mirror of
https://github.com/sqlite/sqlite.git
synced 2025-08-30 14:01:18 +03:00
and sqlite3_vtab_on_conflict() interfaces. Updates to the documentation on those interfaces. FossilOrigin-Name: 930be6a1bdec8c150caafd790973f7a401fc1970
1047 lines
32 KiB
C
1047 lines
32 KiB
C
/*
|
|
** 2006 June 10
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code used to help implement virtual tables.
|
|
*/
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** Before a virtual table xCreate() or xConnect() method is invoked, the
|
|
** sqlite3.pVtabCtx member variable is set to point to an instance of
|
|
** this struct allocated on the stack. It is used by the implementation of
|
|
** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
|
|
** are invoked only from within xCreate and xConnect methods.
|
|
*/
|
|
struct VtabCtx {
|
|
Table *pTab;
|
|
VTable *pVTable;
|
|
};
|
|
|
|
/*
|
|
** The actual function that does the work of creating a new module.
|
|
** This function implements the sqlite3_create_module() and
|
|
** sqlite3_create_module_v2() interfaces.
|
|
*/
|
|
static int createModule(
|
|
sqlite3 *db, /* Database in which module is registered */
|
|
const char *zName, /* Name assigned to this module */
|
|
const sqlite3_module *pModule, /* The definition of the module */
|
|
void *pAux, /* Context pointer for xCreate/xConnect */
|
|
void (*xDestroy)(void *) /* Module destructor function */
|
|
){
|
|
int rc, nName;
|
|
Module *pMod;
|
|
|
|
sqlite3_mutex_enter(db->mutex);
|
|
nName = sqlite3Strlen30(zName);
|
|
pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
|
|
if( pMod ){
|
|
Module *pDel;
|
|
char *zCopy = (char *)(&pMod[1]);
|
|
memcpy(zCopy, zName, nName+1);
|
|
pMod->zName = zCopy;
|
|
pMod->pModule = pModule;
|
|
pMod->pAux = pAux;
|
|
pMod->xDestroy = xDestroy;
|
|
pDel = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
|
|
if( pDel && pDel->xDestroy ){
|
|
sqlite3ResetInternalSchema(db, -1);
|
|
pDel->xDestroy(pDel->pAux);
|
|
}
|
|
sqlite3DbFree(db, pDel);
|
|
if( pDel==pMod ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
}else if( xDestroy ){
|
|
xDestroy(pAux);
|
|
}
|
|
rc = sqlite3ApiExit(db, SQLITE_OK);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** External API function used to create a new virtual-table module.
|
|
*/
|
|
int sqlite3_create_module(
|
|
sqlite3 *db, /* Database in which module is registered */
|
|
const char *zName, /* Name assigned to this module */
|
|
const sqlite3_module *pModule, /* The definition of the module */
|
|
void *pAux /* Context pointer for xCreate/xConnect */
|
|
){
|
|
return createModule(db, zName, pModule, pAux, 0);
|
|
}
|
|
|
|
/*
|
|
** External API function used to create a new virtual-table module.
|
|
*/
|
|
int sqlite3_create_module_v2(
|
|
sqlite3 *db, /* Database in which module is registered */
|
|
const char *zName, /* Name assigned to this module */
|
|
const sqlite3_module *pModule, /* The definition of the module */
|
|
void *pAux, /* Context pointer for xCreate/xConnect */
|
|
void (*xDestroy)(void *) /* Module destructor function */
|
|
){
|
|
return createModule(db, zName, pModule, pAux, xDestroy);
|
|
}
|
|
|
|
/*
|
|
** Lock the virtual table so that it cannot be disconnected.
|
|
** Locks nest. Every lock should have a corresponding unlock.
|
|
** If an unlock is omitted, resources leaks will occur.
|
|
**
|
|
** If a disconnect is attempted while a virtual table is locked,
|
|
** the disconnect is deferred until all locks have been removed.
|
|
*/
|
|
void sqlite3VtabLock(VTable *pVTab){
|
|
pVTab->nRef++;
|
|
}
|
|
|
|
|
|
/*
|
|
** pTab is a pointer to a Table structure representing a virtual-table.
|
|
** Return a pointer to the VTable object used by connection db to access
|
|
** this virtual-table, if one has been created, or NULL otherwise.
|
|
*/
|
|
VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
|
|
VTable *pVtab;
|
|
assert( IsVirtual(pTab) );
|
|
for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
|
|
return pVtab;
