *pCell,
 | 
						|
  int iHeight
 | 
						|
){
 | 
						|
  int i;
 | 
						|
  int newCellIsRight = 0;
 | 
						|
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  int nCell = NCELL(pNode);
 | 
						|
  RtreeCell *aCell;
 | 
						|
  int *aiUsed;
 | 
						|
 | 
						|
  RtreeNode *pLeft = 0;
 | 
						|
  RtreeNode *pRight = 0;
 | 
						|
 | 
						|
  RtreeCell leftbbox;
 | 
						|
  RtreeCell rightbbox;
 | 
						|
 | 
						|
  /* Allocate an array and populate it with a copy of pCell and 
 | 
						|
  ** all cells from node pLeft. Then zero the original node.
 | 
						|
  */
 | 
						|
  aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
 | 
						|
  if( !aCell ){
 | 
						|
    rc = SQLITE_NOMEM;
 | 
						|
    goto splitnode_out;
 | 
						|
  }
 | 
						|
  aiUsed = (int *)&aCell[nCell+1];
 | 
						|
  memset(aiUsed, 0, sizeof(int)*(nCell+1));
 | 
						|
  for(i=0; i<nCell; i++){
 | 
						|
    nodeGetCell(pRtree, pNode, i, &aCell[i]);
 | 
						|
  }
 | 
						|
  nodeZero(pRtree, pNode);
 | 
						|
  memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
 | 
						|
  nCell++;
 | 
						|
 | 
						|
  if( pNode->iNode==1 ){
 | 
						|
    pRight = nodeNew(pRtree, pNode);
 | 
						|
    pLeft = nodeNew(pRtree, pNode);
 | 
						|
    pRtree->iDepth++;
 | 
						|
    pNode->isDirty = 1;
 | 
						|
    writeInt16(pNode->zData, pRtree->iDepth);
 | 
						|
  }else{
 | 
						|
    pLeft = pNode;
 | 
						|
    pRight = nodeNew(pRtree, pLeft->pParent);
 | 
						|
    nodeReference(pLeft);
 | 
						|
  }
 | 
						|
 | 
						|
  if( !pLeft || !pRight ){
 | 
						|
    rc = SQLITE_NOMEM;
 | 
						|
    goto splitnode_out;
 | 
						|
  }
 | 
						|
 | 
						|
  memset(pLeft->zData, 0, pRtree->iNodeSize);
 | 
						|
  memset(pRight->zData, 0, pRtree->iNodeSize);
 | 
						|
 | 
						|
  rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight,
 | 
						|
                         &leftbbox, &rightbbox);
 | 
						|
  if( rc!=SQLITE_OK ){
 | 
						|
    goto splitnode_out;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Ensure both child nodes have node numbers assigned to them by calling
 | 
						|
  ** nodeWrite(). Node pRight always needs a node number, as it was created
 | 
						|
  ** by nodeNew() above. But node pLeft sometimes already has a node number.
 | 
						|
  ** In this case avoid the all to nodeWrite().
 | 
						|
  */
 | 
						|
  if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))
 | 
						|
   || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
 | 
						|
  ){
 | 
						|
    goto splitnode_out;
 | 
						|
  }
 | 
						|
 | 
						|
  rightbbox.iRowid = pRight->iNode;
 | 
						|
  leftbbox.iRowid = pLeft->iNode;
 | 
						|
 | 
						|
  if( pNode->iNode==1 ){
 | 
						|
    rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
 | 
						|
    if( rc!=SQLITE_OK ){
 | 
						|
      goto splitnode_out;
 | 
						|
    }
 | 
						|
  }else{
 | 
						|
    RtreeNode *pParent = pLeft->pParent;
 | 
						|
    int iCell;
 | 
						|
    rc = nodeParentIndex(pRtree, pLeft, &iCell);
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
 | 
						|
      rc = AdjustTree(pRtree, pParent, &leftbbox);
 | 
						|
    }
 | 
						|
    if( rc!=SQLITE_OK ){
 | 
						|
      goto splitnode_out;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
 | 
						|
    goto splitnode_out;
 | 
						|
  }
 | 
						|
 | 
						|
  for(i=0; i<NCELL(pRight); i++){
 | 
						|
    i64 iRowid = nodeGetRowid(pRtree, pRight, i);
 | 
						|
    rc = updateMapping(pRtree, iRowid, pRight, iHeight);
 | 
						|
    if( iRowid==pCell->iRowid ){
 | 
						|
      newCellIsRight = 1;
 | 
						|
    }
 | 
						|
    if( rc!=SQLITE_OK ){
 | 
						|
      goto splitnode_out;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( pNode->iNode==1 ){
 | 
						|
    for(i=0; i<NCELL(pLeft); i++){
 | 
						|
      i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
 | 
						|
      rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
 | 
						|
      if( rc!=SQLITE_OK ){
 | 
						|
        goto splitnode_out;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }else if( newCellIsRight==0 ){
 | 
						|
    rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
 | 
						|
  }
 | 
						|
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    rc = nodeRelease(pRtree, pRight);
 | 
						|
    pRight = 0;
 | 
						|
  }
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    rc = nodeRelease(pRtree, pLeft);
 | 
						|
    pLeft = 0;
 | 
						|
  }
 | 
						|
 | 
						|
splitnode_out:
 | 
						|
  nodeRelease(pRtree, pRight);
 | 
						|
  nodeRelease(pRtree, pLeft);
 | 
						|
  sqlite3_free(aCell);
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** If node pLeaf is not the root of the r-tree and its pParent pointer is 
 | 
						|
** still NULL, load all ancestor nodes of pLeaf into memory and populate
 | 
						|
** the pLeaf->pParent chain all the way up to the root node.
 | 
						|
**
 | 
						|
** This operation is required when a row is deleted (or updated - an update
 | 
						|
** is implemented as a delete followed by an insert). SQLite provides the
 | 
						|
** rowid of the row to delete, which can be used to find the leaf on which
 | 
						|
** the entry resides (argument pLeaf). Once the leaf is located, this 
 | 
						|
** function is called to determine its ancestry.
 | 
						|
*/
 | 
						|
static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  RtreeNode *pChild = pLeaf;
 | 
						|
  while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){
 | 
						|
    int rc2 = SQLITE_OK;          /* sqlite3_reset() return code */
 | 
						|
    sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode);
 | 
						|
    rc = sqlite3_step(pRtree->pReadParent);
 | 
						|
    if( rc==SQLITE_ROW ){
 | 
						|
      RtreeNode *pTest;           /* Used to test for reference loops */
 | 
						|
      i64 iNode;                  /* Node number of parent node */
 | 
						|
 | 
						|
      /* Before setting pChild->pParent, test that we are not creating a
 | 
						|
      ** loop of references (as we would if, say, pChild==pParent). We don't
 | 
						|
      ** want to do this as it leads to a memory leak when trying to delete
 | 
						|
      ** the referenced counted node structures.
 | 
						|
      */
 | 
						|
      iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
 | 
						|
      for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent);
 | 
						|
      if( !pTest ){
 | 
						|
        rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    rc = sqlite3_reset(pRtree->pReadParent);
 | 
						|
    if( rc==SQLITE_OK ) rc = rc2;
 | 
						|
    if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT_VTAB;
 | 
						|
    pChild = pChild->pParent;
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int deleteCell(Rtree *, RtreeNode *, int, int);
 | 
						|
 | 
						|
static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
 | 
						|
  int rc;
 | 
						|
  int rc2;
 | 
						|
  RtreeNode *pParent = 0;
 | 
						|
  int iCell;
 | 
						|
 | 
						|
  assert( pNode->nRef==1 );
 | 
						|
 | 
						|
  /* Remove the entry in the parent cell. */
 | 
						|
  rc = nodeParentIndex(pRtree, pNode, &iCell);
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    pParent = pNode->pParent;
 | 
						|
    pNode->pParent = 0;
 | 
						|
    rc = deleteCell(pRtree, pParent, iCell, iHeight+1);
 | 
						|
  }
 | 
						|
  rc2 = nodeRelease(pRtree, pParent);
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    rc = rc2;
 | 
						|
  }
 | 
						|
  if( rc!=SQLITE_OK ){
 | 
						|
    return rc;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Remove the xxx_node entry. */
 | 
						|
  sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
 | 
						|
  sqlite3_step(pRtree->pDeleteNode);
 | 
						|
  if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
 | 
						|
    return rc;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Remove the xxx_parent entry. */
 | 
						|
  sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
 | 
						|
  sqlite3_step(pRtree->pDeleteParent);
 | 
						|
  if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
 | 
						|
    return rc;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /* Remove the node from the in-memory hash table and link it into
 | 
						|
  ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
 | 
						|
  */
 | 
						|
  nodeHashDelete(pRtree, pNode);
 | 
						|
  pNode->iNode = iHeight;
 | 
						|
  pNode->pNext = pRtree->pDeleted;
 | 
						|
  pNode->nRef++;
 | 
						|
  pRtree->pDeleted = pNode;
 | 
						|
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
 | 
						|
  RtreeNode *pParent = pNode->pParent;
 | 
						|
  int rc = SQLITE_OK; 
 | 
						|
  if( pParent ){
 | 
						|
    int ii; 
 | 
						|
    int nCell = NCELL(pNode);
 | 
						|
    RtreeCell box;                            /* Bounding box for pNode */
 | 
						|
    nodeGetCell(pRtree, pNode, 0, &box);
 | 
						|
    for(ii=1; ii<nCell; ii++){
 | 
						|
      RtreeCell cell;
 | 
						|
      nodeGetCell(pRtree, pNode, ii, &cell);
 | 
						|
      cellUnion(pRtree, &box, &cell);
 | 
						|
    }
 | 
						|
    box.iRowid = pNode->iNode;
 | 
						|
    rc = nodeParentIndex(pRtree, pNode, &ii);
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      nodeOverwriteCell(pRtree, pParent, &box, ii);
 | 
						|
      rc = fixBoundingBox(pRtree, pParent);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Delete the cell at index iCell of node pNode. After removing the
