mirror of
https://github.com/sqlite/sqlite.git
synced 2025-10-24 09:53:10 +03:00
1120 lines
32 KiB
C
1120 lines
32 KiB
C
/*
|
|
** 2002 February 23
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C functions that implement various SQL
|
|
** functions of SQLite.
|
|
**
|
|
** There is only one exported symbol in this file - the function
|
|
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
|
|
** All other code has file scope.
|
|
**
|
|
** $Id: func.c,v 1.77 2004/06/28 13:09:11 danielk1977 Exp $
|
|
*/
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include "sqliteInt.h"
|
|
#include "vdbeInt.h"
|
|
#include "os.h"
|
|
|
|
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
|
|
return context->pColl;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the non-aggregate min() and max() functions
|
|
*/
|
|
static void minmaxFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int i;
|
|
int mask; /* 0 for min() or 0xffffffff for max() */
|
|
int iBest;
|
|
CollSeq *pColl;
|
|
|
|
if( argc==0 ) return;
|
|
mask = (int)sqlite3_user_data(context);
|
|
pColl = sqlite3GetFuncCollSeq(context);
|
|
assert( pColl );
|
|
assert( mask==-1 || mask==0 );
|
|
iBest = 0;
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
for(i=1; i<argc; i++){
|
|
if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
|
|
if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
|
|
iBest = i;
|
|
}
|
|
}
|
|
sqlite3_result_value(context, argv[iBest]);
|
|
}
|
|
|
|
/*
|
|
** Return the type of the argument.
|
|
*/
|
|
static void typeofFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const char *z = 0;
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_NULL: z = "null"; break;
|
|
case SQLITE_INTEGER: z = "integer"; break;
|
|
case SQLITE_TEXT: z = "text"; break;
|
|
case SQLITE_FLOAT: z = "real"; break;
|
|
case SQLITE_BLOB: z = "blob"; break;
|
|
}
|
|
sqlite3_result_text(context, z, -1, SQLITE_STATIC);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the length() function
|
|
*/
|
|
static void lengthFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int len;
|
|
|
|
assert( argc==1 );
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_BLOB:
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT: {
|
|
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
const char *z = sqlite3_value_text(argv[0]);
|
|
for(len=0; *z; z++){ if( (0xc0&*z)!=0x80 ) len++; }
|
|
sqlite3_result_int(context, len);
|
|
break;
|
|
}
|
|
default: {
|
|
sqlite3_result_null(context);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the abs() function
|
|
*/
|
|
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
assert( argc==1 );
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_INTEGER: {
|
|
i64 iVal = sqlite3_value_int64(argv[0]);
|
|
if( iVal<0 ) iVal = iVal * -1;
|
|
sqlite3_result_int64(context, iVal);
|
|
break;
|
|
}
|
|
case SQLITE_NULL: {
|
|
sqlite3_result_null(context);
|
|
break;
|
|
}
|
|
default: {
|
|
double rVal = sqlite3_value_double(argv[0]);
|
|
if( rVal<0 ) rVal = rVal * -1.0;
|
|
sqlite3_result_double(context, rVal);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the substr() function
|
|
*/
|
|
static void substrFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const char *z;
|
|
const char *z2;
|
|
int i;
|
|
int p1, p2, len;
|
|
|
|
assert( argc==3 );
|
|
z = sqlite3_value_text(argv[0]);
|
|
if( z==0 ) return;
|
|
p1 = sqlite3_value_int(argv[1]);
|
|
p2 = sqlite3_value_int(argv[2]);
|
|
for(len=0, z2=z; *z2; z2++){ if( (0xc0&*z2)!=0x80 ) len++; }
|
|
if( p1<0 ){
|
|
p1 += len;
|
|
if( p1<0 ){
|
|
p2 += p1;
|
|
p1 = 0;
|
|
}
|
|
}else if( p1>0 ){
|
|
p1--;
|
|
}
|
|
if( p1+p2>len ){
|
|
p2 = len-p1;
|
|
}
|
|
for(i=0; i<p1 && z[i]; i++){
|
|
if( (z[i]&0xc0)==0x80 ) p1++;
|
|
}
|
|
while( z[i] && (z[i]&0xc0)==0x80 ){ i++; p1++; }
|
|
for(; i<p1+p2 && z[i]; i++){
|
|
if( (z[i]&0xc0)==0x80 ) p2++;
|
|
}
|
|
while( z[i] && (z[i]&0xc0)==0x80 ){ i++; p2++; }
|
|
if( p2<0 ) p2 = 0;
|
|
sqlite3_result_text(context, &z[p1], p2, SQLITE_TRANSIENT);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the round() function
|
|
*/
|
|
static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
int n = 0;
|
|
double r;
|
|
char zBuf[100];
|
|
assert( argc==1 || argc==2 );
|
|
if( argc==2 ){
|
|
if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
|
|
n = sqlite3_value_int(argv[1]);
|
|
if( n>30 ) n = 30;
|
|
if( n<0 ) n = 0;
|
|
}
|
|
if( SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
|
|
r = sqlite3_value_double(argv[0]);
|
|
sprintf(zBuf,"%.*f",n,r);
|
|
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the upper() and lower() SQL functions.