|
|
}
|
|
|
|
/*
|
|
** Decrement the ref-count on a virtual table object. When the ref-count
|
|
** reaches zero, call the xDisconnect() method to delete the object.
|
|
*/
|
|
void sqlite3VtabUnlock(VTable *pVTab){
|
|
sqlite3 *db = pVTab->db;
|
|
|
|
assert( db );
|
|
assert( pVTab->nRef>0 );
|
|
assert( sqlite3SafetyCheckOk(db) );
|
|
|
|
pVTab->nRef--;
|
|
if( pVTab->nRef==0 ){
|
|
sqlite3_vtab *p = pVTab->pVtab;
|
|
if( p ){
|
|
p->pModule->xDisconnect(p);
|
|
}
|
|
sqlite3DbFree(db, pVTab);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Table p is a virtual table. This function moves all elements in the
|
|
** p->pVTable list to the sqlite3.pDisconnect lists of their associated
|
|
** database connections to be disconnected at the next opportunity.
|
|
** Except, if argument db is not NULL, then the entry associated with
|
|
** connection db is left in the p->pVTable list.
|
|
*/
|
|
static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
|
|
VTable *pRet = 0;
|
|
VTable *pVTable = p->pVTable;
|
|
p->pVTable = 0;
|
|
|
|
/* Assert that the mutex (if any) associated with the BtShared database
|
|
** that contains table p is held by the caller. See header comments
|
|
** above function sqlite3VtabUnlockList() for an explanation of why
|
|
** this makes it safe to access the sqlite3.pDisconnect list of any
|
|
** database connection that may have an entry in the p->pVTable list.
|
|
*/
|
|
assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
|
|
|
|
while( pVTable ){
|
|
sqlite3 *db2 = pVTable->db;
|
|
VTable *pNext = pVTable->pNext;
|
|
assert( db2 );
|
|
if( db2==db ){
|
|
pRet = pVTable;
|
|
p->pVTable = pRet;
|
|
pRet->pNext = 0;
|
|
}else{
|
|
pVTable->pNext = db2->pDisconnect;
|
|
db2->pDisconnect = pVTable;
|
|
}
|
|
pVTable = pNext;
|
|
}
|
|
|
|
assert( !db || pRet );
|
|
return pRet;
|
|
}
|
|
|
|
|
|
/*
|
|
** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
|
|
**
|
|
** This function may only be called when the mutexes associated with all
|
|
** shared b-tree databases opened using connection db are held by the
|
|
** caller. This is done to protect the sqlite3.pDisconnect list. The
|
|
** sqlite3.pDisconnect list is accessed only as follows:
|
|
**
|
|
** 1) By this function. In this case, all BtShared mutexes and the mutex
|
|
** associated with the database handle itself must be held.
|
|
**
|
|
** 2) By function vtabDisconnectAll(), when it adds a VTable entry to
|
|
** the sqlite3.pDisconnect list. In this case either the BtShared mutex
|
|
** associated with the database the virtual table is stored in is held
|
|
** or, if the virtual table is stored in a non-sharable database, then
|
|
** the database handle mutex is held.
|
|
**
|
|
** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
|
|
** by multiple threads. It is thread-safe.
|
|
*/
|
|
void sqlite3VtabUnlockList(sqlite3 *db){
|
|
VTable *p = db->pDisconnect;
|
|
db->pDisconnect = 0;
|
|
|
|
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
|
|
if( p ){
|
|
sqlite3ExpirePreparedStatements(db);
|
|
do {
|
|
VTable *pNext = p->pNext;
|
|
sqlite3VtabUnlock(p);
|
|
p = pNext;
|
|
}while( p );
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Clear any and all virtual-table information from the Table record.
|
|
** This routine is called, for example, just before deleting the Table
|
|
** record.
|
|
**
|
|
** Since it is a virtual-table, the Table structure contains a pointer
|
|
** to the head of a linked list of VTable structures. Each VTable
|
|
** structure is associated with a single sqlite3* user of the schema.
|
|
** The reference count of the VTable structure associated with database
|
|
** connection db is decremented immediately (which may lead to the
|
|
** structure being xDisconnected and free). Any other VTable structures
|
|
** in the list are moved to the sqlite3.pDisconnect list of the associated
|
|
** database connection.
|
|
*/
|
|
void sqlite3VtabClear(sqlite3 *db, Table *p){
|
|
if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
|
|
if( p->azModuleArg ){
|
|
int i;
|
|
for(i=0; i<p->nModuleArg; i++){
|
|
sqlite3DbFree(db, p->azModuleArg[i]);
|
|
}
|
|
sqlite3DbFree(db, p->azModuleArg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add a new module argument to pTable->azModuleArg[].
