mirror of
https://github.com/sqlite/sqlite.git
synced 2025-08-08 14:02:16 +03:00
1879 lines
59 KiB
C
1879 lines
59 KiB
C
/*
|
|
** 2018 May 08
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** SELECT REWRITING
|
|
**
|
|
** Any SELECT statement that contains one or more window functions in
|
|
** either the select list or ORDER BY clause (the only two places window
|
|
** functions may be used) is transformed by function sqlite3WindowRewrite()
|
|
** in order to support window function processing. For example, with the
|
|
** schema:
|
|
**
|
|
** CREATE TABLE t1(a, b, c, d, e, f, g);
|
|
**
|
|
** the statement:
|
|
**
|
|
** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
|
|
**
|
|
** is transformed to:
|
|
**
|
|
** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
|
|
** SELECT a, e, c, d, b FROM t1 ORDER BY c, d
|
|
** ) ORDER BY e;
|
|
**
|
|
** The flattening optimization is disabled when processing this transformed
|
|
** SELECT statement. This allows the implementation of the window function
|
|
** (in this case max()) to process rows sorted in order of (c, d), which
|
|
** makes things easier for obvious reasons. More generally:
|
|
**
|
|
** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
|
|
** the sub-query.
|
|
**
|
|
** * ORDER BY, LIMIT and OFFSET remain part of the parent query.
|
|
**
|
|
** * Terminals from each of the expression trees that make up the
|
|
** select-list and ORDER BY expressions in the parent query are
|
|
** selected by the sub-query. For the purposes of the transformation,
|
|
** terminals are column references and aggregate functions.
|
|
**
|
|
** If there is more than one window function in the SELECT that uses
|
|
** the same window declaration (the OVER bit), then a single scan may
|
|
** be used to process more than one window function. For example:
|
|
**
|
|
** SELECT max(b) OVER (PARTITION BY c ORDER BY d),
|
|
** min(e) OVER (PARTITION BY c ORDER BY d)
|
|
** FROM t1;
|
|
**
|
|
** is transformed in the same way as the example above. However:
|
|
**
|
|
** SELECT max(b) OVER (PARTITION BY c ORDER BY d),
|
|
** min(e) OVER (PARTITION BY a ORDER BY b)
|
|
** FROM t1;
|
|
**
|
|
** Must be transformed to:
|
|
**
|
|
** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
|
|
** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
|
|
** SELECT a, e, c, d, b FROM t1 ORDER BY a, b
|
|
** ) ORDER BY c, d
|
|
** ) ORDER BY e;
|
|
**
|
|
** so that both min() and max() may process rows in the order defined by
|
|
** their respective window declarations.
|
|
**
|
|
** INTERFACE WITH SELECT.C
|
|
**
|
|
** When processing the rewritten SELECT statement, code in select.c calls
|
|
** sqlite3WhereBegin() to begin iterating through the results of the
|
|
** sub-query, which is always implemented as a co-routine. It then calls
|
|
** sqlite3WindowCodeStep() to process rows and finish the scan by calling
|
|
** sqlite3WhereEnd().
|
|
**
|
|
** sqlite3WindowCodeStep() generates VM code so that, for each row returned
|
|
** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
|
|
** When the sub-routine is invoked:
|
|
**
|
|
** * The results of all window-functions for the row are stored
|
|
** in the associated Window.regResult registers.
|
|
**
|
|
** * The required terminal values are stored in the current row of
|
|
** temp table Window.iEphCsr.
|
|
**
|
|
** In some cases, depending on the window frame and the specific window
|
|
** functions invoked, sqlite3WindowCodeStep() caches each entire partition
|
|
** in a temp table before returning any rows. In other cases it does not.
|
|
** This detail is encapsulated within this file, the code generated by
|
|
** select.c is the same in either case.
|
|
**
|
|
** BUILT-IN WINDOW FUNCTIONS
|
|
**
|
|
** This implementation features the following built-in window functions:
|
|
**
|
|
** row_number()
|
|
** rank()
|
|
** dense_rank()
|
|
** percent_rank()
|
|
** cume_dist()
|
|
** ntile(N)
|
|
** lead(expr [, offset [, default]])
|
|
** lag(expr [, offset [, default]])
|
|
** first_value(expr)
|
|
** last_value(expr)
|
|
** nth_value(expr, N)
|
|
**
|
|
** These are the same built-in window functions supported by Postgres.
|
|
** Although the behaviour of aggregate window functions (functions that
|
|
** can be used as either aggregates or window funtions) allows them to
|
|
** be implemented using an API, built-in window functions are much more
|
|
** esoteric. Additionally, some window functions (e.g. nth_value())
|
|
** may only be implemented by caching the entire partition in memory.
|
|
** As such, some built-in window functions use the same API as aggregate
|
|
** window functions and some are implemented directly using VDBE
|
|
** instructions. Additionally, for those functions that use the API, the
|
|
** window frame is sometimes modified before the SELECT statement is
|
|
** rewritten. For example, regardless of the specified window frame, the
|
|
** row_number() function always uses:
|
|
**
|
|
** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
|
|
**
|
|
** See sqlite3WindowUpdate() for details.
|
|
**
|
|
** As well as some of the built-in window functions, aggregate window
|
|
** functions min() and max() are implemented using VDBE instructions if
|
|
** the start of the window frame is declared as anything other than
|
|
** UNBOUNDED PRECEDING.
|
|
*/
|
|
|
|
/*
|
|
** Implementation of built-in window function row_number(). Assumes that the
|
|
** window frame has been coerced to:
|
|
**
|
|
** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
|
|
*/
|
|
static void row_numberStepFunc(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p ) (*p)++;
|
|
}
|
|
static void row_numberInvFunc(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
}
|
|
static void row_numberValueFunc(sqlite3_context *pCtx){
|
|
i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
sqlite3_result_int64(pCtx, (p ? *p : 0));
|
|
}
|
|
|
|
/*
|
|
** Context object type used by rank(), dense_rank(), percent_rank() and
|
|
** cume_dist().
|
|
*/
|
|
struct CallCount {
|
|
i64 nValue;
|
|
i64 nStep;
|
|
i64 nTotal;
|
|
};
|
|
|
|
/*
|
|
** Implementation of built-in window function dense_rank().
|
|
*/
|
|
static void dense_rankStepFunc(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
struct CallCount *p;
|
|
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p ) p->nStep = 1;
|
|
}
|
|
static void dense_rankInvFunc(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
}
|
|
static void dense_rankValueFunc(sqlite3_context *pCtx){
|
|
struct CallCount *p;
|
|
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p ){
|
|
if( p->nStep ){
|
|
p->nValue++;
|
|
p->nStep = 0;
|
|
}
|
|
sqlite3_result_int64(pCtx, p->nValue);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of built-in window function rank().