|
|
*/
|
|
static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
char *z;
|
|
int i;
|
|
if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
|
|
z = sqliteMalloc(sqlite3_value_bytes(argv[0])+1);
|
|
if( z==0 ) return;
|
|
strcpy(z, sqlite3_value_text(argv[0]));
|
|
for(i=0; z[i]; i++){
|
|
if( islower(z[i]) ) z[i] = toupper(z[i]);
|
|
}
|
|
sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT);
|
|
sqliteFree(z);
|
|
}
|
|
static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
char *z;
|
|
int i;
|
|
if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
|
|
z = sqliteMalloc(sqlite3_value_bytes(argv[0])+1);
|
|
if( z==0 ) return;
|
|
strcpy(z, sqlite3_value_text(argv[0]));
|
|
for(i=0; z[i]; i++){
|
|
if( isupper(z[i]) ) z[i] = tolower(z[i]);
|
|
}
|
|
sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT);
|
|
sqliteFree(z);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the IFNULL(), NVL(), and COALESCE() functions.
|
|
** All three do the same thing. They return the first non-NULL
|
|
** argument.
|
|
*/
|
|
static void ifnullFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int i;
|
|
for(i=0; i<argc; i++){
|
|
if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){
|
|
sqlite3_result_value(context, argv[i]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of random(). Return a random integer.
|
|
*/
|
|
static void randomFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int r;
|
|
sqlite3Randomness(sizeof(r), &r);
|
|
sqlite3_result_int(context, r);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the last_insert_rowid() SQL function. The return
|
|
** value is the same as the sqlite3_last_insert_rowid() API function.
|
|
*/
|
|
static void last_insert_rowid(
|
|
sqlite3_context *context,
|
|
int arg,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite *db = sqlite3_user_data(context);
|
|
sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
|
|
}
|
|
|
|
/*
|
|
** Implementation of the changes() SQL function. The return value is the
|
|
** same as the sqlite3_changes() API function.
|
|
*/
|
|
static void changes(
|
|
sqlite3_context *context,
|
|
int arg,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite *db = sqlite3_user_data(context);
|
|
sqlite3_result_int(context, sqlite3_changes(db));
|
|
}
|
|
|
|
/*
|
|
** Implementation of the total_changes() SQL function. The return value is
|
|
** the same as the sqlite3_total_changes() API function.
|
|
*/
|
|
static void total_changes(
|
|
sqlite3_context *context,
|
|
int arg,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite *db = sqlite3_user_data(context);
|
|
sqlite3_result_int(context, sqlite3_total_changes(db));
|
|
}
|
|
|
|
#if 0
|
|
|
|
/*
|
|
** A LIKE pattern compiles to an instance of the following structure. Refer
|
|
** to the comment for compileLike() function for details.
|
|
*/
|
|
struct LikePattern {
|
|
int nState;
|
|
struct LikeState {
|
|
int val; /* Unicode codepoint or -1 for any char i.e. '_' */
|
|
int failstate; /* State to jump to if next char is not val */
|
|
} aState[1];
|
|
};
|
|
typedef struct LikePattern LikePattern;
|
|
|
|
void deleteLike(void *pLike){
|
|
sqliteFree(pLike);
|
|
}
|
|
/* #define TRACE_LIKE */
|
|
#if defined(TRACE_LIKE) && !defined(NDEBUG)
|
|
char *dumpLike(LikePattern *pLike){
|
|
int i;
|
|
int k = 0;
|
|
char *zBuf = (char *)sqliteMalloc(pLike->nState*40);
|
|
|
|
k += sprintf(&zBuf[k], "%d states - ", pLike->nState);
|
|
for(i=0; i<pLike->nState; i++){
|
|
k += sprintf(&zBuf[k], " %d:(%d, %d)", i, pLike->aState[i].val,
|
|
pLike->aState[i].failstate);
|
|
}
|
|
return zBuf;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** This function compiles an SQL 'LIKE' pattern into a state machine,