|
|
** The string is not copied - the pointer is stored. The
|
|
** string will be freed automatically when the table is
|
|
** deleted.
|
|
*/
|
|
static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
|
|
int i = pTable->nModuleArg++;
|
|
int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
|
|
char **azModuleArg;
|
|
azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
|
|
if( azModuleArg==0 ){
|
|
int j;
|
|
for(j=0; j<i; j++){
|
|
sqlite3DbFree(db, pTable->azModuleArg[j]);
|
|
}
|
|
sqlite3DbFree(db, zArg);
|
|
sqlite3DbFree(db, pTable->azModuleArg);
|
|
pTable->nModuleArg = 0;
|
|
}else{
|
|
azModuleArg[i] = zArg;
|
|
azModuleArg[i+1] = 0;
|
|
}
|
|
pTable->azModuleArg = azModuleArg;
|
|
}
|
|
|
|
/*
|
|
** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
|
|
** statement. The module name has been parsed, but the optional list
|
|
** of parameters that follow the module name are still pending.
|
|
*/
|
|
void sqlite3VtabBeginParse(
|
|
Parse *pParse, /* Parsing context */
|
|
Token *pName1, /* Name of new table, or database name */
|
|
Token *pName2, /* Name of new table or NULL */
|
|
Token *pModuleName /* Name of the module for the virtual table */
|
|
){
|
|
int iDb; /* The database the table is being created in */
|
|
Table *pTable; /* The new virtual table */
|
|
sqlite3 *db; /* Database connection */
|
|
|
|
sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0);
|
|
pTable = pParse->pNewTable;
|
|
if( pTable==0 ) return;
|
|
assert( 0==pTable->pIndex );
|
|
|
|
db = pParse->db;
|
|
iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
|
|
assert( iDb>=0 );
|
|
|
|
pTable->tabFlags |= TF_Virtual;
|
|
pTable->nModuleArg = 0;
|
|
addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
|
|
addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
|
|
addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
|
|
pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z);
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
/* Creating a virtual table invokes the authorization callback twice.
|
|
** The first invocation, to obtain permission to INSERT a row into the
|
|
** sqlite_master table, has already been made by sqlite3StartTable().
|
|
** The second call, to obtain permission to create the table, is made now.
|
|
*/
|
|
if( pTable->azModuleArg ){
|
|
sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
|
|
pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** This routine takes the module argument that has been accumulating
|
|
** in pParse->zArg[] and appends it to the list of arguments on the
|
|
** virtual table currently under construction in pParse->pTable.
|
|
*/
|
|
static void addArgumentToVtab(Parse *pParse){
|
|
if( pParse->sArg.z && ALWAYS(pParse->pNewTable) ){
|
|
const char *z = (const char*)pParse->sArg.z;
|
|
int n = pParse->sArg.n;
|
|
sqlite3 *db = pParse->db;
|
|
addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The parser calls this routine after the CREATE VIRTUAL TABLE statement
|
|
** has been completely parsed.
|
|
*/
|
|
void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
|
|
Table *pTab = pParse->pNewTable; /* The table being constructed */
|
|
sqlite3 *db = pParse->db; /* The database connection */
|
|
|
|
if( pTab==0 ) return;
|
|
addArgumentToVtab(pParse);
|
|
pParse->sArg.z = 0;
|
|
if( pTab->nModuleArg<1 ) return;
|
|
|
|
/* If the CREATE VIRTUAL TABLE statement is being entered for the
|
|
** first time (in other words if the virtual table is actually being
|
|
** created now instead of just being read out of sqlite_master) then
|
|
** do additional initialization work and store the statement text
|
|
** in the sqlite_master table.
|
|
*/
|
|
if( !db->init.busy ){
|
|
char *zStmt;
|
|
char *zWhere;
|
|
int iDb;
|
|
Vdbe *v;