|
|
*/
|
|
static void rankStepFunc(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
struct CallCount *p;
|
|
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p ){
|
|
p->nStep++;
|
|
if( p->nValue==0 ){
|
|
p->nValue = p->nStep;
|
|
}
|
|
}
|
|
}
|
|
static void rankInvFunc(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
}
|
|
static void rankValueFunc(sqlite3_context *pCtx){
|
|
struct CallCount *p;
|
|
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p ){
|
|
sqlite3_result_int64(pCtx, p->nValue);
|
|
p->nValue = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of built-in window function percent_rank().
|
|
*/
|
|
static void percent_rankStepFunc(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
struct CallCount *p;
|
|
assert( nArg==1 );
|
|
|
|
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p ){
|
|
if( p->nTotal==0 ){
|
|
p->nTotal = sqlite3_value_int64(apArg[0]);
|
|
}
|
|
p->nStep++;
|
|
if( p->nValue==0 ){
|
|
p->nValue = p->nStep;
|
|
}
|
|
}
|
|
}
|
|
static void percent_rankInvFunc(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
}
|
|
static void percent_rankValueFunc(sqlite3_context *pCtx){
|
|
struct CallCount *p;
|
|
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p ){
|
|
if( p->nTotal>1 ){
|
|
double r = (double)(p->nValue-1) / (double)(p->nTotal-1);
|
|
sqlite3_result_double(pCtx, r);
|
|
}else{
|
|
sqlite3_result_double(pCtx, 100.0);
|
|
}
|
|
p->nValue = 0;
|
|
}
|
|
}
|
|
|
|
static void cume_distStepFunc(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
struct CallCount *p;
|
|
assert( nArg==1 );
|
|
|
|
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p ){
|
|
if( p->nTotal==0 ){
|
|
p->nTotal = sqlite3_value_int64(apArg[0]);
|
|
}
|
|
p->nStep++;
|
|
}
|
|
}
|
|
static void cume_distInvFunc(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
}
|
|
static void cume_distValueFunc(sqlite3_context *pCtx){
|
|
struct CallCount *p;
|
|
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p ){
|
|
double r = (double)(p->nStep) / (double)(p->nTotal);
|
|
sqlite3_result_double(pCtx, r);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Context object for ntile() window function.
|
|
*/
|
|
struct NtileCtx {
|
|
i64 nTotal; /* Total rows in partition */
|
|
i64 nParam; /* Parameter passed to ntile(N) */
|
|
i64 iRow; /* Current row */
|
|
};
|
|
|
|
/*
|
|
** Implementation of ntile(). This assumes that the window frame has
|
|
** been coerced to:
|
|
**
|
|
** ROWS UNBOUNDED PRECEDING AND CURRENT ROW
|
|
*/
|
|
static void ntileStepFunc(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
struct NtileCtx *p;
|
|
assert( nArg==2 );
|
|
p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p ){
|
|
if( p->nTotal==0 ){
|
|
p->nParam = sqlite3_value_int64(apArg[0]);
|
|
p->nTotal = sqlite3_value_int64(apArg[1]);
|
|
if( p->nParam<=0 ){
|
|
sqlite3_result_error(
|
|
pCtx, "argument of ntile must be a positive integer", -1
|
|
);
|
|
}
|
|
}
|
|
p->iRow++;
|
|
}
|
|
}
|
|
static void ntileInvFunc(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
}
|
|
static void ntileValueFunc(sqlite3_context *pCtx){
|
|
struct NtileCtx *p;
|
|
p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p && p->nParam>0 ){
|
|
int nSize = (p->nTotal / p->nParam);
|
|
if( nSize==0 ){
|
|
sqlite3_result_int64(pCtx, p->iRow);
|
|
}else{
|
|
i64 nLarge = p->nTotal - p->nParam*nSize;
|
|
i64 iSmall = nLarge*(nSize+1);
|
|
i64 iRow = p->iRow-1;
|
|
|
|
assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
|
|
|
|
if( iRow<iSmall ){
|
|
sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
|
|
}else{
|
|
sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Context object for last_value() window function.
|
|
*/
|
|
struct LastValueCtx {
|
|
sqlite3_value *pVal;
|
|
int nVal;
|
|
};
|
|
|
|
/*
|
|
** Implementation of last_value().
|
|
*/
|
|
static void last_valueStepFunc(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
struct LastValueCtx *p;
|
|
p = (struct LastValueCtx *)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p ){
|
|
sqlite3_value_free(p->pVal);
|
|
p->pVal = sqlite3_value_dup(apArg[0]);
|
|
p->nVal++;
|
|
}
|
|
}
|
|
static void last_valueInvFunc(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
struct LastValueCtx *p;
|
|
p = (struct LastValueCtx *)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p ){
|
|
p->nVal--;
|
|
if( p->nVal==0 ){
|
|
sqlite3_value_free(p->pVal);
|
|
p->pVal = 0;
|
|
}
|
|
}
|
|
}
|
|
static void last_valueValueFunc(sqlite3_context *pCtx){
|
|
struct LastValueCtx *p;
|
|
p = (struct LastValueCtx *)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p && p->pVal ){
|
|
sqlite3_result_value(pCtx, p->pVal);
|
|
}
|
|
}
|
|
static void last_valueFinalizeFunc(sqlite3_context *pCtx){
|
|
struct LastValueCtx *p;
|
|
p = (struct LastValueCtx *)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p && p->pVal ){
|
|
sqlite3_result_value(pCtx, p->pVal);
|
|
sqlite3_value_free(p->pVal);
|
|
p->pVal = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** No-op implementations of nth_value(), first_value(), lead() and lag().