|
|
** represented by a LikePattern structure.
|
|
**
|
|
** Each state of the state-machine has two attributes, 'val' and
|
|
** 'failstate'. The val attribute is either the value of a unicode
|
|
** codepoint, or -1, indicating a '_' wildcard (match any single
|
|
** character). The failstate is either the number of another state
|
|
** or -1, indicating jump to 'no match'.
|
|
**
|
|
** To see if a string matches a pattern the pattern is
|
|
** compiled to a state machine that is executed according to the algorithm
|
|
** below. The string is assumed to be terminated by a 'NUL' character
|
|
** (unicode codepoint 0).
|
|
**
|
|
** 1 S = 0
|
|
** 2 DO
|
|
** 3 C = <Next character from input string>
|
|
** 4 IF( C matches <State S val> )
|
|
** 5 S = S+1
|
|
** 6 ELSE IF( S != <State S failstate> )
|
|
** 7 S = <State S failstate>
|
|
** 8 <Rewind Input string 1 character>
|
|
** 9 WHILE( (C != NUL) AND (S != FAILED) )
|
|
** 10
|
|
** 11 IF( S == <number of states> )
|
|
** 12 RETURN MATCH
|
|
** 13 ELSE
|
|
** 14 RETURN NO-MATCH
|
|
**
|
|
** In practice there is a small optimization to avoid the <Rewind>
|
|
** operation in line 8 of the description above.
|
|
**
|
|
** For example, the following pattern, 'X%ABabc%_Y' is compiled to
|
|
** the state machine below.
|
|
**
|
|
** State Val FailState
|
|
** -------------------------------
|
|
** 0 120 (x) -1 (NO MATCH)
|
|
** 1 97 (a) 1
|
|
** 2 98 (b) 1
|
|
** 3 97 (a) 1
|
|
** 4 98 (b) 2
|
|
** 5 99 (c) 3
|
|
** 6 -1 (_) 6
|
|
** 7 121 (y) 7
|
|
** 8 0 (NUL) 7
|
|
**
|
|
** The algorithms implemented to compile and execute the state machine were
|
|
** first presented in "Fast pattern matching in strings", Knuth, Morris and
|
|
** Pratt, 1977.
|
|
**
|
|
*/
|
|
LikePattern *compileLike(sqlite3_value *pPattern, u8 enc){
|
|
LikePattern *pLike;
|
|
struct LikeState *aState;
|
|
int pc_state = -1; /* State number of previous '%' wild card */
|
|
int n = 0;
|
|
int c;
|
|
|
|
int offset = 0;
|
|
const char *zLike;
|
|
|
|
if( enc==SQLITE_UTF8 ){
|
|
zLike = sqlite3_value_text(pPattern);
|
|
n = sqlite3_value_bytes(pPattern) + 1;
|
|
}else{
|
|
zLike = sqlite3_value_text16(pPattern);
|
|
n = sqlite3_value_bytes16(pPattern)/2 + 1;
|
|
}
|
|
|
|
pLike = (LikePattern *)
|
|
sqliteMalloc(sizeof(LikePattern)+n*sizeof(struct LikeState));
|
|
aState = pLike->aState;
|
|
|
|
n = 0;
|
|
do {
|
|
c = sqlite3ReadUniChar(zLike, &offset, &enc, 1);
|
|
if( c==95 ){ /* A '_' wildcard */
|
|
aState[n].val = -1;
|
|
n++;
|
|
}else if( c==37 ){ /* A '%' wildcard */
|
|
aState[n].failstate = n;
|
|
pc_state = n;
|
|
}else{ /* A regular character */
|
|
aState[n].val = c;
|
|
|
|
assert( pc_state<=n );
|
|
if( pc_state<0 ){
|
|
aState[n].failstate = -1;
|
|
}else if( pc_state==n ){
|
|
if( c ){
|
|
aState[n].failstate = pc_state;
|
|
}else{
|
|
aState[n].failstate = -2;
|
|
}
|
|
}else{
|
|
int k = pLike->aState[n-1].failstate;
|
|
while( k>pc_state && aState[k+1].val!=-1 && aState[k+1].val!=c ){
|
|
k = aState[k].failstate;
|
|
}
|
|
if( k!=pc_state && aState[k+1].val==c ){
|
|
assert( k==pc_state );
|
|
k++;
|
|
}
|
|
aState[n].failstate = k;
|
|
}
|
|
n++;
|
|
}
|
|
}while( c );
|
|
pLike->nState = n;
|
|
#if defined(TRACE_LIKE) && !defined(NDEBUG)
|
|
{
|
|
char *zCompiled = dumpLike(pLike);
|
|
printf("Pattern=\"%s\" Compiled=\"%s\"\n", zPattern, zCompiled);
|
|
sqliteFree(zCompiled);
|
|
}
|
|
#endif
|
|
return pLike;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the like() SQL function. This function implements