|
|
|
|
/* Compute the complete text of the CREATE VIRTUAL TABLE statement */
|
|
if( pEnd ){
|
|
pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
|
|
}
|
|
zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
|
|
|
|
/* A slot for the record has already been allocated in the
|
|
** SQLITE_MASTER table. We just need to update that slot with all
|
|
** the information we've collected.
|
|
**
|
|
** The VM register number pParse->regRowid holds the rowid of an
|
|
** entry in the sqlite_master table tht was created for this vtab
|
|
** by sqlite3StartTable().
|
|
*/
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
sqlite3NestedParse(pParse,
|
|
"UPDATE %Q.%s "
|
|
"SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
|
|
"WHERE rowid=#%d",
|
|
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
|
pTab->zName,
|
|
pTab->zName,
|
|
zStmt,
|
|
pParse->regRowid
|
|
);
|
|
sqlite3DbFree(db, zStmt);
|
|
v = sqlite3GetVdbe(pParse);
|
|
sqlite3ChangeCookie(pParse, iDb);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
|
|
zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
|
|
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
|
|
sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
|
|
pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
|
|
}
|
|
|
|
/* If we are rereading the sqlite_master table create the in-memory
|
|
** record of the table. The xConnect() method is not called until
|
|
** the first time the virtual table is used in an SQL statement. This
|
|
** allows a schema that contains virtual tables to be loaded before
|
|
** the required virtual table implementations are registered. */
|
|
else {
|
|
Table *pOld;
|
|
Schema *pSchema = pTab->pSchema;
|
|
const char *zName = pTab->zName;
|
|
int nName = sqlite3Strlen30(zName);
|
|
assert( sqlite3SchemaMutexHeld(db, 0, pSchema) );
|
|
pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
|
|
if( pOld ){
|
|
db->mallocFailed = 1;
|
|
assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
|
|
return;
|
|
}
|
|
pParse->pNewTable = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The parser calls this routine when it sees the first token
|
|
** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
|
|
*/
|
|
void sqlite3VtabArgInit(Parse *pParse){
|
|
addArgumentToVtab(pParse);
|
|
pParse->sArg.z = 0;
|
|
pParse->sArg.n = 0;
|
|
}
|
|
|
|
/*
|
|
** The parser calls this routine for each token after the first token
|
|
** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
|
|
*/
|
|
void sqlite3VtabArgExtend(Parse *pParse, Token *p){
|
|
Token *pArg = &pParse->sArg;
|
|
if( pArg->z==0 ){
|
|
pArg->z = p->z;
|
|
pArg->n = p->n;
|
|
}else{
|
|
assert(pArg->z < p->z);
|
|
pArg->n = (int)(&p->z[p->n] - pArg->z);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Invoke a virtual table constructor (either xCreate or xConnect). The
|
|
** pointer to the function to invoke is passed as the fourth parameter
|
|
** to this procedure.
|
|
*/
|
|
static int vtabCallConstructor(
|
|
sqlite3 *db,
|
|
Table *pTab,
|
|
Module *pMod,
|
|
int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
|
|
char **pzErr
|
|
){
|
|
VtabCtx sCtx;
|
|
VTable *pVTable;
|
|
int rc;
|
|
const char *const*azArg = (const char *const*)pTab->azModuleArg;
|
|
int nArg = pTab->nModuleArg;
|
|
char *zErr = 0;
|
|
char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
|
|
|
|
if( !zModuleName ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
pVTable = sqlite3DbMallocZero(db, sizeof(VTable));
|
|
if( !pVTable ){
|
|
sqlite3DbFree(db, zModuleName);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pVTable->db = db;
|
|
pVTable->pMod = pMod;
|
|
|
|
/* Invoke the virtual table constructor */
|
|
assert( &db->pVtabCtx );
|
|
assert( xConstruct );
|
|
sCtx.pTab = pTab;
|
|
sCtx.pVTable = pVTable;
|
|
db->pVtabCtx = &sCtx;
|
|
rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
|
|
db->pVtabCtx = 0;
|
|
if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
|
|
|
|
if( SQLITE_OK!=rc ){
|
|
if( zErr==0 ){
|
|
*pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
|
|
}else {
|
|
*pzErr = sqlite3MPrintf(db, "%s", zErr);
|
|
sqlite3_free(zErr);
|
|
}
|
|
sqlite3DbFree(db, pVTable);
|
|
}else if( ALWAYS(pVTable->pVtab) ){
|
|
/* Justification of ALWAYS(): A correct vtab constructor must allocate
|
|
** the sqlite3_vtab object if successful. */
|
|
pVTable->pVtab->pModule = pMod->pModule;
|
|
pVTable->nRef = 1;
|
|
if( sCtx.pTab ){
|
|
const char *zFormat = "vtable constructor did not declare schema: %s";
|
|
*pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
|
|
sqlite3VtabUnlock(pVTable);
|
|
rc = SQLITE_ERROR;
|
|
}else{
|
|
int iCol;