|
|
** These are all implemented inline using VDBE instructions.
|
|
*/
|
|
static void nth_valueStepFunc(sqlite3_context *pCtx, int n, sqlite3_value **a){}
|
|
static void nth_valueInvFunc(sqlite3_context *pCtx, int n, sqlite3_value **ap){}
|
|
static void nth_valueValueFunc(sqlite3_context *pCtx){}
|
|
static void first_valueStepFunc(sqlite3_context *p, int n, sqlite3_value **ap){}
|
|
static void first_valueInvFunc(sqlite3_context *p, int n, sqlite3_value **ap){}
|
|
static void first_valueValueFunc(sqlite3_context *pCtx){}
|
|
static void leadStepFunc(sqlite3_context *pCtx, int n, sqlite3_value **ap){}
|
|
static void leadInvFunc(sqlite3_context *pCtx, int n, sqlite3_value **ap){}
|
|
static void leadValueFunc(sqlite3_context *pCtx){}
|
|
static void lagStepFunc(sqlite3_context *pCtx, int n, sqlite3_value **ap){}
|
|
static void lagInvFunc(sqlite3_context *pCtx, int n, sqlite3_value **ap){}
|
|
static void lagValueFunc(sqlite3_context *pCtx){}
|
|
|
|
#define WINDOWFUNC(name,nArg,extra) { \
|
|
nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
|
|
name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \
|
|
name ## InvFunc, #name \
|
|
}
|
|
|
|
#define WINDOWFUNCF(name,nArg,extra) { \
|
|
nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
|
|
name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \
|
|
name ## InvFunc, #name \
|
|
}
|
|
|
|
/*
|
|
** Register those built-in window functions that are not also aggregates.
|
|
*/
|
|
void sqlite3WindowFunctions(void){
|
|
static FuncDef aWindowFuncs[] = {
|
|
WINDOWFUNC(row_number, 0, 0),
|
|
WINDOWFUNC(dense_rank, 0, 0),
|
|
WINDOWFUNC(rank, 0, 0),
|
|
WINDOWFUNC(percent_rank, 0, SQLITE_FUNC_WINDOW_SIZE),
|
|
WINDOWFUNC(cume_dist, 0, SQLITE_FUNC_WINDOW_SIZE),
|
|
WINDOWFUNC(ntile, 1, SQLITE_FUNC_WINDOW_SIZE),
|
|
WINDOWFUNCF(last_value, 1, 0),
|
|
WINDOWFUNC(nth_value, 2, 0),
|
|
WINDOWFUNC(first_value, 1, 0),
|
|
WINDOWFUNC(lead, 1, 0), WINDOWFUNC(lead, 2, 0), WINDOWFUNC(lead, 3, 0),
|
|
WINDOWFUNC(lag, 1, 0), WINDOWFUNC(lag, 2, 0), WINDOWFUNC(lag, 3, 0),
|
|
};
|
|
sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
|
|
}
|
|
|
|
/*
|
|
** This function is called immediately after resolving the function name
|
|
** for a window function within a SELECT statement. Argument pList is a
|
|
** linked list of WINDOW definitions for the current SELECT statement.
|
|
** Argument pFunc is the function definition just resolved and pWin
|
|
** is the Window object representing the associated OVER clause. This
|
|
** function updates the contents of pWin as follows:
|
|
**
|
|
** * If the OVER clause refered to a named window (as in "max(x) OVER win"),
|
|
** search list pList for a matching WINDOW definition, and update pWin
|
|
** accordingly. If no such WINDOW clause can be found, leave an error
|
|
** in pParse.
|
|
**
|
|
** * If the function is a built-in window function that requires the
|
|
** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
|
|
** of this file), pWin is updated here.
|
|
*/
|
|
void sqlite3WindowUpdate(
|
|
Parse *pParse,
|
|
Window *pList, /* List of named windows for this SELECT */
|
|
Window *pWin, /* Window frame to update */
|
|
FuncDef *pFunc /* Window function definition */
|
|
){
|
|
if( pWin->zName ){
|
|
Window *p;
|
|
for(p=pList; p; p=p->pNextWin){
|
|
if( sqlite3StrICmp(p->zName, pWin->zName)==0 ) break;
|
|
}
|
|
if( p==0 ){
|
|
sqlite3ErrorMsg(pParse, "no such window: %s", pWin->zName);
|
|
return;
|
|
}
|
|
pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
|
|
pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
|
|
pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
|
|
pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
|
|
pWin->eStart = p->eStart;
|
|
pWin->eEnd = p->eEnd;
|
|
}
|
|
if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
|
|
sqlite3 *db = pParse->db;
|
|
if( pWin->pFilter ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"FILTER clause may only be used with aggregate window functions"
|
|
);
|
|
}else
|
|
if( pFunc->xSFunc==row_numberStepFunc || pFunc->xSFunc==ntileStepFunc ){
|
|
sqlite3ExprDelete(db, pWin->pStart);
|
|
sqlite3ExprDelete(db, pWin->pEnd);
|
|
pWin->pStart = pWin->pEnd = 0;
|
|
pWin->eType = TK_ROWS;
|
|
pWin->eStart = TK_UNBOUNDED;
|
|
pWin->eEnd = TK_CURRENT;
|
|
}else
|
|
|
|
if( pFunc->xSFunc==dense_rankStepFunc || pFunc->xSFunc==rankStepFunc
|
|
|| pFunc->xSFunc==percent_rankStepFunc || pFunc->xSFunc==cume_distStepFunc
|
|
){
|
|
sqlite3ExprDelete(db, pWin->pStart);
|
|
sqlite3ExprDelete(db, pWin->pEnd);
|
|
pWin->pStart = pWin->pEnd = 0;
|
|
pWin->eType = TK_RANGE;
|
|
pWin->eStart = TK_UNBOUNDED;
|
|
pWin->eEnd = TK_CURRENT;
|
|
}
|
|
}
|
|
pWin->pFunc = pFunc;
|
|
}
|
|
|
|
/*
|
|
** Context object passed through sqlite3WalkExprList() to
|
|
** selectWindowRewriteExprCb() by selectWindowRewriteEList().
|
|
*/
|
|
typedef struct WindowRewrite WindowRewrite;
|
|
struct WindowRewrite {
|
|
Window *pWin;
|
|
ExprList *pSub;
|
|
};