|
|
** the build-in LIKE operator. The first argument to the function is the
|
|
** pattern and the second argument is the string. So, the SQL statements:
|
|
**
|
|
** A LIKE B
|
|
**
|
|
** is implemented as like(B,A).
|
|
**
|
|
** If the pointer retrieved by via a call to sqlite3_user_data() is
|
|
** not NULL, then this function uses UTF-16. Otherwise UTF-8.
|
|
*/
|
|
static void likeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
register int c;
|
|
u8 enc;
|
|
int offset = 0;
|
|
const unsigned char *zString;
|
|
LikePattern *pLike = sqlite3_get_auxdata(context, 0);
|
|
struct LikeState *aState;
|
|
register struct LikeState *pState;
|
|
|
|
/* If either argument is NULL, the result is NULL */
|
|
if( sqlite3_value_type(argv[1])==SQLITE_NULL ||
|
|
sqlite3_value_type(argv[0])==SQLITE_NULL ){
|
|
return;
|
|
}
|
|
|
|
/* If the user-data pointer is NULL, use UTF-8. Otherwise UTF-16. */
|
|
if( sqlite3_user_data(context) ){
|
|
enc = SQLITE_UTF16NATIVE;
|
|
zString = (const unsigned char *)sqlite3_value_text16(argv[1]);
|
|
assert(0);
|
|
}else{
|
|
enc = SQLITE_UTF8;
|
|
zString = sqlite3_value_text(argv[1]);
|
|
}
|
|
|
|
/* If the LIKE pattern has not been compiled, compile it now. */
|
|
if( !pLike ){
|
|
pLike = compileLike(argv[0], enc);
|
|
if( !pLike ){
|
|
sqlite3_result_error(context, "out of memory", -1);
|
|
return;
|
|
}
|
|
sqlite3_set_auxdata(context, 0, pLike, deleteLike);
|
|
}
|
|
aState = pLike->aState;
|
|
pState = aState;
|
|
|
|
do {
|
|
if( enc==SQLITE_UTF8 ){
|
|
c = zString[offset++];
|
|
if( c&0x80 ){
|
|
offset--;
|
|
c = sqlite3ReadUniChar(zString, &offset, &enc, 1);
|
|
}
|
|
}else{
|
|
c = sqlite3ReadUniChar(zString, &offset, &enc, 1);
|
|
}
|
|
|
|
skip_read:
|
|
|
|
#if defined(TRACE_LIKE) && !defined(NDEBUG)
|
|
printf("State=%d:(%d, %d) Input=%d\n",
|
|
(aState - pState), pState->val, pState->failstate, c);
|
|
#endif
|
|
|
|
if( pState->val==-1 || pState->val==c ){
|
|
pState++;
|
|
}else{
|
|
struct LikeState *pFailState = &aState[pState->failstate];
|
|
if( pState!=pFailState ){
|
|
pState = pFailState;
|
|
if( c && pState>=aState ) goto skip_read;
|
|
}
|
|
}
|
|
}while( c && pState>=aState );
|
|
|
|
if( (pState-aState)==pLike->nState || (pState-aState)<-1 ){
|
|
sqlite3_result_int(context, 1);
|
|
}else{
|
|
sqlite3_result_int(context, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Implementation of the like() SQL function. This function implements
|
|
** the build-in LIKE operator. The first argument to the function is the
|
|
** pattern and the second argument is the string. So, the SQL statements:
|
|
**
|
|
** A LIKE B
|
|
**
|
|
** is implemented as like(B,A).
|
|
**
|
|
** If the pointer retrieved by via a call to sqlite3_user_data() is
|
|
** not NULL, then this function uses UTF-16. Otherwise UTF-8.
|
|
*/
|
|
static void likeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zA = sqlite3_value_text(argv[0]);
|
|
const unsigned char *zB = sqlite3_value_text(argv[1]);
|
|
if( zA && zB ){
|
|
sqlite3_result_int(context, sqlite3utf8LikeCompare(zA, zB));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the glob() SQL function. This function implements
|
|
** the build-in GLOB operator. The first argument to the function is the
|
|
** string and the second argument is the pattern. So, the SQL statements:
|
|
**
|
|
** A GLOB B
|
|
**
|
|
** is implemented as glob(A,B).
|
|
*/
|
|
static void globFunc(sqlite3_context *context, int arg, sqlite3_value **argv){
|
|
const unsigned char *zA = sqlite3_value_text(argv[0]);
|
|
const unsigned char *zB = sqlite3_value_text(argv[1]);
|
|
if( zA && zB ){
|
|
sqlite3_result_int(context, sqlite3GlobCompare(zA, zB));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the NULLIF(x,y) function. The result is the first
|
|
** argument if the arguments are different. The result is NULL if the
|
|
** arguments are equal to each other.
|
|
*/
|
|
static void nullifFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
|
|
if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
|
|
sqlite3_result_value(context, argv[0]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the VERSION(*) function. The result is the version