 | 
						|
** cell, adjust the r-tree data structure if required.
 | 
						|
*/
 | 
						|
static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
 | 
						|
  RtreeNode *pParent;
 | 
						|
  int rc;
 | 
						|
 | 
						|
  if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
 | 
						|
    return rc;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Remove the cell from the node. This call just moves bytes around
 | 
						|
  ** the in-memory node image, so it cannot fail.
 | 
						|
  */
 | 
						|
  nodeDeleteCell(pRtree, pNode, iCell);
 | 
						|
 | 
						|
  /* If the node is not the tree root and now has less than the minimum
 | 
						|
  ** number of cells, remove it from the tree. Otherwise, update the
 | 
						|
  ** cell in the parent node so that it tightly contains the updated
 | 
						|
  ** node.
 | 
						|
  */
 | 
						|
  pParent = pNode->pParent;
 | 
						|
  assert( pParent || pNode->iNode==1 );
 | 
						|
  if( pParent ){
 | 
						|
    if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){
 | 
						|
      rc = removeNode(pRtree, pNode, iHeight);
 | 
						|
    }else{
 | 
						|
      rc = fixBoundingBox(pRtree, pNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int Reinsert(
 | 
						|
  Rtree *pRtree, 
 | 
						|
  RtreeNode *pNode, 
 | 
						|
  RtreeCell *pCell, 
 | 
						|
  int iHeight
 | 
						|
){
 | 
						|
  int *aOrder;
 | 
						|
  int *aSpare;
 | 
						|
  RtreeCell *aCell;
 | 
						|
  RtreeDValue *aDistance;
 | 
						|
  int nCell;
 | 
						|
  RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS];
 | 
						|
  int iDim;
 | 
						|
  int ii;
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  int n;
 | 
						|
 | 
						|
  memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS);
 | 
						|
 | 
						|
  nCell = NCELL(pNode)+1;
 | 
						|
  n = (nCell+1)&(~1);
 | 
						|
 | 
						|
  /* Allocate the buffers used by this operation. The allocation is
 | 
						|
  ** relinquished before this function returns.
 | 
						|
  */
 | 
						|
  aCell = (RtreeCell *)sqlite3_malloc(n * (
 | 
						|
    sizeof(RtreeCell)     +         /* aCell array */
 | 
						|
    sizeof(int)           +         /* aOrder array */
 | 
						|
    sizeof(int)           +         /* aSpare array */
 | 
						|
    sizeof(RtreeDValue)             /* aDistance array */
 | 
						|
  ));
 | 
						|
  if( !aCell ){
 | 
						|
    return SQLITE_NOMEM;
 | 
						|
  }
 | 
						|
  aOrder    = (int *)&aCell[n];
 | 
						|
  aSpare    = (int *)&aOrder[n];
 | 
						|
  aDistance = (RtreeDValue *)&aSpare[n];
 | 
						|
 | 
						|
  for(ii=0; ii<nCell; ii++){
 | 
						|
    if( ii==(nCell-1) ){
 | 
						|
      memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
 | 
						|
    }else{
 | 
						|
      nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
 | 
						|
    }
 | 
						|
    aOrder[ii] = ii;
 | 
						|
    for(iDim=0; iDim<pRtree->nDim; iDim++){
 | 
						|
      aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
 | 
						|
      aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for(iDim=0; iDim<pRtree->nDim; iDim++){
 | 
						|
    aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2));
 | 
						|
  }
 | 
						|
 | 
						|
  for(ii=0; ii<nCell; ii++){
 | 
						|
    aDistance[ii] = RTREE_ZERO;
 | 
						|
    for(iDim=0; iDim<pRtree->nDim; iDim++){
 | 
						|
      RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - 
 | 
						|
                               DCOORD(aCell[ii].aCoord[iDim*2]));
 | 
						|
      aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SortByDistance(aOrder, nCell, aDistance, aSpare);
 | 
						|
  nodeZero(pRtree, pNode);
 | 
						|
 | 
						|
  for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){
 | 
						|
    RtreeCell *p = &aCell[aOrder[ii]];
 | 
						|
    nodeInsertCell(pRtree, pNode, p);
 | 
						|
    if( p->iRowid==pCell->iRowid ){
 | 
						|
      if( iHeight==0 ){
 | 
						|
        rc = rowidWrite(pRtree, p->iRowid, pNode->iNode);
 | 
						|
      }else{
 | 
						|
        rc = parentWrite(pRtree, p->iRowid, pNode->iNode);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    rc = fixBoundingBox(pRtree, pNode);
 | 
						|
  }
 | 
						|
  for(; rc==SQLITE_OK && ii<nCell; ii++){
 | 
						|
    /* Find a node to store this cell in. pNode->iNode currently contains
 | 
						|
    ** the height of the sub-tree headed by the cell.
 | 
						|
    */
 | 
						|
    RtreeNode *pInsert;
 | 
						|
    RtreeCell *p = &aCell[aOrder[ii]];
 | 
						|
    rc = ChooseLeaf(pRtree, p, iHeight, &pInsert);
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      int rc2;
 | 
						|
      rc = rtreeInsertCell(pRtree, pInsert, p, iHeight);
 | 
						|
      rc2 = nodeRelease(pRtree, pInsert);
 | 
						|
      if( rc==SQLITE_OK ){
 | 
						|
        rc = rc2;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  sqlite3_free(aCell);
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Insert cell pCell into node pNode. Node pNode is the head of a 
 | 
						|
** subtree iHeight high (leaf nodes have iHeight==0).
 | 
						|
*/
 | 
						|
static int rtreeInsertCell(
 | 
						|
  Rtree *pRtree,
 | 
						|
  RtreeNode *pNode,
 | 
						|
  RtreeCell *pCell,
 | 
						|
  int iHeight
 | 
						|
){
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  if( iHeight>0 ){
 | 
						|
    RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
 | 
						|
    if( pChild ){
 | 
						|
      nodeRelease(pRtree, pChild->pParent);
 | 
						|
      nodeReference(pNode);
 | 
						|
      pChild->pParent = pNode;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( nodeInsertCell(pRtree, pNode, pCell) ){
 | 
						|
    if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){
 | 
						|
      rc = SplitNode(pRtree, pNode, pCell, iHeight);
 | 
						|
    }else{
 | 
						|
      pRtree->iReinsertHeight = iHeight;
 | 
						|
      rc = Reinsert(pRtree, pNode, pCell, iHeight);
 | 
						|
    }
 | 
						|
  }else{
 | 
						|
    rc = AdjustTree(pRtree, pNode, pCell);
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      if( iHeight==0 ){
 | 
						|
        rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
 | 
						|
      }else{
 | 
						|
        rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
 | 
						|
  int ii;
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  int nCell = NCELL(pNode);
 | 
						|
 | 
						|
  for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
 | 
						|
    RtreeNode *pInsert;
 | 
						|
    RtreeCell cell;
 | 
						|
    nodeGetCell(pRtree, pNode, ii, &cell);
 | 
						|
 | 
						|
    /* Find a node to store this cell in. pNode->iNode currently contains
 | 
						|
    ** the height of the sub-tree headed by the cell.
 | 
						|
    */
 | 
						|
    rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert);
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      int rc2;
 | 
						|
      rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode);
 | 
						|
      rc2 = nodeRelease(pRtree, pInsert);
 | 
						|
      if( rc==SQLITE_OK ){
 | 
						|
        rc = rc2;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Select a currently unused rowid for a new r-tree record.
 | 
						|
*/
 | 
						|
static int newRowid(Rtree *pRtree, i64 *piRowid){
 | 
						|
  int rc;
 | 
						|
  sqlite3_bind_null(pRtree->pWriteRowid, 1);
 | 
						|
  sqlite3_bind_null(pRtree->pWriteRowid, 2);
 | 
						|
  sqlite3_step(pRtree->pWriteRowid);
 | 
						|
  rc = sqlite3_reset(pRtree->pWriteRowid);
 | 
						|
  *piRowid = sqlite3_last_insert_rowid(pRtree->db);
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Remove the entry with rowid=iDelete from the r-tree structure.
 | 
						|
*/
 | 
						|
static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){
 | 
						|
  int rc;                         /* Return code */
 | 
						|
  RtreeNode *pLeaf = 0;           /* Leaf node containing record iDelete */
 | 
						|
  int iCell;                      /* Index of iDelete cell in pLeaf */
 | 
						|
  RtreeNode *pRoot = 0;           /* Root node of rtree structure */
 | 
						|
 | 
						|
 | 
						|
  /* Obtain a reference to the root node to initialize Rtree.iDepth */
 | 
						|
  rc = nodeAcquire(pRtree, 1, 0, &pRoot);
 | 
						|
 | 
						|
  /* Obtain a reference to the leaf node that contains the entry 
 | 
						|
  ** about to be deleted. 
 | 
						|
  */
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    rc = findLeafNode(pRtree, iDelete, &pLeaf, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Delete the cell in question from the leaf node. */
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    int rc2;
 | 
						|
    rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      rc = deleteCell(pRtree, pLeaf, iCell, 0);
 | 
						|
    }
 | 
						|
    rc2 = nodeRelease(pRtree, pLeaf);
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      rc = rc2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Delete the corresponding entry in the <rtree>_rowid table. */
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
 | 
						|
    sqlite3_step(pRtree->pDeleteRowid);
 | 
						|
    rc = sqlite3_reset(pRtree->pDeleteRowid);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Check if the root node now has exactly one child. If so, remove
 | 
						|
  ** it, schedule the contents of the child for reinsertion and 
 | 
						|
  ** reduce the tree height by one.
 | 
						|
  **
 | 
						|
  ** This is equivalent to copying the contents of the child into
 | 
						|
  ** the root node (the operation that Gutman's paper says to perform 
 | 
						|
  ** in this scenario).
 | 
						|
  */
 | 
						|
  if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
 | 
						|
    int rc2;
 | 
						|
    RtreeNode *pChild = 0;
 | 
						|
    i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
 | 
						|
    rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
 | 
						|
    }
 | 
						|
    rc2 = nodeRelease(pRtree, pChild);
 | 
						|
    if( rc==SQLITE_OK ) rc = rc2;
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      pRtree->iDepth--;
 | 
						|
      writeInt16(pRoot->zData, pRtree->iDepth);
 | 
						|
      pRoot->isDirty = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Re-insert the contents of any underfull nodes removed from the tree. */
 | 
						|
  for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      rc = reinsertNodeContent(pRtree, pLeaf);
 | 
						|
    }
 | 
						|
    pRtree->pDeleted = pLeaf->pNext;
 | 
						|
    sqlite3_free(pLeaf);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Release the reference to the root node. */
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    rc = nodeRelease(pRtree, pRoot);
 | 
						|
  }else{
 | 
						|
    nodeRelease(pRtree, pRoot);
 | 
						|
  }
 | 
						|
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Rounding constants for float->double conversion.