|
|
|
|
/*
|
|
** Callback function used by selectWindowRewriteEList(). If necessary,
|
|
** this function appends to the output expression-list and updates
|
|
** expression (*ppExpr) in place.
|
|
*/
|
|
static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
|
|
struct WindowRewrite *p = pWalker->u.pRewrite;
|
|
Parse *pParse = pWalker->pParse;
|
|
|
|
switch( pExpr->op ){
|
|
|
|
case TK_FUNCTION:
|
|
if( pExpr->pWin==0 ){
|
|
break;
|
|
}else{
|
|
Window *pWin;
|
|
for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
|
|
if( pExpr->pWin==pWin ){
|
|
assert( pWin->pOwner==pExpr );
|
|
return WRC_Prune;
|
|
}
|
|
}
|
|
}
|
|
/* Fall through. */
|
|
|
|
case TK_AGG_FUNCTION:
|
|
case TK_COLUMN: {
|
|
Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
|
|
p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
|
|
if( p->pSub ){
|
|
assert( ExprHasProperty(pExpr, EP_Static)==0 );
|
|
ExprSetProperty(pExpr, EP_Static);
|
|
sqlite3ExprDelete(pParse->db, pExpr);
|
|
ExprClearProperty(pExpr, EP_Static);
|
|
memset(pExpr, 0, sizeof(Expr));
|
|
|
|
pExpr->op = TK_COLUMN;
|
|
pExpr->iColumn = p->pSub->nExpr-1;
|
|
pExpr->iTable = p->pWin->iEphCsr;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default: /* no-op */
|
|
break;
|
|
}
|
|
|
|
return WRC_Continue;
|
|
}
|
|
static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
|
|
return WRC_Prune;
|
|
}
|
|
|
|
|
|
/*
|
|
** Iterate through each expression in expression-list pEList. For each:
|
|
**
|
|
** * TK_COLUMN,
|
|
** * aggregate function, or
|
|
** * window function with a Window object that is not a member of the
|
|
** linked list passed as the second argument (pWin)
|
|
**
|
|
** Append the node to output expression-list (*ppSub). And replace it
|
|
** with a TK_COLUMN that reads the (N-1)th element of table
|
|
** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
|
|
** appending the new one.
|
|
*/
|
|
static int selectWindowRewriteEList(
|
|
Parse *pParse,
|
|
Window *pWin,
|
|
ExprList *pEList, /* Rewrite expressions in this list */
|
|
ExprList **ppSub /* IN/OUT: Sub-select expression-list */
|
|
){
|
|
Walker sWalker;
|
|
WindowRewrite sRewrite;
|
|
int rc;
|
|
|
|
memset(&sWalker, 0, sizeof(Walker));
|
|
memset(&sRewrite, 0, sizeof(WindowRewrite));
|
|
|
|
sRewrite.pSub = *ppSub;
|
|
sRewrite.pWin = pWin;
|
|
|
|
sWalker.pParse = pParse;
|
|
sWalker.xExprCallback = selectWindowRewriteExprCb;
|
|
sWalker.xSelectCallback = selectWindowRewriteSelectCb;
|
|
sWalker.u.pRewrite = &sRewrite;
|
|
|
|
rc = sqlite3WalkExprList(&sWalker, pEList);
|
|
|
|
*ppSub = sRewrite.pSub;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Append a copy of each expression in expression-list pAppend to
|
|
** expression list pList. Return a pointer to the result list.
|
|
*/
|
|
static ExprList *exprListAppendList(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pList, /* List to which to append. Might be NULL */
|
|
ExprList *pAppend /* List of values to append. Might be NULL */
|
|
){
|
|
if( pAppend ){
|
|
int i;
|
|
int nInit = pList ? pList->nExpr : 0;
|
|
for(i=0; i<pAppend->nExpr; i++){
|
|
Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0);
|
|
pList = sqlite3ExprListAppend(pParse, pList, pDup);
|
|
if( pList ) pList->a[nInit+i].sortOrder = pAppend->a[i].sortOrder;
|
|
}
|
|
}
|
|
return pList;
|
|
}
|
|
|
|
/*
|
|
** If the SELECT statement passed as the second argument does not invoke
|
|
** any SQL window functions, this function is a no-op. Otherwise, it
|
|
** rewrites the SELECT statement so that window function xStep functions
|
|
** are invoked in the correct order as described under "SELECT REWRITING"
|
|
** at the top of this file.
|
|
*/
|
|
int sqlite3WindowRewrite(Parse *pParse, Select *p){
|
|
int rc = SQLITE_OK;
|
|
if( p->pWin ){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
int i;
|
|
sqlite3 *db = pParse->db;
|
|
Select *pSub = 0; /* The subquery */
|
|
SrcList *pSrc = p->pSrc;
|
|
Expr *pWhere = p->pWhere;
|
|
ExprList *pGroupBy = p->pGroupBy;
|
|
Expr *pHaving = p->pHaving;
|
|
ExprList *pSort = 0;
|
|
|
|
ExprList *pSublist = 0; /* Expression list for sub-query */
|
|
Window *pMWin = p->pWin; /* Master window object */
|
|
Window *pWin; /* Window object iterator */
|
|
|
|
p->pSrc = 0;
|
|
p->pWhere = 0;
|
|
p->pGroupBy = 0;
|
|
p->pHaving = 0;
|
|
|
|
/* Assign a cursor number for the ephemeral table used to buffer rows.
|
|
** The OpenEphemeral instruction is coded later, after it is known how
|
|
** many columns the table will have. */
|
|
pMWin->iEphCsr = pParse->nTab++;
|
|
|
|
rc = selectWindowRewriteEList(pParse, pMWin, p->pEList, &pSublist);
|
|
if( rc ) return rc;
|
|
rc = selectWindowRewriteEList(pParse, pMWin, p->pOrderBy, &pSublist);
|
|
if( rc ) return rc;
|
|
pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
|
|
|
|
/* Create the ORDER BY clause for the sub-select. This is the concatenation
|
|
** of the window PARTITION and ORDER BY clauses. Append the same
|
|
** expressions to the sub-select expression list. They are required to
|
|
** figure out where boundaries for partitions and sets of peer rows. */
|
|
pSort = sqlite3ExprListDup(db, pMWin->pPartition, 0);
|
|
if( pMWin->pOrderBy ){
|
|
pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy);
|
|
}
|
|
pSublist = exprListAppendList(pParse, pSublist, pSort);
|
|
|
|
/* Append the arguments passed to each window function to the
|
|
** sub-select expression list. Also allocate two registers for each
|
|
** window function - one for the accumulator, another for interim
|
|
** results. */
|
|
for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
|
|
pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
|
|
pSublist = exprListAppendList(pParse, pSublist, pWin->pOwner->x.pList);
|
|
if( pWin->pFilter ){
|
|
Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
|
|
pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
|
|
}
|
|
pWin->regAccum = ++pParse->nMem;
|
|
pWin->regResult = ++pParse->nMem;
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
|
|
}
|
|
|
|
pSub = sqlite3SelectNew(
|
|
pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
|
|
);
|
|
p->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
|
|
if( p->pSrc ){
|
|
int iTab;
|
|
ExprList *pList = 0;
|
|
p->pSrc->a[0].pSelect = pSub;
|
|
sqlite3SrcListAssignCursors(pParse, p->pSrc);
|
|
if( sqlite3ExpandSubquery(pParse, &p->pSrc->a[0]) ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
pSub->selFlags |= SF_Expanded;
|
|
p->selFlags &= ~SF_Aggregate;
|
|
sqlite3SelectPrep(pParse, pSub, 0);
|
|
}
|
|
}
|
|
|
|
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, pSublist->nExpr);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Free the Window object passed as the second argument.