|
|
** of the SQLite library that is running.
|
|
*/
|
|
static void versionFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
|
|
}
|
|
|
|
/*
|
|
** EXPERIMENTAL - This is not an official function. The interface may
|
|
** change. This function may disappear. Do not write code that depends
|
|
** on this function.
|
|
**
|
|
** Implementation of the QUOTE() function. This function takes a single
|
|
** argument. If the argument is numeric, the return value is the same as
|
|
** the argument. If the argument is NULL, the return value is the string
|
|
** "NULL". Otherwise, the argument is enclosed in single quotes with
|
|
** single-quote escapes.
|
|
*/
|
|
static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
if( argc<1 ) return;
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_NULL: {
|
|
sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
|
|
break;
|
|
}
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT: {
|
|
sqlite3_result_value(context, argv[0]);
|
|
break;
|
|
}
|
|
case SQLITE_BLOB: {
|
|
static const char hexdigits[] = {
|
|
'0', '1', '2', '3', '4', '5', '6', '7',
|
|
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
|
|
};
|
|
char *zText = 0;
|
|
int nBlob = sqlite3_value_bytes(argv[0]);
|
|
char const *zBlob = sqlite3_value_blob(argv[0]);
|
|
|
|
zText = (char *)sqliteMalloc((2*nBlob)+4);
|
|
if( !zText ){
|
|
sqlite3_result_error(context, "out of memory", -1);
|
|
}else{
|
|
int i;
|
|
for(i=0; i<nBlob; i++){
|
|
zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
|
|
zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
|
|
}
|
|
zText[(nBlob*2)+2] = '\'';
|
|
zText[(nBlob*2)+3] = '\0';
|
|
zText[0] = 'X';
|
|
zText[1] = '\'';
|
|
sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
|
|
sqliteFree(zText);
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
int i,j,n;
|
|
const char *zArg = sqlite3_value_text(argv[0]);
|
|
char *z;
|
|
|
|
for(i=n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
|
|
z = sqliteMalloc( i+n+3 );
|
|
if( z==0 ) return;
|
|
z[0] = '\'';
|
|
for(i=0, j=1; zArg[i]; i++){
|
|
z[j++] = zArg[i];
|
|
if( zArg[i]=='\'' ){
|
|
z[j++] = '\'';
|
|
}
|
|
}
|
|
z[j++] = '\'';
|
|
z[j] = 0;
|
|
sqlite3_result_text(context, z, j, SQLITE_TRANSIENT);
|
|
sqliteFree(z);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef SQLITE_SOUNDEX
|
|
/*
|
|
** Compute the soundex encoding of a word.
|
|
*/
|
|
static void soundexFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
char zResult[8];
|
|
const char *zIn;
|
|
int i, j;
|
|
static const unsigned char iCode[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
|
|
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
|
|
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
|
|
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
|
|
};
|
|
assert( argc==1 );
|
|
zIn = sqlite3_value_text(argv[0]);
|
|
for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
|
|
if( zIn[i] ){
|
|
zResult[0] = toupper(zIn[i]);
|
|
for(j=1; j<4 && zIn[i]; i++){
|
|
int code = iCode[zIn[i]&0x7f];
|
|
if( code>0 ){
|
|
zResult[j++] = code + '0';
|
|
}
|
|
}
|
|
while( j<4 ){
|
|
zResult[j++] = '0';
|
|
}
|
|
zResult[j] = 0;
|
|
sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
|
|
}else{
|
|
sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** This function generates a string of random characters. Used for
|
|
** generating test data.
|
|
*/
|
|
static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
static const unsigned char zSrc[] =
|
|
"abcdefghijklmnopqrstuvwxyz"
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"0123456789"
|
|
".-!,:*^+=_|?/<> ";
|
|
int iMin, iMax, n, r, i;
|
|
unsigned char zBuf[1000];
|
|
if( argc>=1 ){
|
|
iMin = sqlite3_value_int(argv[0]);
|
|
if( iMin<0 ) iMin = 0;
|
|
if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
|
|
}else{
|
|
iMin = 1;
|
|
}
|
|
if( argc>=2 ){
|
|
iMax = sqlite3_value_int(argv[1]);
|
|
if( iMax<iMin ) iMax = iMin;
|
|
if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
|
|
}else{
|
|
iMax = 50;
|
|
}
|
|
n = iMin;
|
|
if( iMax>iMin ){
|
|
sqlite3Randomness(sizeof(r), &r);
|
|
r &= 0x7fffffff;
|
|
n += r%(iMax + 1 - iMin);
|
|
}
|
|
assert( n<sizeof(zBuf) );
|
|
sqlite3Randomness(n, zBuf);
|
|
for(i=0; i<n; i++){
|
|
zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
|
|
}
|
|
zBuf[n] = 0;
|
|
sqlite3_result_text(context, zBuf, n, SQLITE_TRANSIENT);
|
|
}
|
|
#endif /* SQLITE_TEST */
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** The following two SQL functions are used to test returning a text