|
|
/* If everything went according to plan, link the new VTable structure
|
|
** into the linked list headed by pTab->pVTable. Then loop through the
|
|
** columns of the table to see if any of them contain the token "hidden".
|
|
** If so, set the Column.isHidden flag and remove the token from
|
|
** the type string. */
|
|
pVTable->pNext = pTab->pVTable;
|
|
pTab->pVTable = pVTable;
|
|
|
|
for(iCol=0; iCol<pTab->nCol; iCol++){
|
|
char *zType = pTab->aCol[iCol].zType;
|
|
int nType;
|
|
int i = 0;
|
|
if( !zType ) continue;
|
|
nType = sqlite3Strlen30(zType);
|
|
if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){
|
|
for(i=0; i<nType; i++){
|
|
if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
|
|
&& (zType[i+7]=='\0' || zType[i+7]==' ')
|
|
){
|
|
i++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if( i<nType ){
|
|
int j;
|
|
int nDel = 6 + (zType[i+6] ? 1 : 0);
|
|
for(j=i; (j+nDel)<=nType; j++){
|
|
zType[j] = zType[j+nDel];
|
|
}
|
|
if( zType[i]=='\0' && i>0 ){
|
|
assert(zType[i-1]==' ');
|
|
zType[i-1] = '\0';
|
|
}
|
|
pTab->aCol[iCol].isHidden = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
sqlite3DbFree(db, zModuleName);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function is invoked by the parser to call the xConnect() method
|
|
** of the virtual table pTab. If an error occurs, an error code is returned
|
|
** and an error left in pParse.
|
|
**
|
|
** This call is a no-op if table pTab is not a virtual table.
|
|
*/
|
|
int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
|
|
sqlite3 *db = pParse->db;
|
|
const char *zMod;
|
|
Module *pMod;
|
|
int rc;
|
|
|
|
assert( pTab );
|
|
if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Locate the required virtual table module */
|
|
zMod = pTab->azModuleArg[0];
|
|
pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
|
|
|
|
if( !pMod ){
|
|
const char *zModule = pTab->azModuleArg[0];
|
|
sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
|
|
rc = SQLITE_ERROR;
|
|
}else{
|
|
char *zErr = 0;
|
|
rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3ErrorMsg(pParse, "%s", zErr);
|
|
}
|
|
sqlite3DbFree(db, zErr);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Add the virtual table pVTab to the array sqlite3.aVTrans[].
|
|
*/
|
|
static int addToVTrans(sqlite3 *db, VTable *pVTab){
|
|
const int ARRAY_INCR = 5;
|
|
|
|
/* Grow the sqlite3.aVTrans array if required */
|
|
if( (db->nVTrans%ARRAY_INCR)==0 ){
|
|
VTable **aVTrans;
|
|
int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
|
|
aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
|
|
if( !aVTrans ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
|
|
db->aVTrans = aVTrans;
|
|
}
|
|
|
|
/* Add pVtab to the end of sqlite3.aVTrans */
|
|
db->aVTrans[db->nVTrans++] = pVTab;
|
|
sqlite3VtabLock(pVTab);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This function is invoked by the vdbe to call the xCreate method
|
|
** of the virtual table named zTab in database iDb.
|
|
**
|
|
** If an error occurs, *pzErr is set to point an an English language
|
|
** description of the error and an SQLITE_XXX error code is returned.
|
|
** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
|
|
*/
|
|
int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
|
|
int rc = SQLITE_OK;
|
|
Table *pTab;
|
|
Module *pMod;
|
|
const char *zMod;
|
|
|
|
pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
|
|
assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable );
|
|
|
|
/* Locate the required virtual table module */
|
|
zMod = pTab->azModuleArg[0];
|
|
pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
|
|
|
|
/* If the module has been registered and includes a Create method,
|
|
** invoke it now. If the module has not been registered, return an
|
|
** error. Otherwise, do nothing.
|
|
*/
|
|
if( !pMod ){
|
|
*pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
|
|
rc = SQLITE_ERROR;
|
|
}else{
|
|
rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
|
|
}
|
|
|
|
/* Justification of ALWAYS(): The xConstructor method is required to
|
|
** create a valid sqlite3_vtab if it returns SQLITE_OK. */
|
|
if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
|
|
rc = addToVTrans(db, sqlite3GetVTable(db, pTab));
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function is used to set the schema of a virtual table. It is only