|
|
*/
|
|
void sqlite3WindowDelete(sqlite3 *db, Window *p){
|
|
if( p ){
|
|
sqlite3ExprDelete(db, p->pFilter);
|
|
sqlite3ExprListDelete(db, p->pPartition);
|
|
sqlite3ExprListDelete(db, p->pOrderBy);
|
|
sqlite3ExprDelete(db, p->pEnd);
|
|
sqlite3ExprDelete(db, p->pStart);
|
|
sqlite3DbFree(db, p->zName);
|
|
sqlite3DbFree(db, p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Free the linked list of Window objects starting at the second argument.
|
|
*/
|
|
void sqlite3WindowListDelete(sqlite3 *db, Window *p){
|
|
while( p ){
|
|
Window *pNext = p->pNextWin;
|
|
sqlite3WindowDelete(db, p);
|
|
p = pNext;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate and return a new Window object.
|
|
*/
|
|
Window *sqlite3WindowAlloc(
|
|
Parse *pParse,
|
|
int eType,
|
|
int eStart, Expr *pStart,
|
|
int eEnd, Expr *pEnd
|
|
){
|
|
Window *pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
|
|
|
|
if( pWin ){
|
|
pWin->eType = eType;
|
|
pWin->eStart = eStart;
|
|
pWin->eEnd = eEnd;
|
|
pWin->pEnd = pEnd;
|
|
pWin->pStart = pStart;
|
|
}else{
|
|
sqlite3ExprDelete(pParse->db, pEnd);
|
|
sqlite3ExprDelete(pParse->db, pStart);
|
|
}
|
|
|
|
return pWin;
|
|
}
|
|
|
|
/*
|
|
** Attach window object pWin to expression p.
|
|
*/
|
|
void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
|
|
if( p ){
|
|
p->pWin = pWin;
|
|
if( pWin ) pWin->pOwner = p;
|
|
}else{
|
|
sqlite3WindowDelete(pParse->db, pWin);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return 0 if the two window objects are identical, or non-zero otherwise.
|
|
*/
|
|
int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2){
|
|
if( p1->eType!=p2->eType ) return 1;
|
|
if( p1->eStart!=p2->eStart ) return 1;
|
|
if( p1->eEnd!=p2->eEnd ) return 1;
|
|
if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
|
|
if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
|
|
if( sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1) ) return 1;
|
|
if( sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1) ) return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void windowAggInit(Parse *pParse, Window *pMWin){
|
|
Window *pWin;
|
|
for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
FuncDef *p = pWin->pFunc;
|
|
if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
|
|
ExprList *pList = pWin->pOwner->x.pList;
|
|
KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
|
|
pWin->csrApp = pParse->nTab++;
|
|
pWin->regApp = pParse->nMem+1;
|
|
pParse->nMem += 3;
|
|
if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
|
|
assert( pKeyInfo->aSortOrder[0]==0 );
|
|
pKeyInfo->aSortOrder[0] = 1;
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
|
|
sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
|
|
}
|
|
else if( p->xSFunc==nth_valueStepFunc || p->xSFunc==first_valueStepFunc ){
|
|
/* Allocate two registers at pWin->regApp. These will be used to
|
|
** store the start and end index of the current frame. */
|
|
assert( pMWin->iEphCsr );
|
|
pWin->regApp = pParse->nMem+1;
|
|
pWin->csrApp = pParse->nTab++;
|
|
pParse->nMem += 2;
|
|
sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
|
|
}
|
|
else if( p->xSFunc==leadStepFunc || p->xSFunc==lagStepFunc ){
|
|
assert( pMWin->iEphCsr );
|
|
pWin->csrApp = pParse->nTab++;
|
|
sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void sqlite3WindowCodeInit(Parse *pParse, Window *pWin){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
int nPart = (pWin->pPartition ? pWin->pPartition->nExpr : 0);
|
|
nPart += (pWin->pOrderBy ? pWin->pOrderBy->nExpr : 0);
|
|
if( nPart ){
|
|
pWin->regPart = pParse->nMem+1;
|
|
pParse->nMem += nPart;
|
|
sqlite3VdbeAddOp3(v, OP_Null, 0, pWin->regPart, pWin->regPart+nPart-1);
|
|
}
|
|
windowAggInit(pParse, pWin);
|
|
}
|
|
|
|
static void windowCheckFrameValue(Parse *pParse, int reg, int bEnd){
|
|
static const char *azErr[] = {
|
|
"frame starting offset must be a non-negative integer",
|
|
"frame ending offset must be a non-negative integer"
|
|
};
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
int regZero = ++pParse->nMem;
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
|
|
sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
|
|
sqlite3VdbeAddOp3(v, OP_Ge, regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
|
|
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
|
|
sqlite3VdbeAppendP4(v, (void*)azErr[bEnd], P4_STATIC);
|
|
}
|
|
|
|
static int windowArgCount(Window *pWin){
|
|
ExprList *pList = pWin->pOwner->x.pList;
|
|
return (pList ? pList->nExpr : 0);