|
|
** result with a destructor. Function 'test_destructor' takes one argument
|
|
** and returns the same argument interpreted as TEXT. A destructor is
|
|
** passed with the sqlite3_result_text() call.
|
|
**
|
|
** SQL function 'test_destructor_count' returns the number of outstanding
|
|
** allocations made by 'test_destructor';
|
|
**
|
|
** WARNING: Not threadsafe.
|
|
*/
|
|
static int test_destructor_count_var = 0;
|
|
static void destructor(void *p){
|
|
char *zVal = (char *)p;
|
|
assert(zVal);
|
|
zVal--;
|
|
sqliteFree(zVal);
|
|
test_destructor_count_var--;
|
|
}
|
|
static void test_destructor(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **argv
|
|
){
|
|
char *zVal;
|
|
int len;
|
|
sqlite *db = sqlite3_user_data(pCtx);
|
|
|
|
test_destructor_count_var++;
|
|
assert( nArg==1 );
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
len = sqlite3ValueBytes(argv[0], db->enc);
|
|
zVal = sqliteMalloc(len+3);
|
|
zVal[len] = 0;
|
|
zVal[len-1] = 0;
|
|
assert( zVal );
|
|
zVal++;
|
|
memcpy(zVal, sqlite3ValueText(argv[0], db->enc), len);
|
|
if( db->enc==SQLITE_UTF8 ){
|
|
sqlite3_result_text(pCtx, zVal, -1, destructor);
|
|
}else if( db->enc==SQLITE_UTF16LE ){
|
|
sqlite3_result_text16le(pCtx, zVal, -1, destructor);
|
|
}else{
|
|
sqlite3_result_text16be(pCtx, zVal, -1, destructor);
|
|
}
|
|
}
|
|
static void test_destructor_count(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite3_result_int(pCtx, test_destructor_count_var);
|
|
}
|
|
#endif /* SQLITE_TEST */
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata()
|
|
** interface.
|
|
**
|
|
** The test_auxdata() SQL function attempts to register each of its arguments
|
|
** as auxiliary data. If there are no prior registrations of aux data for
|
|
** that argument (meaning the argument is not a constant or this is its first
|
|
** call) then the result for that argument is 0. If there is a prior
|
|
** registration, the result for that argument is 1. The overall result
|
|
** is the individual argument results separated by spaces.
|
|
*/
|
|
static void free_test_auxdata(void *p) {sqliteFree(p);}
|
|
static void test_auxdata(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **argv
|
|
){
|
|
int i;
|
|
char *zRet = sqliteMalloc(nArg*2);
|
|
if( !zRet ) return;
|
|
for(i=0; i<nArg; i++){
|
|
char const *z = sqlite3_value_text(argv[i]);
|
|
if( z ){
|
|
char *zAux = sqlite3_get_auxdata(pCtx, i);
|
|
if( zAux ){
|
|
zRet[i*2] = '1';
|
|
if( strcmp(zAux, z) ){
|
|
sqlite3_result_error(pCtx, "Auxilary data corruption", -1);
|
|
return;
|
|
}
|
|
}else{
|
|
zRet[i*2] = '0';
|
|
zAux = sqliteStrDup(z);
|
|
sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata);
|
|
}
|
|
zRet[i*2+1] = ' ';
|
|
}
|
|
}
|
|
sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata);
|
|
}
|
|
#endif /* SQLITE_TEST */
|
|
|
|
/*
|
|
** An instance of the following structure holds the context of a
|
|
** sum() or avg() aggregate computation.
|
|
*/
|
|
typedef struct SumCtx SumCtx;
|
|
struct SumCtx {
|
|
double sum; /* Sum of terms */
|
|
int cnt; /* Number of elements summed */
|
|
};
|
|
|
|
/*
|
|
** Routines used to compute the sum or average.
|
|
*/
|
|
static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
SumCtx *p;
|
|
if( argc<1 ) return;
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
if( p && SQLITE_NULL!=sqlite3_value_type(argv[0]) ){
|
|
p->sum += sqlite3_value_double(argv[0]);
|
|
p->cnt++;
|
|
}
|
|
}
|
|
static void sumFinalize(sqlite3_context *context){
|
|
SumCtx *p;
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
sqlite3_result_double(context, p ? p->sum : 0.0);
|
|
}
|
|
static void avgFinalize(sqlite3_context *context){
|
|
SumCtx *p;
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
if( p && p->cnt>0 ){
|
|
sqlite3_result_double(context, p->sum/(double)p->cnt);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** An instance of the following structure holds the context of a