|
|
** valid to call this function from within the xCreate() or xConnect() of a
|
|
** virtual table module.
|
|
*/
|
|
int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
|
|
Parse *pParse;
|
|
|
|
int rc = SQLITE_OK;
|
|
Table *pTab;
|
|
char *zErr = 0;
|
|
|
|
sqlite3_mutex_enter(db->mutex);
|
|
if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){
|
|
sqlite3Error(db, SQLITE_MISUSE, 0);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return SQLITE_MISUSE_BKPT;
|
|
}
|
|
assert( (pTab->tabFlags & TF_Virtual)!=0 );
|
|
|
|
pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
|
|
if( pParse==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
pParse->declareVtab = 1;
|
|
pParse->db = db;
|
|
pParse->nQueryLoop = 1;
|
|
|
|
if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr)
|
|
&& pParse->pNewTable
|
|
&& !db->mallocFailed
|
|
&& !pParse->pNewTable->pSelect
|
|
&& (pParse->pNewTable->tabFlags & TF_Virtual)==0
|
|
){
|
|
if( !pTab->aCol ){
|
|
pTab->aCol = pParse->pNewTable->aCol;
|
|
pTab->nCol = pParse->pNewTable->nCol;
|
|
pParse->pNewTable->nCol = 0;
|
|
pParse->pNewTable->aCol = 0;
|
|
}
|
|
db->pVtabCtx->pTab = 0;
|
|
}else{
|
|
sqlite3Error(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr);
|
|
sqlite3DbFree(db, zErr);
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
pParse->declareVtab = 0;
|
|
|
|
if( pParse->pVdbe ){
|
|
sqlite3VdbeFinalize(pParse->pVdbe);
|
|
}
|
|
sqlite3DeleteTable(db, pParse->pNewTable);
|
|
sqlite3StackFree(db, pParse);
|
|
}
|
|
|
|
assert( (rc&0xff)==rc );
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function is invoked by the vdbe to call the xDestroy method
|
|
** of the virtual table named zTab in database iDb. This occurs
|
|
** when a DROP TABLE is mentioned.
|
|
**
|
|
** This call is a no-op if zTab is not a virtual table.
|
|
*/
|
|
int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
|
|
int rc = SQLITE_OK;
|
|
Table *pTab;
|
|
|
|
pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
|
|
if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){
|
|
VTable *p = vtabDisconnectAll(db, pTab);
|
|
|
|
assert( rc==SQLITE_OK );
|
|
rc = p->pMod->pModule->xDestroy(p->pVtab);
|
|
|
|
/* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
|
|
if( rc==SQLITE_OK ){
|
|
assert( pTab->pVTable==p && p->pNext==0 );
|
|
p->pVtab = 0;
|
|
pTab->pVTable = 0;
|
|
sqlite3VtabUnlock(p);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function invokes either the xRollback or xCommit method
|
|
** of each of the virtual tables in the sqlite3.aVTrans array. The method
|
|
** called is identified by the second argument, "offset", which is
|
|
** the offset of the method to call in the sqlite3_module structure.
|
|
**
|
|
** The array is cleared after invoking the callbacks.
|
|
*/
|
|
static void callFinaliser(sqlite3 *db, int offset){
|
|
int i;
|
|
if( db->aVTrans ){
|
|
for(i=0; i<db->nVTrans; i++){
|
|
VTable *pVTab = db->aVTrans[i];
|
|
sqlite3_vtab *p = pVTab->pVtab;
|
|
if( p ){
|
|
int (*x)(sqlite3_vtab *);
|
|
x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
|
|
if( x ) x(p);
|
|
}
|
|
sqlite3VtabUnlock(pVTab);
|
|
}
|
|
sqlite3DbFree(db, db->aVTrans);
|
|
db->nVTrans = 0;
|
|
db->aVTrans = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
|
|
** array. Return the error code for the first error that occurs, or
|
|
** SQLITE_OK if all xSync operations are successful.
|
|
**
|
|
** Set *pzErrmsg to point to a buffer that should be released using
|
|
** sqlite3DbFree() containing an error message, if one is available.
|
|
*/
|
|
int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){
|
|
int i;
|
|
int rc = SQLITE_OK;
|
|
VTable **aVTrans = db->aVTrans;
|
|
|
|
db->aVTrans = 0;
|
|
for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
|
|
int (*x)(sqlite3_vtab *);
|
|
sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
|
|
if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
|
|
rc = x(pVtab);
|
|
sqlite3DbFree(db, *pzErrmsg);
|
|
*pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
|
|
sqlite3_free(pVtab->zErrMsg);
|
|
}
|
|
}
|
|
db->aVTrans = aVTrans;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Invoke the xRollback method of all virtual tables in the