 | 
						|
*/
 | 
						|
#define RNDTOWARDS  (1.0 - 1.0/8388608.0)  /* Round towards zero */
 | 
						|
#define RNDAWAY     (1.0 + 1.0/8388608.0)  /* Round away from zero */
 | 
						|
 | 
						|
#if !defined(SQLITE_RTREE_INT_ONLY)
 | 
						|
/*
 | 
						|
** Convert an sqlite3_value into an RtreeValue (presumably a float)
 | 
						|
** while taking care to round toward negative or positive, respectively.
 | 
						|
*/
 | 
						|
static RtreeValue rtreeValueDown(sqlite3_value *v){
 | 
						|
  double d = sqlite3_value_double(v);
 | 
						|
  float f = (float)d;
 | 
						|
  if( f>d ){
 | 
						|
    f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS));
 | 
						|
  }
 | 
						|
  return f;
 | 
						|
}
 | 
						|
static RtreeValue rtreeValueUp(sqlite3_value *v){
 | 
						|
  double d = sqlite3_value_double(v);
 | 
						|
  float f = (float)d;
 | 
						|
  if( f<d ){
 | 
						|
    f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY));
 | 
						|
  }
 | 
						|
  return f;
 | 
						|
}
 | 
						|
#endif /* !defined(SQLITE_RTREE_INT_ONLY) */
 | 
						|
 | 
						|
/*
 | 
						|
** A constraint has failed while inserting a row into an rtree table. 
 | 
						|
** Assuming no OOM error occurs, this function sets the error message 
 | 
						|
** (at pRtree->base.zErrMsg) to an appropriate value and returns
 | 
						|
** SQLITE_CONSTRAINT.
 | 
						|
**
 | 
						|
** Parameter iCol is the index of the leftmost column involved in the
 | 
						|
** constraint failure. If it is 0, then the constraint that failed is
 | 
						|
** the unique constraint on the id column. Otherwise, it is the rtree
 | 
						|
** (c1<=c2) constraint on columns iCol and iCol+1 that has failed.
 | 
						|
**
 | 
						|
** If an OOM occurs, SQLITE_NOMEM is returned instead of SQLITE_CONSTRAINT.
 | 
						|
*/
 | 
						|
static int rtreeConstraintError(Rtree *pRtree, int iCol){
 | 
						|
  sqlite3_stmt *pStmt = 0;
 | 
						|
  char *zSql; 
 | 
						|
  int rc;
 | 
						|
 | 
						|
  assert( iCol==0 || iCol%2 );
 | 
						|
  zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", pRtree->zDb, pRtree->zName);
 | 
						|
  if( zSql ){
 | 
						|
    rc = sqlite3_prepare_v2(pRtree->db, zSql, -1, &pStmt, 0);
 | 
						|
  }else{
 | 
						|
    rc = SQLITE_NOMEM;
 | 
						|
  }
 | 
						|
  sqlite3_free(zSql);
 | 
						|
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    if( iCol==0 ){
 | 
						|
      const char *zCol = sqlite3_column_name(pStmt, 0);
 | 
						|
      pRtree->base.zErrMsg = sqlite3_mprintf(
 | 
						|
          "UNIQUE constraint failed: %s.%s", pRtree->zName, zCol
 | 
						|
      );
 | 
						|
    }else{
 | 
						|
      const char *zCol1 = sqlite3_column_name(pStmt, iCol);
 | 
						|
      const char *zCol2 = sqlite3_column_name(pStmt, iCol+1);
 | 
						|
      pRtree->base.zErrMsg = sqlite3_mprintf(
 | 
						|
          "rtree constraint failed: %s.(%s<=%s)", pRtree->zName, zCol1, zCol2
 | 
						|
      );
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  sqlite3_finalize(pStmt);
 | 
						|
  return (rc==SQLITE_OK ? SQLITE_CONSTRAINT : rc);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** The xUpdate method for rtree module virtual tables.
 | 
						|
*/
 | 
						|
static int rtreeUpdate(
 | 
						|
  sqlite3_vtab *pVtab, 
 | 
						|
  int nData, 
 | 
						|
  sqlite3_value **azData, 
 | 
						|
  sqlite_int64 *pRowid
 | 
						|
){
 | 
						|
  Rtree *pRtree = (Rtree *)pVtab;
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  RtreeCell cell;                 /* New cell to insert if nData>1 */
 | 
						|
  int bHaveRowid = 0;             /* Set to 1 after new rowid is determined */
 | 
						|
 | 
						|
  rtreeReference(pRtree);
 | 
						|
  assert(nData>=1);
 | 
						|
 | 
						|
  cell.iRowid = 0;  /* Used only to suppress a compiler warning */
 | 
						|
 | 
						|
  /* Constraint handling. A write operation on an r-tree table may return
 | 
						|
  ** SQLITE_CONSTRAINT for two reasons:
 | 
						|
  **
 | 
						|
  **   1. A duplicate rowid value, or
 | 
						|
  **   2. The supplied data violates the "x2>=x1" constraint.
 | 
						|
  **
 | 
						|
  ** In the first case, if the conflict-handling mode is REPLACE, then
 | 
						|
  ** the conflicting row can be removed before proceeding. In the second
 | 
						|
  ** case, SQLITE_CONSTRAINT must be returned regardless of the
 | 
						|
  ** conflict-handling mode specified by the user.
 | 
						|
  */
 | 
						|
  if( nData>1 ){
 | 
						|
    int ii;
 | 
						|
 | 
						|
    /* Populate the cell.aCoord[] array. The first coordinate is azData[3].
 | 
						|
    **
 | 
						|
    ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared
 | 
						|
    ** with "column" that are interpreted as table constraints.
 | 
						|
    ** Example:  CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5));
 | 
						|
    ** This problem was discovered after years of use, so we silently ignore
 | 
						|
    ** these kinds of misdeclared tables to avoid breaking any legacy.
 | 
						|
    */
 | 
						|
    assert( nData<=(pRtree->nDim2 + 3) );
 | 
						|
 | 
						|
#ifndef SQLITE_RTREE_INT_ONLY
 | 
						|
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
 | 
						|
      for(ii=0; ii<nData-4; ii+=2){
 | 
						|
        cell.aCoord[ii].f = rtreeValueDown(azData[ii+3]);
 | 
						|
        cell.aCoord[ii+1].f = rtreeValueUp(azData[ii+4]);
 | 
						|
        if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
 | 
						|
          rc = rtreeConstraintError(pRtree, ii+1);
 | 
						|
          goto constraint;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }else
 | 
						|
#endif
 | 
						|
    {
 | 
						|
      for(ii=0; ii<nData-4; ii+=2){
 | 
						|
        cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
 | 
						|
        cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
 | 
						|
        if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
 | 
						|
          rc = rtreeConstraintError(pRtree, ii+1);
 | 
						|
          goto constraint;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* If a rowid value was supplied, check if it is already present in 
 | 
						|
    ** the table. If so, the constraint has failed. */
 | 
						|
    if( sqlite3_value_type(azData[2])!=SQLITE_NULL ){
 | 
						|
      cell.iRowid = sqlite3_value_int64(azData[2]);
 | 
						|
      if( sqlite3_value_type(azData[0])==SQLITE_NULL
 | 
						|
       || sqlite3_value_int64(azData[0])!=cell.iRowid
 | 
						|
      ){
 | 
						|
        int steprc;
 | 
						|
        sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
 | 
						|
        steprc = sqlite3_step(pRtree->pReadRowid);
 | 
						|
        rc = sqlite3_reset(pRtree->pReadRowid);
 | 
						|
        if( SQLITE_ROW==steprc ){
 | 
						|
          if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
 | 
						|
            rc = rtreeDeleteRowid(pRtree, cell.iRowid);
 | 
						|
          }else{
 | 
						|
            rc = rtreeConstraintError(pRtree, 0);
 | 
						|
            goto constraint;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      bHaveRowid = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* If azData[0] is not an SQL NULL value, it is the rowid of a
 | 
						|
  ** record to delete from the r-tree table. The following block does
 | 
						|
  ** just that.
 | 
						|
  */
 | 
						|
  if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
 | 
						|
    rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(azData[0]));
 | 
						|
  }
 | 
						|
 | 
						|
  /* If the azData[] array contains more than one element, elements
 | 
						|
  ** (azData[2]..azData[argc-1]) contain a new record to insert into
 | 
						|
  ** the r-tree structure.
 | 
						|
  */
 | 
						|
  if( rc==SQLITE_OK && nData>1 ){
 | 
						|
    /* Insert the new record into the r-tree */
 | 
						|
    RtreeNode *pLeaf = 0;
 | 
						|
 | 
						|
    /* Figure out the rowid of the new row. */
 | 
						|
    if( bHaveRowid==0 ){
 | 
						|
      rc = newRowid(pRtree, &cell.iRowid);
 | 
						|
    }
 | 
						|
    *pRowid = cell.iRowid;
 | 
						|
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
 | 
						|
    }
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      int rc2;
 | 
						|
      pRtree->iReinsertHeight = -1;
 | 
						|
      rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
 | 
						|
      rc2 = nodeRelease(pRtree, pLeaf);
 | 
						|
      if( rc==SQLITE_OK ){
 | 
						|
        rc = rc2;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
constraint:
 | 
						|
  rtreeRelease(pRtree);
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Called when a transaction starts.
 | 
						|
*/
 | 
						|
static int rtreeBeginTransaction(sqlite3_vtab *pVtab){
 | 
						|
  Rtree *pRtree = (Rtree *)pVtab;
 | 
						|
  assert( pRtree->inWrTrans==0 );
 | 
						|
  pRtree->inWrTrans++;
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Called when a transaction completes (either by COMMIT or ROLLBACK).