|
|
}
|
|
|
|
/*
|
|
** Generate VM code to invoke either xStep() (if bInverse is 0) or
|
|
** xInverse (if bInverse is non-zero) for each window function in the
|
|
** linked list starting at pMWin.
|
|
*/
|
|
static void windowAggStep(
|
|
Parse *pParse,
|
|
Window *pMWin,
|
|
int csr,
|
|
int bInverse,
|
|
int reg,
|
|
int regPartSize /* Register containing size of partition */
|
|
){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
Window *pWin;
|
|
for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
|
|
int flags = pWin->pFunc->funcFlags;
|
|
int regArg;
|
|
int nArg = windowArgCount(pWin);
|
|
|
|
if( csr>=0 ){
|
|
int i;
|
|
for(i=0; i<nArg; i++){
|
|
sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
|
|
}
|
|
regArg = reg;
|
|
if( flags & SQLITE_FUNC_WINDOW_SIZE ){
|
|
if( nArg==0 ){
|
|
regArg = regPartSize;
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regPartSize, reg+nArg);
|
|
}
|
|
nArg++;
|
|
}
|
|
}else{
|
|
assert( !(flags & SQLITE_FUNC_WINDOW_SIZE) );
|
|
regArg = reg + pWin->iArgCol;
|
|
}
|
|
|
|
if( (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
|
|
&& pWin->eStart!=TK_UNBOUNDED
|
|
){
|
|
if( bInverse==0 ){
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
|
|
}else{
|
|
sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
|
|
sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
|
|
sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
|
|
}
|
|
}else if( pWin->regApp ){
|
|
assert( pWin->pFunc->xSFunc==nth_valueStepFunc
|
|
|| pWin->pFunc->xSFunc==first_valueStepFunc
|
|
);
|
|
assert( bInverse==0 || bInverse==1 );
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
|
|
}else if( pWin->pFunc->xSFunc==leadStepFunc
|
|
|| pWin->pFunc->xSFunc==lagStepFunc
|
|
){
|
|
/* no-op */
|
|
}else{
|
|
int addrIf = 0;
|
|
if( pWin->pFilter ){
|
|
int regTmp;
|
|
assert( nArg==pWin->pOwner->x.pList->nExpr );
|
|
if( csr>0 ){
|
|
regTmp = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
|
|
}else{
|
|
regTmp = regArg + nArg;
|
|
}
|
|
addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
|
|
if( csr>0 ){
|
|
sqlite3ReleaseTempReg(pParse, regTmp);
|
|
}
|
|
}
|
|
if( pWin->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
|
|
CollSeq *pColl;
|
|
pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
|
|
sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_AggStep0, bInverse, regArg, pWin->regAccum);
|
|
sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
|
|
sqlite3VdbeChangeP5(v, (u8)nArg);
|
|
if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void windowAggFinal(Parse *pParse, Window *pMWin, int bFinal){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
Window *pWin;
|
|
|
|
for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
|
|
if( (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
|
|
&& pWin->eStart!=TK_UNBOUNDED
|
|
){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
|
|
sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
|
|
sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
|
|
sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
|
|
if( bFinal ){
|
|
sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
|
|
}
|
|
}else if( pWin->regApp ){
|
|
}else{
|
|
if( bFinal==0 ){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, windowArgCount(pWin));
|
|
sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
|
|
if( bFinal ){
|
|
sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
|
|
}else{
|
|
sqlite3VdbeChangeP3(v, -1, pWin->regResult);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void windowPartitionCache(
|
|
Parse *pParse,
|
|
Select *p,
|
|
WhereInfo *pWInfo,
|
|
int regFlushPart,
|
|
int lblFlushPart,
|
|
int *pRegSize
|
|
){
|
|
Window *pMWin = p->pWin;
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
Window *pWin;
|
|
int iSubCsr = p->pSrc->a[0].iCursor;
|
|
int nSub = p->pSrc->a[0].pTab->nCol;
|
|
int k;
|
|
|
|
int reg = pParse->nMem+1;
|
|
int regRecord = reg+nSub;
|
|
int regRowid = regRecord+1;
|
|
|
|
*pRegSize = regRowid;
|
|
pParse->nMem += nSub + 2;
|
|
|
|
/* Martial the row returned by the sub-select into an array of
|
|
** registers. */
|
|
for(k=0; k<nSub; k++){
|
|
sqlite3VdbeAddOp3(v, OP_Column, iSubCsr, k, reg+k);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, reg, nSub, regRecord);
|
|
|
|
/* Check if this is the start of a new partition. If so, call the
|
|
** flush_partition sub-routine. */
|
|
if( pMWin->pPartition ){
|
|
int addr;
|
|
ExprList *pPart = pMWin->pPartition;
|
|
int nPart = (pPart ? pPart->nExpr : 0);
|
|
int regNewPart = reg + pMWin->nBufferCol;
|
|
KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
|
|
|
|
addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart,nPart);
|
|
sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
|
|
sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
|
|
sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, regFlushPart, lblFlushPart);
|
|
}
|
|
|
|
/* Buffer the current row in the ephemeral table. */
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, pMWin->iEphCsr, regRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, pMWin->iEphCsr, regRecord, regRowid);
|
|
|
|
/* End of the input loop */
|
|
sqlite3WhereEnd(pWInfo);
|
|
|
|
/* Invoke "flush_partition" to deal with the final (or only) partition */
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, regFlushPart, lblFlushPart);
|
|
}
|
|
|
|
static void windowReturnOneRow(
|
|
Parse *pParse,
|
|
Window *pMWin,
|
|
int regGosub,
|
|
int addrGosub
|
|
){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
Window *pWin;
|
|
for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
|
|
FuncDef *pFunc = pWin->pFunc;
|
|
if( pFunc->xSFunc==nth_valueStepFunc
|
|
|| pFunc->xSFunc==first_valueStepFunc
|
|
){
|
|
int csr = pWin->csrApp;
|
|
int lbl = sqlite3VdbeMakeLabel(v);
|
|
int tmpReg = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
|
|
|
|
if( pFunc->xSFunc==nth_valueStepFunc ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, pWin->iEphCsr, pWin->iArgCol+1, tmpReg);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
|
|
sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
|
|
sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
|
|
sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
|
|
sqlite3VdbeResolveLabel(v, lbl);
|
|
sqlite3ReleaseTempReg(pParse, tmpReg);
|
|
}
|
|
else if( pFunc->xSFunc==leadStepFunc || pFunc->xSFunc==lagStepFunc ){
|
|
int nArg = pWin->pOwner->x.pList->nExpr;
|
|
int iEph = pWin->iEphCsr;
|
|
int csr = pWin->csrApp;
|
|
int lbl = sqlite3VdbeMakeLabel(v);
|
|
int tmpReg = sqlite3GetTempReg(pParse);
|
|
|
|
if( nArg<3 ){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
|
|
}else{
|
|
sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+2, pWin->regResult);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
|
|
if( nArg<2 ){
|
|
int val = (pFunc->xSFunc==leadStepFunc ? 1 : -1);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
|
|
}else{
|
|
int op = (pFunc->xSFunc==leadStepFunc ? OP_Add : OP_Subtract);
|
|
int tmpReg2 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
|
|
sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
|
|
sqlite3ReleaseTempReg(pParse, tmpReg2);
|
|
}
|
|
|
|
sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
|
|
sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
|
|
sqlite3VdbeResolveLabel(v, lbl);
|
|
sqlite3ReleaseTempReg(pParse, tmpReg);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, regGosub, addrGosub);
|
|
}
|
|
|
|
static void windowReturnRows(
|
|
Parse *pParse,
|
|
Window *pMWin,
|
|
int regCtr,
|
|
int bFinal,
|
|
int regGosub,
|
|
int addrGosub,
|
|
int regInvArg,
|
|
int regInvSize
|
|
){
|
|
int addr;
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
windowAggFinal(pParse, pMWin, 0);
|
|
addr = sqlite3VdbeAddOp3(v, OP_IfPos, regCtr, sqlite3VdbeCurrentAddr(v)+2 ,1);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
|
windowReturnOneRow(pParse, pMWin, regGosub, addrGosub);
|
|
if( regInvArg ){
|
|
windowAggStep(pParse, pMWin, pMWin->iEphCsr, 1, regInvArg, regInvSize);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, addr);
|
|
sqlite3VdbeJumpHere(v, addr+1); /* The OP_Goto */
|
|
}
|
|
|
|
static int windowInitAccum(Parse *pParse, Window *pMWin){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
int regArg;
|
|
int nArg = 0;
|
|
Window *pWin;
|
|
for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
|
|
nArg = MAX(nArg, windowArgCount(pWin));
|
|
if( pWin->pFunc->xSFunc==nth_valueStepFunc
|
|
|| pWin->pFunc->xSFunc==first_valueStepFunc
|
|
){
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
|
|
}
|
|
}
|
|
regArg = pParse->nMem+1;
|
|
pParse->nMem += nArg;
|
|
return regArg;