|
|
** variance or standard deviation computation.
|
|
*/
|
|
typedef struct StdDevCtx StdDevCtx;
|
|
struct StdDevCtx {
|
|
double sum; /* Sum of terms */
|
|
double sum2; /* Sum of the squares of terms */
|
|
int cnt; /* Number of terms counted */
|
|
};
|
|
|
|
#if 0 /* Omit because math library is required */
|
|
/*
|
|
** Routines used to compute the standard deviation as an aggregate.
|
|
*/
|
|
static void stdDevStep(sqlite3_context *context, int argc, const char **argv){
|
|
StdDevCtx *p;
|
|
double x;
|
|
if( argc<1 ) return;
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
if( p && argv[0] ){
|
|
x = sqlite3AtoF(argv[0], 0);
|
|
p->sum += x;
|
|
p->sum2 += x*x;
|
|
p->cnt++;
|
|
}
|
|
}
|
|
static void stdDevFinalize(sqlite3_context *context){
|
|
double rN = sqlite3_aggregate_count(context);
|
|
StdDevCtx *p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
if( p && p->cnt>1 ){
|
|
double rCnt = cnt;
|
|
sqlite3_set_result_double(context,
|
|
sqrt((p->sum2 - p->sum*p->sum/rCnt)/(rCnt-1.0)));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** The following structure keeps track of state information for the
|
|
** count() aggregate function.
|
|
*/
|
|
typedef struct CountCtx CountCtx;
|
|
struct CountCtx {
|
|
int n;
|
|
};
|
|
|
|
/*
|
|
** Routines to implement the count() aggregate function.
|
|
*/
|
|
static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
CountCtx *p;
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
|
|
p->n++;
|
|
}
|
|
}
|
|
static void countFinalize(sqlite3_context *context){
|
|
CountCtx *p;
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
sqlite3_result_int(context, p ? p->n : 0);
|
|
}
|
|
|
|
/*
|
|
** This function tracks state information for the min() and max()
|
|
** aggregate functions.
|
|
*/
|
|
typedef struct MinMaxCtx MinMaxCtx;
|
|
struct MinMaxCtx {
|
|
char *z; /* The best so far */
|
|
char zBuf[28]; /* Space that can be used for storage */
|
|
};
|
|
|
|
/*
|
|
** Routines to implement min() and max() aggregate functions.
|
|
*/
|
|
static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
int max = 0;
|
|
int cmp = 0;
|
|
Mem *pArg = (Mem *)argv[0];
|
|
Mem *pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
|
|
if( !pBest ) return;
|
|
|
|
if( pBest->flags ){
|
|
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
|
|
/* This step function is used for both the min() and max() aggregates,
|
|
** the only difference between the two being that the sense of the
|
|
** comparison is inverted. For the max() aggregate, the
|
|
** sqlite3_user_data() function returns (void *)-1. For min() it
|
|
** returns (void *)db, where db is the sqlite3* database pointer.
|
|
** Therefore the next statement sets variable 'max' to 1 for the max()
|
|
** aggregate, or 0 for min().
|
|
*/
|
|
max = ((sqlite3_user_data(context)==(void *)-1)?1:0);
|
|
cmp = sqlite3MemCompare(pBest, pArg, pColl);
|
|
if( (max && cmp<0) || (!max && cmp>0) ){
|
|
sqlite3VdbeMemCopy(pBest, pArg);
|
|
}
|
|
}else{
|
|
sqlite3VdbeMemCopy(pBest, pArg);
|
|
}
|
|
}
|
|
static void minMaxFinalize(sqlite3_context *context){
|
|
sqlite3_value *pRes;
|
|
pRes = (sqlite3_value *)sqlite3_aggregate_context(context, sizeof(Mem));
|
|
if( pRes->flags ){
|
|
sqlite3_result_value(context, pRes);
|
|
}
|
|
sqlite3VdbeMemRelease(pRes);