 | 
						|
** The sqlite3_blob object should be released at this point.
 | 
						|
*/
 | 
						|
static int rtreeEndTransaction(sqlite3_vtab *pVtab){
 | 
						|
  Rtree *pRtree = (Rtree *)pVtab;
 | 
						|
  pRtree->inWrTrans = 0;
 | 
						|
  nodeBlobReset(pRtree);
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The xRename method for rtree module virtual tables.
 | 
						|
*/
 | 
						|
static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
 | 
						|
  Rtree *pRtree = (Rtree *)pVtab;
 | 
						|
  int rc = SQLITE_NOMEM;
 | 
						|
  char *zSql = sqlite3_mprintf(
 | 
						|
    "ALTER TABLE %Q.'%q_node'   RENAME TO \"%w_node\";"
 | 
						|
    "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
 | 
						|
    "ALTER TABLE %Q.'%q_rowid'  RENAME TO \"%w_rowid\";"
 | 
						|
    , pRtree->zDb, pRtree->zName, zNewName 
 | 
						|
    , pRtree->zDb, pRtree->zName, zNewName 
 | 
						|
    , pRtree->zDb, pRtree->zName, zNewName
 | 
						|
  );
 | 
						|
  if( zSql ){
 | 
						|
    nodeBlobReset(pRtree);
 | 
						|
    rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
 | 
						|
    sqlite3_free(zSql);
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The xSavepoint method.
 | 
						|
**
 | 
						|
** This module does not need to do anything to support savepoints. However,
 | 
						|
** it uses this hook to close any open blob handle. This is done because a 
 | 
						|
** DROP TABLE command - which fortunately always opens a savepoint - cannot 
 | 
						|
** succeed if there are any open blob handles. i.e. if the blob handle were
 | 
						|
** not closed here, the following would fail:
 | 
						|
**
 | 
						|
**   BEGIN;
 | 
						|
**     INSERT INTO rtree...
 | 
						|
**     DROP TABLE <tablename>;    -- Would fail with SQLITE_LOCKED
 | 
						|
**   COMMIT;
 | 
						|
*/
 | 
						|
static int rtreeSavepoint(sqlite3_vtab *pVtab, int iSavepoint){
 | 
						|
  Rtree *pRtree = (Rtree *)pVtab;
 | 
						|
  int iwt = pRtree->inWrTrans;
 | 
						|
  UNUSED_PARAMETER(iSavepoint);
 | 
						|
  pRtree->inWrTrans = 0;
 | 
						|
  nodeBlobReset(pRtree);
 | 
						|
  pRtree->inWrTrans = iwt;
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This function populates the pRtree->nRowEst variable with an estimate
 | 
						|
** of the number of rows in the virtual table. If possible, this is based
 | 
						|
** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
 | 
						|
*/
 | 
						|
static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){
 | 
						|
  const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'";
 | 
						|
  char *zSql;
 | 
						|
  sqlite3_stmt *p;
 | 
						|
  int rc;
 | 
						|
  i64 nRow = 0;
 | 
						|
 | 
						|
  rc = sqlite3_table_column_metadata(
 | 
						|
      db, pRtree->zDb, "sqlite_stat1",0,0,0,0,0,0
 | 
						|
  );
 | 
						|
  if( rc!=SQLITE_OK ){
 | 
						|
    pRtree->nRowEst = RTREE_DEFAULT_ROWEST;
 | 
						|
    return rc==SQLITE_ERROR ? SQLITE_OK : rc;
 | 
						|
  }
 | 
						|
  zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName);
 | 
						|
  if( zSql==0 ){
 | 
						|
    rc = SQLITE_NOMEM;
 | 
						|
  }else{
 | 
						|
    rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0);
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0);
 | 
						|
      rc = sqlite3_finalize(p);
 | 
						|
    }else if( rc!=SQLITE_NOMEM ){
 | 
						|
      rc = SQLITE_OK;
 | 
						|
    }
 | 
						|
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      if( nRow==0 ){
 | 
						|
        pRtree->nRowEst = RTREE_DEFAULT_ROWEST;
 | 
						|
      }else{
 | 
						|
        pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    sqlite3_free(zSql);
 | 
						|
  }
 | 
						|
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
static sqlite3_module rtreeModule = {
 | 
						|
  2,                          /* iVersion */
 | 
						|
  rtreeCreate,                /* xCreate - create a table */
 | 
						|
  rtreeConnect,               /* xConnect - connect to an existing table */
 | 
						|
  rtreeBestIndex,             /* xBestIndex - Determine search strategy */
 | 
						|
  rtreeDisconnect,            /* xDisconnect - Disconnect from a table */
 | 
						|
  rtreeDestroy,               /* xDestroy - Drop a table */
 | 
						|
  rtreeOpen,                  /* xOpen - open a cursor */
 | 
						|
  rtreeClose,                 /* xClose - close a cursor */
 | 
						|
  rtreeFilter,                /* xFilter - configure scan constraints */
 | 
						|
  rtreeNext,                  /* xNext - advance a cursor */
 | 
						|
  rtreeEof,                   /* xEof */
 | 
						|
  rtreeColumn,                /* xColumn - read data */
 | 
						|
  rtreeRowid,                 /* xRowid - read data */
 | 
						|
  rtreeUpdate,                /* xUpdate - write data */
 | 
						|
  rtreeBeginTransaction,      /* xBegin - begin transaction */
 | 
						|
  rtreeEndTransaction,        /* xSync - sync transaction */
 | 
						|
  rtreeEndTransaction,        /* xCommit - commit transaction */
 | 
						|
  rtreeEndTransaction,        /* xRollback - rollback transaction */
 | 
						|
  0,                          /* xFindFunction - function overloading */
 | 
						|
  rtreeRename,                /* xRename - rename the table */
 | 
						|
  rtreeSavepoint,             /* xSavepoint */
 | 
						|
  0,                          /* xRelease */
 | 
						|
  0,                          /* xRollbackTo */
 | 
						|
};
 | 
						|
 | 
						|
static int rtreeSqlInit(
 | 
						|
  Rtree *pRtree, 
 | 
						|
  sqlite3 *db, 
 | 
						|
  const char *zDb, 
 | 
						|
  const char *zPrefix, 
 | 
						|
  int isCreate
 | 
						|
){
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
 | 
						|
  #define N_STATEMENT 8
 | 
						|
  static const char *azSql[N_STATEMENT] = {
 | 
						|
    /* Write the xxx_node table */
 | 
						|
    "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)",
 | 
						|
    "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1",
 | 
						|
 | 
						|
    /* Read and write the xxx_rowid table */
 | 
						|
    "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1",
 | 
						|
    "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)",
 | 
						|
    "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1",
 | 
						|
 | 
						|
    /* Read and write the xxx_parent table */
 | 
						|
    "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1",
 | 
						|
    "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)",
 | 
						|
    "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1"
 | 
						|
  };
 | 
						|
  sqlite3_stmt **appStmt[N_STATEMENT];
 | 
						|
  int i;
 | 
						|
 | 
						|
  pRtree->db = db;
 | 
						|
 | 
						|
  if( isCreate ){
 | 
						|
    char *zCreate = sqlite3_mprintf(
 | 
						|
"CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);"
 | 
						|
"CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);"
 | 
						|
"CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,"
 | 
						|
                                  " parentnode INTEGER);"
 | 
						|
"INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))",
 | 
						|
      zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize
 | 
						|
    );
 | 
						|
    if( !zCreate ){
 | 
						|
      return SQLITE_NOMEM;
 | 
						|
    }
 | 
						|
    rc = sqlite3_exec(db, zCreate, 0, 0, 0);
 | 
						|
    sqlite3_free(zCreate);
 | 
						|
    if( rc!=SQLITE_OK ){
 | 
						|
      return rc;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  appStmt[0] = &pRtree->pWriteNode;
 | 
						|
  appStmt[1] = &pRtree->pDeleteNode;
 | 
						|
  appStmt[2] = &pRtree->pReadRowid;
 | 
						|
  appStmt[3] = &pRtree->pWriteRowid;
 | 
						|
  appStmt[4] = &pRtree->pDeleteRowid;
 | 
						|
  appStmt[5] = &pRtree->pReadParent;
 | 
						|
  appStmt[6] = &pRtree->pWriteParent;
 | 
						|
  appStmt[7] = &pRtree->pDeleteParent;
 | 
						|
 | 
						|
  rc = rtreeQueryStat1(db, pRtree);
 | 
						|
  for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
 | 
						|
    char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix);
 | 
						|
    if( zSql ){
 | 
						|
      rc = sqlite3_prepare_v3(db, zSql, -1, SQLITE_PREPARE_PERSISTENT,
 | 
						|
                              appStmt[i], 0); 
 | 
						|
    }else{
 | 
						|
      rc = SQLITE_NOMEM;
 | 
						|
    }
 | 
						|
    sqlite3_free(zSql);
 | 
						|
  }
 | 
						|
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The second argument to this function contains the text of an SQL statement
 | 
						|
** that returns a single integer value. The statement is compiled and executed
 | 
						|
** using database connection db. If successful, the integer value returned
 | 
						|
** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
 | 
						|
** code is returned and the value of *piVal after returning is not defined.
 | 
						|
*/
 | 
						|
static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){
 | 
						|
  int rc = SQLITE_NOMEM;
 | 
						|
  if( zSql ){
 | 
						|
    sqlite3_stmt *pStmt = 0;
 | 
						|
    rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      if( SQLITE_ROW==sqlite3_step(pStmt) ){
 | 
						|
        *piVal = sqlite3_column_int(pStmt, 0);
 | 
						|
      }
 | 
						|
      rc = sqlite3_finalize(pStmt);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This function is called from within the xConnect() or xCreate() method to