|
|
}
|
|
|
|
|
|
/*
|
|
** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
|
|
** ----------------------------------------------------
|
|
**
|
|
** Pseudo-code for the implementation of this window frame type is as
|
|
** follows. sqlite3WhereBegin() has already been called to generate the
|
|
** top of the main loop when this function is called.
|
|
**
|
|
** Each time the sub-routine at addrGosub is invoked, a single output
|
|
** row is generated based on the current row indicated by Window.iEphCsr.
|
|
**
|
|
** ...
|
|
** if( new partition ){
|
|
** Gosub flush_partition
|
|
** }
|
|
** Insert (record in eph-table)
|
|
** sqlite3WhereEnd()
|
|
** Gosub flush_partition
|
|
**
|
|
** flush_partition:
|
|
** Once {
|
|
** OpenDup (iEphCsr -> csrStart)
|
|
** OpenDup (iEphCsr -> csrEnd)
|
|
** }
|
|
** regStart = <expr1> // PRECEDING expression
|
|
** regEnd = <expr2> // FOLLOWING expression
|
|
** if( regStart<0 || regEnd<0 ){ error! }
|
|
** Rewind (csr,csrStart,csrEnd) // if EOF goto flush_partition_done
|
|
** Next(csrEnd) // if EOF skip Aggstep
|
|
** Aggstep (csrEnd)
|
|
** if( (regEnd--)<=0 ){
|
|
** AggFinal (xValue)
|
|
** Gosub addrGosub
|
|
** Next(csr) // if EOF goto flush_partition_done
|
|
** if( (regStart--)<=0 ){
|
|
** AggStep (csrStart, xInverse)
|
|
** Next(csrStart)
|
|
** }
|
|
** }
|
|
** flush_partition_done:
|
|
** ResetSorter (csr)
|
|
** Return
|
|
**
|
|
** ROWS BETWEEN <expr> PRECEDING AND CURRENT ROW
|
|
** ROWS BETWEEN CURRENT ROW AND <expr> FOLLOWING
|
|
** ROWS BETWEEN UNBOUNDED PRECEDING AND <expr> FOLLOWING
|
|
**
|
|
** These are similar to the above. For "CURRENT ROW", intialize the
|
|
** register to 0. For "UNBOUNDED PRECEDING" to infinity.
|
|
**
|
|
** ROWS BETWEEN <expr> PRECEDING AND UNBOUNDED FOLLOWING
|
|
** ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
|
|
**
|
|
** Rewind (csr,csrStart,csrEnd) // if EOF goto flush_partition_done
|
|
** while( 1 ){
|
|
** Next(csrEnd) // Exit while(1) at EOF
|
|
** Aggstep (csrEnd)
|
|
** }
|
|
** while( 1 ){
|
|
** AggFinal (xValue)
|
|
** Gosub addrGosub
|
|
** Next(csr) // if EOF goto flush_partition_done
|
|
** if( (regStart--)<=0 ){
|
|
** AggStep (csrStart, xInverse)
|
|
** Next(csrStart)
|
|
** }
|
|
** }
|
|
**
|
|
** For the "CURRENT ROW AND UNBOUNDED FOLLOWING" case, the final if()
|
|
** condition is always true (as if regStart were initialized to 0).
|
|
**
|
|
** RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
|
|
**
|
|
** This is the only RANGE case handled by this routine. It modifies the
|
|
** second while( 1 ) loop in "ROWS BETWEEN CURRENT ... UNBOUNDED..." to
|
|
** be:
|
|
**
|
|
** while( 1 ){
|
|
** AggFinal (xValue)
|
|
** while( 1 ){
|
|
** regPeer++
|
|
** Gosub addrGosub
|
|
** Next(csr) // if EOF goto flush_partition_done
|
|
** if( new peer ) break;
|
|
** }
|
|
** while( (regPeer--)>0 ){
|
|
** AggStep (csrStart, xInverse)
|
|
** Next(csrStart)
|
|
** }
|
|
** }
|
|
**
|
|
** ROWS BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING
|
|
**
|
|
** regEnd = regEnd - regStart
|
|
** Rewind (csr,csrStart,csrEnd) // if EOF goto flush_partition_done
|
|
** Aggstep (csrEnd)
|
|
** Next(csrEnd) // if EOF fall-through
|
|
** if( (regEnd--)<=0 ){
|
|
** if( (regStart--)<=0 ){
|
|
** AggFinal (xValue)
|
|
** Gosub addrGosub
|
|
** Next(csr) // if EOF goto flush_partition_done
|
|
** }
|
|
** AggStep (csrStart, xInverse)
|
|
** Next (csrStart)
|
|
** }
|
|
**
|
|
** ROWS BETWEEN <expr> PRECEDING AND <expr> PRECEDING
|
|
**
|
|
** Replace the bit after "Rewind" in the above with:
|
|
**
|
|
** if( (regEnd--)<=0 ){
|
|
** AggStep (csrEnd)
|
|
** Next (csrEnd)
|
|
** }
|
|
** AggFinal (xValue)
|
|
** Gosub addrGosub
|
|
** Next(csr) // if EOF goto flush_partition_done
|
|
** if( (regStart--)<=0 ){
|
|
** AggStep (csr2, xInverse)
|
|
** Next (csr2)
|
|
** }
|
|
**
|
|
*/
|
|
static void windowCodeRowExprStep(
|
|
Parse *pParse,
|
|
Select *p,
|
|
WhereInfo *pWInfo,
|
|
int regGosub,
|
|
int addrGosub
|
|
){
|
|
Window *pMWin = p->pWin;
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
Window *pWin;
|
|
int k;
|
|
int nSub = p->pSrc->a[0].pTab->nCol;
|
|
int regFlushPart; /* Register for "Gosub flush_partition" */
|
|
int lblFlushPart; /* Label for "Gosub flush_partition" */