|
|
** sqlite3.aVTrans array. Then clear the array itself.
|
|
*/
|
|
int sqlite3VtabRollback(sqlite3 *db){
|
|
callFinaliser(db, offsetof(sqlite3_module,xRollback));
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Invoke the xCommit method of all virtual tables in the
|
|
** sqlite3.aVTrans array. Then clear the array itself.
|
|
*/
|
|
int sqlite3VtabCommit(sqlite3 *db){
|
|
callFinaliser(db, offsetof(sqlite3_module,xCommit));
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** If the virtual table pVtab supports the transaction interface
|
|
** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
|
|
** not currently open, invoke the xBegin method now.
|
|
**
|
|
** If the xBegin call is successful, place the sqlite3_vtab pointer
|
|
** in the sqlite3.aVTrans array.
|
|
*/
|
|
int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
|
|
int rc = SQLITE_OK;
|
|
const sqlite3_module *pModule;
|
|
|
|
/* Special case: If db->aVTrans is NULL and db->nVTrans is greater
|
|
** than zero, then this function is being called from within a
|
|
** virtual module xSync() callback. It is illegal to write to
|
|
** virtual module tables in this case, so return SQLITE_LOCKED.
|
|
*/
|
|
if( sqlite3VtabInSync(db) ){
|
|
return SQLITE_LOCKED;
|
|
}
|
|
if( !pVTab ){
|
|
return SQLITE_OK;
|
|
}
|
|
pModule = pVTab->pVtab->pModule;
|
|
|
|
if( pModule->xBegin ){
|
|
int i;
|
|
|
|
/* If pVtab is already in the aVTrans array, return early */
|
|
for(i=0; i<db->nVTrans; i++){
|
|
if( db->aVTrans[i]==pVTab ){
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
/* Invoke the xBegin method */
|
|
rc = pModule->xBegin(pVTab->pVtab);
|
|
if( rc==SQLITE_OK ){
|
|
rc = addToVTrans(db, pVTab);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
|
|
** virtual tables that currently have an open transaction. Pass iSavepoint
|
|
** as the second argument to the virtual table method invoked.
|
|
**
|
|
** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
|
|
** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is
|
|
** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
|
|
** an open transaction is invoked.
|
|
**
|
|
** If any virtual table method returns an error code other than SQLITE_OK,
|
|
** processing is abandoned and the error returned to the caller of this
|
|
** function immediately. If all calls to virtual table methods are successful,
|
|
** SQLITE_OK is returned.
|
|
*/
|
|
int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
|
|
int rc = SQLITE_OK;
|
|
|
|
assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
|
|
if( db->aVTrans ){
|
|
int i;
|
|
for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
|
|
const sqlite3_module *pMod = db->aVTrans[i]->pMod->pModule;
|
|
if( pMod->iVersion>=1 ){
|
|
int (*xMethod)(sqlite3_vtab *, int);
|
|
switch( op ){
|
|
case SAVEPOINT_BEGIN:
|
|
xMethod = pMod->xSavepoint;
|
|
break;
|
|
case SAVEPOINT_ROLLBACK:
|
|
xMethod = pMod->xRollbackTo;
|
|
break;
|
|
default:
|
|
xMethod = pMod->xRelease;
|
|
break;
|
|
}
|
|
if( xMethod ) rc = xMethod(db->aVTrans[i]->pVtab, iSavepoint);
|
|
}
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The first parameter (pDef) is a function implementation. The