 | 
						|
** determine the node-size used by the rtree table being created or connected
 | 
						|
** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
 | 
						|
** Otherwise, an SQLite error code is returned.
 | 
						|
**
 | 
						|
** If this function is being called as part of an xConnect(), then the rtree
 | 
						|
** table already exists. In this case the node-size is determined by inspecting
 | 
						|
** the root node of the tree.
 | 
						|
**
 | 
						|
** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. 
 | 
						|
** This ensures that each node is stored on a single database page. If the 
 | 
						|
** database page-size is so large that more than RTREE_MAXCELLS entries 
 | 
						|
** would fit in a single node, use a smaller node-size.
 | 
						|
*/
 | 
						|
static int getNodeSize(
 | 
						|
  sqlite3 *db,                    /* Database handle */
 | 
						|
  Rtree *pRtree,                  /* Rtree handle */
 | 
						|
  int isCreate,                   /* True for xCreate, false for xConnect */
 | 
						|
  char **pzErr                    /* OUT: Error message, if any */
 | 
						|
){
 | 
						|
  int rc;
 | 
						|
  char *zSql;
 | 
						|
  if( isCreate ){
 | 
						|
    int iPageSize = 0;
 | 
						|
    zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
 | 
						|
    rc = getIntFromStmt(db, zSql, &iPageSize);
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      pRtree->iNodeSize = iPageSize-64;
 | 
						|
      if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
 | 
						|
        pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
 | 
						|
      }
 | 
						|
    }else{
 | 
						|
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
 | 
						|
    }
 | 
						|
  }else{
 | 
						|
    zSql = sqlite3_mprintf(
 | 
						|
        "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
 | 
						|
        pRtree->zDb, pRtree->zName
 | 
						|
    );
 | 
						|
    rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
 | 
						|
    if( rc!=SQLITE_OK ){
 | 
						|
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
 | 
						|
    }else if( pRtree->iNodeSize<(512-64) ){
 | 
						|
      rc = SQLITE_CORRUPT_VTAB;
 | 
						|
      *pzErr = sqlite3_mprintf("undersize RTree blobs in \"%q_node\"",
 | 
						|
                               pRtree->zName);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  sqlite3_free(zSql);
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
** This function is the implementation of both the xConnect and xCreate
 | 
						|
** methods of the r-tree virtual table.
 | 
						|
**
 | 
						|
**   argv[0]   -> module name
 | 
						|
**   argv[1]   -> database name
 | 
						|
**   argv[2]   -> table name
 | 
						|
**   argv[...] -> column names...
 | 
						|
*/
 | 
						|
static int rtreeInit(
 | 
						|
  sqlite3 *db,                        /* Database connection */
 | 
						|
  void *pAux,                         /* One of the RTREE_COORD_* constants */
 | 
						|
  int argc, const char *const*argv,   /* Parameters to CREATE TABLE statement */
 | 
						|
  sqlite3_vtab **ppVtab,              /* OUT: New virtual table */
 | 
						|
  char **pzErr,                       /* OUT: Error message, if any */
 | 
						|
  int isCreate                        /* True for xCreate, false for xConnect */
 | 
						|
){
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  Rtree *pRtree;
 | 
						|
  int nDb;              /* Length of string argv[1] */
 | 
						|
  int nName;            /* Length of string argv[2] */
 | 
						|
  int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);
 | 
						|
 | 
						|
  const char *aErrMsg[] = {
 | 
						|
    0,                                                    /* 0 */
 | 
						|
    "Wrong number of columns for an rtree table",         /* 1 */
 | 
						|
    "Too few columns for an rtree table",                 /* 2 */
 | 
						|
    "Too many columns for an rtree table"                 /* 3 */
 | 
						|
  };
 | 
						|
 | 
						|
  int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2;
 | 
						|
  if( aErrMsg[iErr] ){
 | 
						|
    *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
 | 
						|
    return SQLITE_ERROR;
 | 
						|
  }
 | 
						|
 | 
						|
  sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
 | 
						|
 | 
						|
  /* Allocate the sqlite3_vtab structure */
 | 
						|
  nDb = (int)strlen(argv[1]);
 | 
						|
  nName = (int)strlen(argv[2]);
 | 
						|
  pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
 | 
						|
  if( !pRtree ){
 | 
						|
    return SQLITE_NOMEM;
 | 
						|
  }
 | 
						|
  memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
 | 
						|
  pRtree->nBusy = 1;
 | 
						|
  pRtree->base.pModule = &rtreeModule;
 | 
						|
  pRtree->zDb = (char *)&pRtree[1];
 | 
						|
  pRtree->zName = &pRtree->zDb[nDb+1];
 | 
						|
  pRtree->nDim = (u8)((argc-4)/2);
 | 
						|
  pRtree->nDim2 = pRtree->nDim*2;
 | 
						|
  pRtree->nBytesPerCell = 8 + pRtree->nDim2*4;
 | 
						|
  pRtree->eCoordType = (u8)eCoordType;
 | 
						|
  memcpy(pRtree->zDb, argv[1], nDb);
 | 
						|
  memcpy(pRtree->zName, argv[2], nName);
 | 
						|
 | 
						|
  /* Figure out the node size to use. */
 | 
						|
  rc = getNodeSize(db, pRtree, isCreate, pzErr);
 | 
						|
 | 
						|
  /* Create/Connect to the underlying relational database schema. If
 | 
						|
  ** that is successful, call sqlite3_declare_vtab() to configure
 | 
						|
  ** the r-tree table schema.
 | 
						|
  */
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
 | 
						|
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
 | 
						|
    }else{
 | 
						|
      char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]);
 | 
						|
      char *zTmp;
 | 
						|
      int ii;
 | 
						|
      for(ii=4; zSql && ii<argc; ii++){
 | 
						|
        zTmp = zSql;
 | 
						|
        zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]);
 | 
						|
        sqlite3_free(zTmp);
 | 
						|
      }
 | 
						|
      if( zSql ){
 | 
						|
        zTmp = zSql;
 | 
						|
        zSql = sqlite3_mprintf("%s);", zTmp);
 | 
						|
        sqlite3_free(zTmp);
 | 
						|
      }
 | 
						|
      if( !zSql ){
 | 
						|
        rc = SQLITE_NOMEM;
 | 
						|
      }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
 | 
						|
        *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
 | 
						|
      }
 | 
						|
      sqlite3_free(zSql);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    *ppVtab = (sqlite3_vtab *)pRtree;
 | 
						|
  }else{
 | 
						|
    assert( *ppVtab==0 );
 | 
						|
    assert( pRtree->nBusy==1 );
 | 
						|
    rtreeRelease(pRtree);
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Implementation of a scalar function that decodes r-tree nodes to
 | 
						|
** human readable strings. This can be used for debugging and analysis.
 | 
						|
**
 | 
						|
** The scalar function takes two arguments: (1) the number of dimensions
 | 
						|
** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing
 | 
						|
** an r-tree node.  For a two-dimensional r-tree structure called "rt", to
 | 
						|
** deserialize all nodes, a statement like:
 | 
						|
**
 | 
						|
**   SELECT rtreenode(2, data) FROM rt_node;
 | 
						|
**
 | 
						|
** The human readable string takes the form of a Tcl list with one
 | 
						|
** entry for each cell in the r-tree node. Each entry is itself a
 | 
						|
** list, containing the 8-byte rowid/pageno followed by the 
 | 
						|
** <num-dimension>*2 coordinates.
 | 
						|
*/
 | 
						|
static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
 | 
						|
  char *zText = 0;
 | 
						|
  RtreeNode node;
 | 
						|
  Rtree tree;
 | 
						|
  int ii;
 | 
						|
 | 
						|
  UNUSED_PARAMETER(nArg);
 | 
						|
  memset(&node, 0, sizeof(RtreeNode));
 | 
						|
  memset(&tree, 0, sizeof(Rtree));
 | 
						|
  tree.nDim = (u8)sqlite3_value_int(apArg[0]);
 | 
						|
  tree.nDim2 = tree.nDim*2;
 | 
						|
  tree.nBytesPerCell = 8 + 8 * tree.nDim;
 | 
						|
  node.zData = (u8 *)sqlite3_value_blob(apArg[1]);
 | 
						|
 | 
						|
  for(ii=0; ii<NCELL(&node); ii++){
 | 
						|
    char zCell[512];
 | 
						|
    int nCell = 0;
 | 
						|
    RtreeCell cell;
 | 
						|
    int jj;
 | 
						|
 | 
						|
    nodeGetCell(&tree, &node, ii, &cell);
 | 
						|
    sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
 | 
						|
    nCell = (int)strlen(zCell);
 | 
						|
    for(jj=0; jj<tree.nDim2; jj++){
 | 
						|
#ifndef SQLITE_RTREE_INT_ONLY
 | 
						|
      sqlite3_snprintf(512-nCell,&zCell[nCell], " %g",
 | 
						|
                       (double)cell.aCoord[jj].f);
 | 
						|
#else
 | 
						|
      sqlite3_snprintf(512-nCell,&zCell[nCell], " %d",
 | 
						|
                       cell.aCoord[jj].i);
 | 
						|
#endif
 | 
						|
      nCell = (int)strlen(zCell);
 | 
						|
    }
 | 
						|
 | 
						|
    if( zText ){
 | 
						|
      char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
 | 
						|
      sqlite3_free(zText);
 | 
						|
      zText = zTextNew;
 | 
						|
    }else{
 | 
						|
      zText = sqlite3_mprintf("{%s}", zCell);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  sqlite3_result_text(ctx, zText, -1, sqlite3_free);
 | 
						|
}
 | 
						|
 | 
						|
/* This routine implements an SQL function that returns the "depth" parameter
 | 
						|
** from the front of a blob that is an r-tree node.  For example:
 | 
						|
**
 | 
						|
**     SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1;
 | 
						|
**
 | 
						|
** The depth value is 0 for all nodes other than the root node, and the root
 | 
						|
** node always has nodeno=1, so the example above is the primary use for this
 | 
						|
** routine.  This routine is intended for testing and analysis only.
 | 
						|
*/
 | 
						|
static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
 | 
						|
  UNUSED_PARAMETER(nArg);
 | 
						|
  if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB 
 | 
						|
   || sqlite3_value_bytes(apArg[0])<2
 | 
						|
  ){
 | 
						|
    sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); 
 | 
						|
  }else{
 | 
						|
    u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
 | 
						|
    sqlite3_result_int(ctx, readInt16(zBlob));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Context object passed between the various routines that make up the