|
|
}
|
|
|
|
/*
|
|
** This function registered all of the above C functions as SQL
|
|
** functions. This should be the only routine in this file with
|
|
** external linkage.
|
|
*/
|
|
void sqlite3RegisterBuiltinFunctions(sqlite *db){
|
|
static struct {
|
|
char *zName;
|
|
signed char nArg;
|
|
u8 argType; /* 0: none. 1: db 2: (-1) */
|
|
u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */
|
|
u8 needCollSeq;
|
|
void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
|
|
} aFuncs[] = {
|
|
{ "min", -1, 0, SQLITE_UTF8, 1, minmaxFunc },
|
|
{ "min", 0, 0, SQLITE_UTF8, 1, 0 },
|
|
{ "max", -1, 2, SQLITE_UTF8, 1, minmaxFunc },
|
|
{ "max", 0, 2, SQLITE_UTF8, 1, 0 },
|
|
{ "typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc },
|
|
{ "length", 1, 0, SQLITE_UTF8, 0, lengthFunc },
|
|
{ "substr", 3, 0, SQLITE_UTF8, 0, substrFunc },
|
|
{ "substr", 3, 0, SQLITE_UTF16LE, 0, sqlite3utf16Substr },
|
|
{ "abs", 1, 0, SQLITE_UTF8, 0, absFunc },
|
|
{ "round", 1, 0, SQLITE_UTF8, 0, roundFunc },
|
|
{ "round", 2, 0, SQLITE_UTF8, 0, roundFunc },
|
|
{ "upper", 1, 0, SQLITE_UTF8, 0, upperFunc },
|
|
{ "lower", 1, 0, SQLITE_UTF8, 0, lowerFunc },
|
|
{ "coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc },
|
|
{ "coalesce", 0, 0, SQLITE_UTF8, 0, 0 },
|
|
{ "coalesce", 1, 0, SQLITE_UTF8, 0, 0 },
|
|
{ "ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc },
|
|
{ "random", -1, 0, SQLITE_UTF8, 0, randomFunc },
|
|
{ "like", 2, 0, SQLITE_UTF8, 0, likeFunc },
|
|
{ "glob", 2, 0, SQLITE_UTF8, 0, globFunc },
|
|
{ "nullif", 2, 0, SQLITE_UTF8, 0, nullifFunc },
|
|
{ "sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc},
|
|
{ "quote", 1, 0, SQLITE_UTF8, 0, quoteFunc },
|
|
{ "last_insert_rowid", 0, 1, SQLITE_UTF8, 0, last_insert_rowid },
|
|
{ "changes", 0, 1, SQLITE_UTF8, 0, changes },
|
|
{ "total_changes", 0, 1, SQLITE_UTF8, 0, total_changes },
|
|
#ifdef SQLITE_SOUNDEX
|
|
{ "soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc},
|
|
#endif
|
|
#ifdef SQLITE_TEST
|
|
{ "randstr", 2, 0, SQLITE_UTF8, 0, randStr },
|
|
{ "test_destructor", 1, 1, SQLITE_UTF8, 0, test_destructor},
|
|
{ "test_destructor_count", 0, 0, SQLITE_UTF8, 0, test_destructor_count},
|
|
{ "test_auxdata", -1, 0, SQLITE_UTF8, 0, test_auxdata},
|
|
#endif
|
|
};
|
|
static struct {
|
|
char *zName;
|
|
signed char nArg;
|
|
u8 argType;
|
|
u8 needCollSeq;
|
|
void (*xStep)(sqlite3_context*,int,sqlite3_value**);
|
|
void (*xFinalize)(sqlite3_context*);
|
|
} aAggs[] = {
|
|
{ "min", 1, 0, 1, minmaxStep, minMaxFinalize },
|
|
{ "max", 1, 2, 1, minmaxStep, minMaxFinalize },
|
|
{ "sum", 1, 0, 0, sumStep, sumFinalize },
|
|
{ "avg", 1, 0, 0, sumStep, avgFinalize },
|
|
{ "count", 0, 0, 0, countStep, countFinalize },
|
|
{ "count", 1, 0, 0, countStep, countFinalize },
|
|
#if 0
|
|
{ "stddev", 1, 0, stdDevStep, stdDevFinalize },
|
|
#endif
|
|
};
|
|
int i;
|
|
|
|
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
|
void *pArg = 0;
|
|
switch( aFuncs[i].argType ){
|
|
case 1: pArg = db; break;
|
|
case 2: pArg = (void *)(-1); break;
|
|
}
|
|
sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
|
|
aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0);
|
|
if( aFuncs[i].needCollSeq ){
|
|
FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName,
|
|
strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0);
|
|
if( pFunc && aFuncs[i].needCollSeq ){
|
|
pFunc->needCollSeq = 1;
|
|
}
|
|
}
|
|
}
|
|
for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
|
|
void *pArg = 0;
|
|
switch( aAggs[i].argType ){
|
|
case 1: pArg = db; break;
|
|
case 2: pArg = (void *)(-1); break;
|
|
}
|
|
sqlite3_create_function(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8,
|
|
pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize);
|
|
if( aAggs[i].needCollSeq ){
|
|
FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName,
|
|
strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0);
|
|
if( pFunc && aAggs[i].needCollSeq ){
|
|
pFunc->needCollSeq = 1;
|
|
}
|
|
}
|
|
}
|
|
sqlite3RegisterDateTimeFunctions(db);
|
|
}
|