|
|
** second parameter (pExpr) is the first argument to this function.
|
|
** If pExpr is a column in a virtual table, then let the virtual
|
|
** table implementation have an opportunity to overload the function.
|
|
**
|
|
** This routine is used to allow virtual table implementations to
|
|
** overload MATCH, LIKE, GLOB, and REGEXP operators.
|
|
**
|
|
** Return either the pDef argument (indicating no change) or a
|
|
** new FuncDef structure that is marked as ephemeral using the
|
|
** SQLITE_FUNC_EPHEM flag.
|
|
*/
|
|
FuncDef *sqlite3VtabOverloadFunction(
|
|
sqlite3 *db, /* Database connection for reporting malloc problems */
|
|
FuncDef *pDef, /* Function to possibly overload */
|
|
int nArg, /* Number of arguments to the function */
|
|
Expr *pExpr /* First argument to the function */
|
|
){
|
|
Table *pTab;
|
|
sqlite3_vtab *pVtab;
|
|
sqlite3_module *pMod;
|
|
void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
|
|
void *pArg = 0;
|
|
FuncDef *pNew;
|
|
int rc = 0;
|
|
char *zLowerName;
|
|
unsigned char *z;
|
|
|
|
|
|
/* Check to see the left operand is a column in a virtual table */
|
|
if( NEVER(pExpr==0) ) return pDef;
|
|
if( pExpr->op!=TK_COLUMN ) return pDef;
|
|
pTab = pExpr->pTab;
|
|
if( NEVER(pTab==0) ) return pDef;
|
|
if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
|
|
pVtab = sqlite3GetVTable(db, pTab)->pVtab;
|
|
assert( pVtab!=0 );
|
|
assert( pVtab->pModule!=0 );
|
|
pMod = (sqlite3_module *)pVtab->pModule;
|
|
if( pMod->xFindFunction==0 ) return pDef;
|
|
|
|
/* Call the xFindFunction method on the virtual table implementation
|
|
** to see if the implementation wants to overload this function
|
|
*/
|
|
zLowerName = sqlite3DbStrDup(db, pDef->zName);
|
|
if( zLowerName ){
|
|
for(z=(unsigned char*)zLowerName; *z; z++){
|
|
*z = sqlite3UpperToLower[*z];
|
|
}
|
|
rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
|
|
sqlite3DbFree(db, zLowerName);
|
|
}
|
|
if( rc==0 ){
|
|
return pDef;
|
|
}
|
|
|
|
/* Create a new ephemeral function definition for the overloaded
|
|
** function */
|
|
pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
|
|
+ sqlite3Strlen30(pDef->zName) + 1);
|
|
if( pNew==0 ){
|
|
return pDef;
|
|
}
|
|
*pNew = *pDef;
|
|
pNew->zName = (char *)&pNew[1];
|
|
memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
|
|
pNew->xFunc = xFunc;
|
|
pNew->pUserData = pArg;
|
|
pNew->flags |= SQLITE_FUNC_EPHEM;
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
|
|
** array so that an OP_VBegin will get generated for it. Add pTab to the
|
|
** array if it is missing. If pTab is already in the array, this routine
|
|
** is a no-op.
|
|
*/
|
|
void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
|
|
Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
|
int i, n;
|
|
Table **apVtabLock;
|
|
|
|
assert( IsVirtual(pTab) );
|
|
for(i=0; i<pToplevel->nVtabLock; i++){
|
|
if( pTab==pToplevel->apVtabLock[i] ) return;
|
|
}
|
|
n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
|
|
apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n);
|
|
if( apVtabLock ){
|
|
pToplevel->apVtabLock = apVtabLock;
|
|
pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
|
|
}else{
|
|
pToplevel->db->mallocFailed = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the ON CONFLICT resolution mode in effect for the virtual
|
|
** table update operation currently in progress.
|
|
**
|
|
** The results of this routine are undefined unless it is called from
|
|
** within an xUpdate method.
|
|
*/
|
|
int sqlite3_vtab_on_conflict(sqlite3 *db){
|
|
static const unsigned char aMap[] = {
|
|
SQLITE_ROLLBACK, SQLITE_IGNORE, SQLITE_ABORT, SQLITE_FAIL, SQLITE_REPLACE
|
|
};
|
|
assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
|
|
assert( OE_Ignore==4 && OE_Replace==5 );
|
|
assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
|
|
return (int)aMap[db->vtabOnConflict-1];
|
|
}
|
|
|
|
/*
|
|
** Call from within the xCreate() or xConnect() methods to provide
|
|
** the SQLite core with additional information about the behavior
|
|
** of the virtual table being implemented.
|
|
*/
|
|
int sqlite3_vtab_config(sqlite3 *db, int op, ...){
|
|
va_list ap;
|
|
int rc = SQLITE_OK;
|
|
|
|
sqlite3_mutex_enter(db->mutex);
|
|
|
|
va_start(ap, op);
|
|
switch( op ){
|
|
case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
|
|
VtabCtx *p = db->pVtabCtx;
|
|
if( !p ){
|
|
rc = SQLITE_MISUSE_BKPT;
|
|
}else{
|
|
assert( (p->pTab->tabFlags & TF_Virtual)!=0 );
|
|
p->pVTable->bConstraint = (u8)va_arg(ap, int);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
rc = SQLITE_MISUSE_BKPT;
|
|
break;
|
|
}
|
|
va_end(ap);
|
|
|
|
if( rc!=SQLITE_OK ) sqlite3Error(db, rc, 0);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|