 | 
						|
** implementation of integrity-check function rtreecheck().
 | 
						|
*/
 | 
						|
typedef struct RtreeCheck RtreeCheck;
 | 
						|
struct RtreeCheck {
 | 
						|
  sqlite3 *db;                    /* Database handle */
 | 
						|
  const char *zDb;                /* Database containing rtree table */
 | 
						|
  const char *zTab;               /* Name of rtree table */
 | 
						|
  int bInt;                       /* True for rtree_i32 table */
 | 
						|
  int nDim;                       /* Number of dimensions for this rtree tbl */
 | 
						|
  sqlite3_stmt *pGetNode;         /* Statement used to retrieve nodes */
 | 
						|
  sqlite3_stmt *aCheckMapping[2]; /* Statements to query %_parent/%_rowid */
 | 
						|
  int nLeaf;                      /* Number of leaf cells in table */
 | 
						|
  int nNonLeaf;                   /* Number of non-leaf cells in table */
 | 
						|
  int rc;                         /* Return code */
 | 
						|
  char *zReport;                  /* Message to report */
 | 
						|
  int nErr;                       /* Number of lines in zReport */
 | 
						|
};
 | 
						|
 | 
						|
#define RTREE_CHECK_MAX_ERROR 100
 | 
						|
 | 
						|
/*
 | 
						|
** Reset SQL statement pStmt. If the sqlite3_reset() call returns an error,
 | 
						|
** and RtreeCheck.rc==SQLITE_OK, set RtreeCheck.rc to the error code.
 | 
						|
*/
 | 
						|
static void rtreeCheckReset(RtreeCheck *pCheck, sqlite3_stmt *pStmt){
 | 
						|
  int rc = sqlite3_reset(pStmt);
 | 
						|
  if( pCheck->rc==SQLITE_OK ) pCheck->rc = rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The second and subsequent arguments to this function are a format string
 | 
						|
** and printf style arguments. This function formats the string and attempts
 | 
						|
** to compile it as an SQL statement.
 | 
						|
**
 | 
						|
** If successful, a pointer to the new SQL statement is returned. Otherwise,
 | 
						|
** NULL is returned and an error code left in RtreeCheck.rc.
 | 
						|
*/
 | 
						|
static sqlite3_stmt *rtreeCheckPrepare(
 | 
						|
  RtreeCheck *pCheck,             /* RtreeCheck object */
 | 
						|
  const char *zFmt, ...           /* Format string and trailing args */
 | 
						|
){
 | 
						|
  va_list ap;
 | 
						|
  char *z;
 | 
						|
  sqlite3_stmt *pRet = 0;
 | 
						|
 | 
						|
  va_start(ap, zFmt);
 | 
						|
  z = sqlite3_vmprintf(zFmt, ap);
 | 
						|
 | 
						|
  if( pCheck->rc==SQLITE_OK ){
 | 
						|
    if( z==0 ){
 | 
						|
      pCheck->rc = SQLITE_NOMEM;
 | 
						|
    }else{
 | 
						|
      pCheck->rc = sqlite3_prepare_v2(pCheck->db, z, -1, &pRet, 0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  sqlite3_free(z);
 | 
						|
  va_end(ap);
 | 
						|
  return pRet;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The second and subsequent arguments to this function are a printf()
 | 
						|
** style format string and arguments. This function formats the string and
 | 
						|
** appends it to the report being accumuated in pCheck.
 | 
						|
*/
 | 
						|
static void rtreeCheckAppendMsg(RtreeCheck *pCheck, const char *zFmt, ...){
 | 
						|
  va_list ap;
 | 
						|
  va_start(ap, zFmt);
 | 
						|
  if( pCheck->rc==SQLITE_OK && pCheck->nErr<RTREE_CHECK_MAX_ERROR ){
 | 
						|
    char *z = sqlite3_vmprintf(zFmt, ap);
 | 
						|
    if( z==0 ){
 | 
						|
      pCheck->rc = SQLITE_NOMEM;
 | 
						|
    }else{
 | 
						|
      pCheck->zReport = sqlite3_mprintf("%z%s%z", 
 | 
						|
          pCheck->zReport, (pCheck->zReport ? "\n" : ""), z
 | 
						|
      );
 | 
						|
      if( pCheck->zReport==0 ){
 | 
						|
        pCheck->rc = SQLITE_NOMEM;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    pCheck->nErr++;
 | 
						|
  }
 | 
						|
  va_end(ap);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This function is a no-op if there is already an error code stored
 | 
						|
** in the RtreeCheck object indicated by the first argument. NULL is
 | 
						|
** returned in this case.
 | 
						|
**
 | 
						|
** Otherwise, the contents of rtree table node iNode are loaded from
 | 
						|
** the database and copied into a buffer obtained from sqlite3_malloc().
 | 
						|
** If no error occurs, a pointer to the buffer is returned and (*pnNode)
 | 
						|
** is set to the size of the buffer in bytes.
 | 
						|
**
 | 
						|
** Or, if an error does occur, NULL is returned and an error code left
 | 
						|
** in the RtreeCheck object. The final value of *pnNode is undefined in
 | 
						|
** this case.
 | 
						|
*/
 | 
						|
static u8 *rtreeCheckGetNode(RtreeCheck *pCheck, i64 iNode, int *pnNode){
 | 
						|
  u8 *pRet = 0;                   /* Return value */
 | 
						|
 | 
						|
  assert( pCheck->rc==SQLITE_OK );
 | 
						|
  if( pCheck->pGetNode==0 ){
 | 
						|
    pCheck->pGetNode = rtreeCheckPrepare(pCheck,
 | 
						|
        "SELECT data FROM %Q.'%q_node' WHERE nodeno=?", 
 | 
						|
        pCheck->zDb, pCheck->zTab
 | 
						|
    );
 | 
						|
  }
 | 
						|
 | 
						|
  if( pCheck->rc==SQLITE_OK ){
 | 
						|
    sqlite3_bind_int64(pCheck->pGetNode, 1, iNode);
 | 
						|
    if( sqlite3_step(pCheck->pGetNode)==SQLITE_ROW ){
 | 
						|
      int nNode = sqlite3_column_bytes(pCheck->pGetNode, 0);
 | 
						|
      const u8 *pNode = (const u8*)sqlite3_column_blob(pCheck->pGetNode, 0);
 | 
						|
      pRet = sqlite3_malloc(nNode);
 | 
						|
      if( pRet==0 ){
 | 
						|
        pCheck->rc = SQLITE_NOMEM;
 | 
						|
      }else{
 | 
						|
        memcpy(pRet, pNode, nNode);
 | 
						|
        *pnNode = nNode;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    rtreeCheckReset(pCheck, pCheck->pGetNode);
 | 
						|
    if( pCheck->rc==SQLITE_OK && pRet==0 ){
 | 
						|
      rtreeCheckAppendMsg(pCheck, "Node %lld missing from database", iNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return pRet;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This function is used to check that the %_parent (if bLeaf==0) or %_rowid
 | 
						|
** (if bLeaf==1) table contains a specified entry. The schemas of the
 | 
						|
** two tables are:
 | 
						|
**
 | 
						|
**   CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
 | 
						|
**   CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER)
 | 
						|
**
 | 
						|
** In both cases, this function checks that there exists an entry with
 | 
						|
** IPK value iKey and the second column set to iVal.
 | 
						|
**
 | 
						|
*/
 | 
						|
static void rtreeCheckMapping(
 | 
						|
  RtreeCheck *pCheck,             /* RtreeCheck object */
 | 
						|
  int bLeaf,                      /* True for a leaf cell, false for interior */
 | 
						|
  i64 iKey,                       /* Key for mapping */
 | 
						|
  i64 iVal                        /* Expected value for mapping */
 | 
						|
){
 | 
						|
  int rc;
 | 
						|
  sqlite3_stmt *pStmt;
 | 
						|
  const char *azSql[2] = {
 | 
						|
    "SELECT parentnode FROM %Q.'%q_parent' WHERE nodeno=?",
 | 
						|
    "SELECT nodeno FROM %Q.'%q_rowid' WHERE rowid=?"
 | 
						|
  };
 | 
						|
 | 
						|
  assert( bLeaf==0 || bLeaf==1 );
 | 
						|
  if( pCheck->aCheckMapping[bLeaf]==0 ){
 | 
						|
    pCheck->aCheckMapping[bLeaf] = rtreeCheckPrepare(pCheck,
 | 
						|
        azSql[bLeaf], pCheck->zDb, pCheck->zTab
 | 
						|
    );
 | 
						|
  }
 | 
						|
  if( pCheck->rc!=SQLITE_OK ) return;
 | 
						|
 | 
						|
  pStmt = pCheck->aCheckMapping[bLeaf];
 | 
						|
  sqlite3_bind_int64(pStmt, 1, iKey);
 | 
						|
  rc = sqlite3_step(pStmt);
 | 
						|
  if( rc==SQLITE_DONE ){
 | 
						|
    rtreeCheckAppendMsg(pCheck, "Mapping (%lld -> %lld) missing from %s table",
 | 
						|
        iKey, iVal, (bLeaf ? "%_rowid" : "%_parent")
 | 
						|
    );
 | 
						|
  }else if( rc==SQLITE_ROW ){
 | 
						|
    i64 ii = sqlite3_column_int64(pStmt, 0);
 | 
						|
    if( ii!=iVal ){
 | 
						|
      rtreeCheckAppendMsg(pCheck, 
 | 
						|
          "Found (%lld -> %lld) in %s table, expected (%lld -> %lld)",
 | 
						|
          iKey, ii, (bLeaf ? "%_rowid" : "%_parent"), iKey, iVal
 | 
						|
      );
 | 
						|
    }
 | 
						|
  }
 | 
						|
  rtreeCheckReset(pCheck, pStmt);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Argument pCell points to an array of coordinates stored on an rtree page.
 | 
						|
** This function checks that the coordinates are internally consistent (no
 | 
						|
** x1>x2 conditions) and adds an error message to the RtreeCheck object
 | 
						|
** if they are not.
 | 
						|
**
 | 
						|
** Additionally, if pParent is not NULL, then it is assumed to point to
 | 
						|
** the array of coordinates on the parent page that bound the page 
 | 
						|
** containing pCell. In this case it is also verified that the two
 | 
						|
** sets of coordinates are mutually consistent and an error message added
 | 
						|
** to the RtreeCheck object if they are not.
 | 
						|
*/
 | 
						|
static void rtreeCheckCellCoord(
 | 
						|
  RtreeCheck *pCheck, 
 | 
						|
  i64 iNode,                      /* Node id to use in error messages */
 | 
						|
  int iCell,                      /* Cell number to use in error messages */
 | 
						|
  u8 *pCell,                      /* Pointer to cell coordinates */
 | 
						|
  u8 *pParent                     /* Pointer to parent coordinates */
 | 
						|
){
 | 
						|
  RtreeCoord c1, c2;
 | 
						|
  RtreeCoord p1, p2;
 | 
						|
  int i;
 | 
						|
 | 
						|
  for(i=0; i<pCheck->nDim; i++){
 | 
						|
    readCoord(&pCell[4*2*i], &c1);
 | 
						|
    readCoord(&pCell[4*(2*i + 1)], &c2);
 | 
						|
 | 
						|
    /* printf("%e, %e\n", c1.u.f, c2.u.f); */
 | 
						|
    if( pCheck->bInt ? c1.i>c2.i : c1.f>c2.f ){
 | 
						|
      rtreeCheckAppendMsg(pCheck, 
 | 
						|
          "Dimension %d of cell %d on node %lld is corrupt", i, iCell, iNode
 | 
						|
      );
 | 
						|
    }
 | 
						|
 | 
						|
    if( pParent ){
 | 
						|
      readCoord(&pParent[4*2*i], &p1);
 | 
						|
      readCoord(&pParent[4*(2*i + 1)], &p2);
 | 
						|
 | 
						|
      if( (pCheck->bInt ? c1.i<p1.i : c1.f<p1.f) 
 | 
						|
       || (pCheck->bInt ? c2.i>p2.i : c2.f>p2.f)
 | 
						|
      ){
 | 
						|
        rtreeCheckAppendMsg(pCheck, 
 | 
						|
            "Dimension %d of cell %d on node %lld is corrupt relative to parent"
 | 
						|
            , i, iCell, iNode
 | 
						|
        );
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Run rtreecheck() checks on node iNode, which is at depth iDepth within
 | 
						|
** the r-tree structure. Argument aParent points to the array of coordinates
 | 
						|
** that bound node iNode on the parent node.
 | 
						|
**
 | 
						|
** If any problems are discovered, an error message is appended to the
 | 
						|
** report accumulated in the RtreeCheck object.
 | 
						|
*/
 | 
						|
static void rtreeCheckNode(
 | 
						|
  RtreeCheck *pCheck,
 | 
						|
  int iDepth,                     /* Depth of iNode (0==leaf) */
 | 
						|
  u8 *aParent,                    /* Buffer containing parent coords */
 | 
						|
  i64 iNode                       /* Node to check */
 | 
						|
){
 | 
						|
  u8 *aNode = 0;
 | 
						|
  int nNode = 0;
 | 
						|
 | 
						|
  assert( iNode==1 || aParent!=0 );
 | 
						|
  assert( pCheck->nDim>0 );
 | 
						|
 | 
						|
  aNode = rtreeCheckGetNode(pCheck, iNode, &nNode);
 | 
						|
  if( aNode ){
 | 
						|
    if( nNode<4 ){
 | 
						|
      rtreeCheckAppendMsg(pCheck, 
 | 
						|
          "Node %lld is too small (%d bytes)", iNode, nNode
 | 
						|
      );
 | 
						|
    }else{
 | 
						|
      int nCell;                  /* Number of cells on page */
 | 
						|
      int i;                      /* Used to iterate through cells */
 | 
						|
      if( aParent==0 ){
 | 
						|
        iDepth = readInt16(aNode);
 | 
						|
        if( iDepth>RTREE_MAX_DEPTH ){
 | 
						|
          rtreeCheckAppendMsg(pCheck, "Rtree depth out of range (%d)", iDepth);
 | 
						|
          sqlite3_free(aNode);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      nCell = readInt16(&aNode[2]);
 | 
						|
      if( (4 + nCell*(8 + pCheck->nDim*2*4))>nNode ){
 | 
						|
        rtreeCheckAppendMsg(pCheck, 
 | 
						|
            "Node %lld is too small for cell count of %d (%d bytes)", 
 | 
						|
            iNode, nCell, nNode
 | 
						|
        );
 | 
						|
      }else{
 | 
						|
        for(i=0; i<nCell; i++){
 | 
						|
          u8 *pCell = &aNode[4 + i*(8 + pCheck->nDim*2*4)];
 | 
						|
          i64 iVal = readInt64(pCell);
 | 
						|
          rtreeCheckCellCoord(pCheck, iNode, i, &pCell[8], aParent);
 | 
						|
 | 
						|
          if( iDepth>0 ){
 | 
						|
            rtreeCheckMapping(pCheck, 0, iVal, iNode);
 | 
						|
            rtreeCheckNode(pCheck, iDepth-1, &pCell[8], iVal);
 | 
						|
            pCheck->nNonLeaf++;
 | 
						|
          }else{
 | 
						|
            rtreeCheckMapping(pCheck, 1, iVal, iNode);
 | 
						|
            pCheck->nLeaf++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    sqlite3_free(aNode);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The second argument to this function must be either "_rowid" or
 | 
						|
** "_parent". This function checks that the number of entries in the
 | 
						|
** %_rowid or %_parent table is exactly nExpect. If not, it adds
 | 
						|
** an error message to the report in the RtreeCheck object indicated
 | 
						|
** by the first argument.
 | 
						|
*/
 | 
						|
static void rtreeCheckCount(RtreeCheck *pCheck, const char *zTbl, i64 nExpect){
 | 
						|
  if( pCheck->rc==SQLITE_OK ){
 | 
						|
    sqlite3_stmt *pCount;
 | 
						|
    pCount = rtreeCheckPrepare(pCheck, "SELECT count(*) FROM %Q.'%q%s'",
 | 
						|
        pCheck->zDb, pCheck->zTab, zTbl
 | 
						|
    );
 | 
						|
    if( pCount ){
 | 
						|
      if( sqlite3_step(pCount)==SQLITE_ROW ){
 | 
						|
        i64 nActual = sqlite3_column_int64(pCount, 0);
 | 
						|
        if( nActual!=nExpect ){
 | 
						|
          rtreeCheckAppendMsg(pCheck, "Wrong number of entries in %%%s table"
 | 
						|
              " - expected %lld, actual %lld" , zTbl, nExpect, nActual
 | 
						|
          );
 | 
						|
        }
 | 
						|
      }
 | 
						|
      pCheck->rc = sqlite3_finalize(pCount);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This function does the bulk of the work for the rtree integrity-check.
 | 
						|
** It is called by rtreecheck(), which is the SQL function implementation.
 | 
						|
*/
 | 
						|
static int rtreeCheckTable(
 | 
						|
  sqlite3 *db,                    /* Database handle to access db through */
 | 
						|
  const char *zDb,                /* Name of db ("main", "temp" etc.) */
 | 
						|
  const char *zTab,               /* Name of rtree table to check */
 | 
						|
  char **pzReport                 /* OUT: sqlite3_malloc'd report text */
 | 
						|
){
 | 
						|
  RtreeCheck check;               /* Common context for various routines */
 | 
						|
  sqlite3_stmt *pStmt = 0;        /* Used to find column count of rtree table */
 | 
						|
  int bEnd = 0;                   /* True if transaction should be closed */
 | 
						|
 | 
						|
  /* Initialize the context object */
 | 
						|
  memset(&check, 0, sizeof(check));
 | 
						|
  check.db = db;
 | 
						|
  check.zDb = zDb;
 | 
						|
  check.zTab = zTab;
 | 
						|
 | 
						|
  /* If there is not already an open transaction, open one now. This is
 | 
						|
  ** to ensure that the queries run as part of this integrity-check operate
 | 
						|
  ** on a consistent snapshot.  */
 | 
						|
  if( sqlite3_get_autocommit(db) ){
 | 
						|
    check.rc = sqlite3_exec(db, "BEGIN", 0, 0, 0);
 | 
						|
    bEnd = 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Find number of dimensions in the rtree table. */
 | 
						|
  pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.%Q", zDb, zTab);
 | 
						|
  if( pStmt ){
 | 
						|
    int rc;
 | 
						|
    check.nDim = (sqlite3_column_count(pStmt) - 1) / 2;
 | 
						|
    if( check.nDim<1 ){
 | 
						|
      rtreeCheckAppendMsg(&check, "Schema corrupt or not an rtree");
 | 
						|
    }else if( SQLITE_ROW==sqlite3_step(pStmt) ){
 | 
						|
      check.bInt = (sqlite3_column_type(pStmt, 1)==SQLITE_INTEGER);
 | 
						|
    }
 | 
						|
    rc = sqlite3_finalize(pStmt);
 | 
						|
    if( rc!=SQLITE_CORRUPT ) check.rc = rc;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Do the actual integrity-check */
 | 
						|
  if( check.nDim>=1 ){
 | 
						|
    if( check.rc==SQLITE_OK ){
 | 
						|
      rtreeCheckNode(&check, 0, 0, 1);
 | 
						|
    }
 | 
						|
    rtreeCheckCount(&check, "_rowid", check.nLeaf);
 | 
						|
    rtreeCheckCount(&check, "_parent", check.nNonLeaf);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Finalize SQL statements used by the integrity-check */
 | 
						|
  sqlite3_finalize(check.pGetNode);
 | 
						|
  sqlite3_finalize(check.aCheckMapping[0]);
 | 
						|
  sqlite3_finalize(check.aCheckMapping[1]);
 | 
						|
 | 
						|
  /* If one was opened, close the transaction */
 | 
						|
  if( bEnd ){
 | 
						|
    int rc = sqlite3_exec(db, "END", 0, 0, 0);
 | 
						|
    if( check.rc==SQLITE_OK ) check.rc = rc;
 | 
						|
  }
 | 
						|
  *pzReport = check.zReport;
 | 
						|
  return check.rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Usage:
 | 
						|
**
 | 
						|
**   rtreecheck(<rtree-table>);
 | 
						|
**   rtreecheck(<database>, <rtree-table>);
 | 
						|
**
 | 
						|
** Invoking this SQL function runs an integrity-check on the named rtree
 | 
						|
** table. The integrity-check verifies the following:
 | 
						|
**
 | 
						|
**   1. For each cell in the r-tree structure (%_node table), that:
 | 
						|
**
 | 
						|
**       a) for each dimension, (coord1 <= coord2).
 | 
						|
**
 | 
						|
**       b) unless the cell is on the root node, that the cell is bounded
 | 
						|
**          by the parent cell on the parent node.
 | 
						|
**
 | 
						|
**       c) for leaf nodes, that there is an entry in the %_rowid 
 | 
						|
**          table corresponding to the cell's rowid value that 
 | 
						|
**          points to the correct node.
 | 
						|
**
 | 
						|
**       d) for cells on non-leaf nodes, that there is an entry in the 
 | 
						|
**          %_parent table mapping from the cell's child node to the
 | 
						|
**          node that it resides on.
 | 
						|
**
 | 
						|
**   2. That there are the same number of entries in the %_rowid table
 | 
						|
**      as there are leaf cells in the r-tree structure, and that there
 | 
						|
**      is a leaf cell that corresponds to each entry in the %_rowid table.
 | 
						|
**
 | 
						|
**   3. That there are the same number of entries in the %_parent table
 | 
						|
**      as there are non-leaf cells in the r-tree structure, and that 
 | 
						|
**      there is a non-leaf cell that corresponds to each entry in the 
 | 
						|
**      %_parent table.
 | 
						|
*/
 | 
						|
static void rtreecheck(
 | 
						|
  sqlite3_context *ctx, 
 | 
						|
  int nArg, 
 | 
						|
  sqlite3_value **apArg
 | 
						|
){
 | 
						|
  if( nArg!=1 && nArg!=2 ){
 | 
						|
    sqlite3_result_error(ctx, 
 | 
						|
        "wrong number of arguments to function rtreecheck()", -1
 | 
						|
    );
 | 
						|
  }else{
 | 
						|
    int rc;
 | 
						|
    char *zReport = 0;
 | 
						|
    const char *zDb = (const char*)sqlite3_value_text(apArg[0]);
 | 
						|
    const char *zTab;
 | 
						|
    if( nArg==1 ){
 | 
						|
      zTab = zDb;
 | 
						|
      zDb = "main";
 | 
						|
    }else{
 | 
						|
      zTab = (const char*)sqlite3_value_text(apArg[1]);
 | 
						|
    }
 | 
						|
    rc = rtreeCheckTable(sqlite3_context_db_handle(ctx), zDb, zTab, &zReport);
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      sqlite3_result_text(ctx, zReport ? zReport : "ok", -1, SQLITE_TRANSIENT);
 | 
						|
    }else{
 | 
						|
      sqlite3_result_error_code(ctx, rc);
 | 
						|
    }
 | 
						|
    sqlite3_free(zReport);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Register the r-tree module with database handle db. This creates the
 | 
						|
** virtual table module "rtree" and the debugging/analysis scalar 
 | 
						|
** function "rtreenode".
 | 
						|
*/
 | 
						|
int sqlite3RtreeInit(sqlite3 *db){
 | 
						|
  const int utf8 = SQLITE_UTF8;
 | 
						|
  int rc;
 | 
						|
 | 
						|
  rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
 | 
						|
  }
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    rc = sqlite3_create_function(db, "rtreecheck", -1, utf8, 0,rtreecheck, 0,0);
 | 
						|
  }
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
#ifdef SQLITE_RTREE_INT_ONLY
 | 
						|
    void *c = (void *)RTREE_COORD_INT32;
 | 
						|
#else
 | 
						|
    void *c = (void *)RTREE_COORD_REAL32;
 | 
						|
#endif
 | 
						|
    rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
 | 
						|
  }
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    void *c = (void *)RTREE_COORD_INT32;
 | 
						|
    rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine deletes the RtreeGeomCallback object that was attached
 | 
						|
** one of the SQL functions create by sqlite3_rtree_geometry_callback()
 | 
						|
** or sqlite3_rtree_query_callback().  In other words, this routine is the
 | 
						|
** destructor for an RtreeGeomCallback objecct.  This routine is called when
 | 
						|
** the corresponding SQL function is deleted.
 | 
						|
*/
 | 
						|
static void rtreeFreeCallback(void *p){
 | 
						|
  RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p;
 | 
						|
  if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext);
 | 
						|
  sqlite3_free(p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine frees the BLOB that is returned by geomCallback().
 | 
						|
*/
 | 
						|
static void rtreeMatchArgFree(void *pArg){
 | 
						|
  int i;
 | 
						|
  RtreeMatchArg *p = (RtreeMatchArg*)pArg;
 | 
						|
  for(i=0; i<p->nParam; i++){
 | 
						|
    sqlite3_value_free(p->apSqlParam[i]);
 | 
						|
  }
 | 
						|
  sqlite3_free(p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Each call to sqlite3_rtree_geometry_callback() or
 | 
						|
** sqlite3_rtree_query_callback() creates an ordinary SQLite
 | 
						|
** scalar function that is implemented by this routine.
 | 
						|
**
 | 
						|
** All this function does is construct an RtreeMatchArg object that
 | 
						|
** contains the geometry-checking callback routines and a list of
 | 
						|
** parameters to this function, then return that RtreeMatchArg object
 | 
						|
** as a BLOB.
 | 
						|
**
 | 
						|
** The R-Tree MATCH operator will read the returned BLOB, deserialize
 | 
						|
** the RtreeMatchArg object, and use the RtreeMatchArg object to figure
 | 
						|
** out which elements of the R-Tree should be returned by the query.
 | 
						|
*/
 | 
						|
static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
 | 
						|
  RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
 | 
						|
  RtreeMatchArg *pBlob;
 | 
						|
  int nBlob;
 | 
						|
  int memErr = 0;
 | 
						|
 | 
						|
  nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue)
 | 
						|
           + nArg*sizeof(sqlite3_value*);
 | 
						|
  pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
 | 
						|
  if( !pBlob ){
 | 
						|
    sqlite3_result_error_nomem(ctx);
 | 
						|
  }else{
 | 
						|
    int i;
 | 
						|
    pBlob->iSize = nBlob;
 | 
						|
    pBlob->cb = pGeomCtx[0];
 | 
						|
    pBlob->apSqlParam = (sqlite3_value**)&pBlob->aParam[nArg];
 | 
						|
    pBlob->nParam = nArg;
 | 
						|
    for(i=0; i<nArg; i++){
 | 
						|
      pBlob->apSqlParam[i] = sqlite3_value_dup(aArg[i]);
 | 
						|
      if( pBlob->apSqlParam[i]==0 ) memErr = 1;
 | 
						|
#ifdef SQLITE_RTREE_INT_ONLY
 | 
						|
      pBlob->aParam[i] = sqlite3_value_int64(aArg[i]);
 | 
						|
#else
 | 
						|
      pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    if( memErr ){
 | 
						|
      sqlite3_result_error_nomem(ctx);
 | 
						|
      rtreeMatchArgFree(pBlob);
 | 
						|
    }else{
 | 
						|
      sqlite3_result_pointer(ctx, pBlob, "RtreeMatchArg", rtreeMatchArgFree);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Register a new geometry function for use with the r-tree MATCH operator.
 | 
						|
*/
 | 
						|
int sqlite3_rtree_geometry_callback(
 | 
						|
  sqlite3 *db,                  /* Register SQL function on this connection */
 | 
						|
  const char *zGeom,            /* Name of the new SQL function */
 | 
						|
  int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */
 | 
						|
  void *pContext                /* Extra data associated with the callback */
 | 
						|
){
 | 
						|
  RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */
 | 
						|
 | 
						|
  /* Allocate and populate the context object. */
 | 
						|
  pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
 | 
						|
  if( !pGeomCtx ) return SQLITE_NOMEM;
 | 
						|
  pGeomCtx->xGeom = xGeom;
 | 
						|
  pGeomCtx->xQueryFunc = 0;
 | 
						|
  pGeomCtx->xDestructor = 0;
 | 
						|
  pGeomCtx->pContext = pContext;
 | 
						|
  return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, 
 | 
						|
      (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
 | 
						|
  );
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Register a new 2nd-generation geometry function for use with the
 | 
						|
** r-tree MATCH operator.
 | 
						|
*/
 | 
						|
int sqlite3_rtree_query_callback(
 | 
						|
  sqlite3 *db,                 /* Register SQL function on this connection */
 | 
						|
  const char *zQueryFunc,      /* Name of new SQL function */
 | 
						|
  int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */
 | 
						|
  void *pContext,              /* Extra data passed into the callback */
 | 
						|
  void (*xDestructor)(void*)   /* Destructor for the extra data */
 | 
						|
){
 | 
						|
  RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */
 | 
						|
 | 
						|
  /* Allocate and populate the context object. */
 | 
						|
  pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
 | 
						|
  if( !pGeomCtx ) return SQLITE_NOMEM;
 | 
						|
  pGeomCtx->xGeom = 0;
 | 
						|
  pGeomCtx->xQueryFunc = xQueryFunc;
 | 
						|
  pGeomCtx->xDestructor = xDestructor;
 | 
						|
  pGeomCtx->pContext = pContext;
 | 
						|
  return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY, 
 | 
						|
      (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
 | 
						|
  );
 | 
						|
}
 | 
						|
 | 
						|
#if !SQLITE_CORE
 | 
						|
#ifdef _WIN32
 | 
						|
__declspec(dllexport)
 | 
						|
#endif
 | 
						|
int sqlite3_rtree_init(
 | 
						|
  sqlite3 *db,
 | 
						|
  char **pzErrMsg,
 | 
						|
  const sqlite3_api_routines *pApi
 | 
						|
){
 | 
						|
  SQLITE_EXTENSION_INIT2(pApi)
 | 
						|
  return sqlite3RtreeInit(db);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#endif
 |