|
|
int lblFlushDone; /* Label for "Gosub flush_partition_done" */
|
|
|
|
int regArg;
|
|
int nArg;
|
|
int addr;
|
|
int csrStart = pParse->nTab++;
|
|
int csrEnd = pParse->nTab++;
|
|
int regStart; /* Value of <expr> PRECEDING */
|
|
int regEnd; /* Value of <expr> FOLLOWING */
|
|
int addrNext;
|
|
int addrGoto;
|
|
int addrTop;
|
|
int addrIfPos1;
|
|
int addrIfPos2;
|
|
|
|
int regPeer = 0; /* Number of peers in current group */
|
|
int regPeerVal = 0; /* Array of values identifying peer group */
|
|
int iPeer = 0; /* Column offset in eph-table of peer vals */
|
|
int nPeerVal; /* Number of peer values */
|
|
int bRange = 0;
|
|
int regSize = 0;
|
|
|
|
assert( pMWin->eStart==TK_PRECEDING
|
|
|| pMWin->eStart==TK_CURRENT
|
|
|| pMWin->eStart==TK_FOLLOWING
|
|
|| pMWin->eStart==TK_UNBOUNDED
|
|
);
|
|
assert( pMWin->eEnd==TK_FOLLOWING
|
|
|| pMWin->eEnd==TK_CURRENT
|
|
|| pMWin->eEnd==TK_UNBOUNDED
|
|
|| pMWin->eEnd==TK_PRECEDING
|
|
);
|
|
|
|
if( pMWin->eType==TK_RANGE
|
|
&& pMWin->eStart==TK_CURRENT
|
|
&& pMWin->eEnd==TK_UNBOUNDED
|
|
){
|
|
bRange = 1;
|
|
}
|
|
|
|
/* Allocate register and label for the "flush_partition" sub-routine. */
|
|
regFlushPart = ++pParse->nMem;
|
|
lblFlushPart = sqlite3VdbeMakeLabel(v);
|
|
lblFlushDone = sqlite3VdbeMakeLabel(v);
|
|
|
|
regStart = ++pParse->nMem;
|
|
regEnd = ++pParse->nMem;
|
|
|
|
windowPartitionCache(pParse, p, pWInfo, regFlushPart, lblFlushPart, ®Size);
|
|
|
|
addrGoto = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
|
|
/* Start of "flush_partition" */
|
|
sqlite3VdbeResolveLabel(v, lblFlushPart);
|
|
sqlite3VdbeAddOp2(v, OP_Once, 0, sqlite3VdbeCurrentAddr(v)+3);
|
|
sqlite3VdbeAddOp2(v, OP_OpenDup, csrStart, pMWin->iEphCsr);
|
|
sqlite3VdbeAddOp2(v, OP_OpenDup, csrEnd, pMWin->iEphCsr);
|
|
|
|
/* If either regStart or regEnd are not non-negative integers, throw
|
|
** an exception. */
|
|
if( pMWin->pStart ){
|
|
sqlite3ExprCode(pParse, pMWin->pStart, regStart);
|
|
windowCheckFrameValue(pParse, regStart, 0);
|
|
}
|
|
if( pMWin->pEnd ){
|
|
sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
|
|
windowCheckFrameValue(pParse, regEnd, 1);
|
|
}
|
|
|
|
/* If this is "ROWS <expr1> FOLLOWING AND ROWS <expr2> FOLLOWING", do:
|
|
**
|
|
** if( regEnd<regStart ){
|
|
** // The frame always consists of 0 rows
|
|
** regStart = regSize;
|
|
** }
|
|
** regEnd = regEnd - regStart;
|
|
*/
|
|
if( pMWin->pEnd && pMWin->pStart && pMWin->eStart==TK_FOLLOWING ){
|
|
assert( pMWin->eEnd==TK_FOLLOWING );
|
|
sqlite3VdbeAddOp3(v, OP_Ge, regStart, sqlite3VdbeCurrentAddr(v)+2, regEnd);
|
|
sqlite3VdbeAddOp2(v, OP_Copy, regSize, regStart);
|
|
sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regEnd);
|
|
}
|
|
|
|
if( pMWin->pEnd && pMWin->pStart && pMWin->eEnd==TK_PRECEDING ){
|
|
assert( pMWin->eStart==TK_PRECEDING );
|
|
sqlite3VdbeAddOp3(v, OP_Le, regStart, sqlite3VdbeCurrentAddr(v)+3, regEnd);
|
|
sqlite3VdbeAddOp2(v, OP_Copy, regSize, regStart);
|
|
sqlite3VdbeAddOp2(v, OP_Copy, regSize, regEnd);
|
|
}
|
|
|
|
/* Initialize the accumulator register for each window function to NULL */
|
|
regArg = windowInitAccum(pParse, pMWin);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr, lblFlushDone);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, csrStart, lblFlushDone);
|
|
sqlite3VdbeChangeP5(v, 1);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, csrEnd, lblFlushDone);
|
|
sqlite3VdbeChangeP5(v, 1);
|
|
|
|
/* Invoke AggStep function for each window function using the row that
|
|
** csrEnd currently points to. Or, if csrEnd is already at EOF,
|
|
** do nothing. */
|
|
addrTop = sqlite3VdbeCurrentAddr(v);
|
|
if( pMWin->eEnd==TK_PRECEDING ){
|
|
addrIfPos1 = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0 , 1);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Next, csrEnd, sqlite3VdbeCurrentAddr(v)+2);
|
|
addr = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
windowAggStep(pParse, pMWin, csrEnd, 0, regArg, regSize);
|
|
if( pMWin->eEnd==TK_UNBOUNDED ){
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
addrTop = sqlite3VdbeCurrentAddr(v);
|
|
}else{
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
if( pMWin->eEnd==TK_PRECEDING ){
|
|
sqlite3VdbeJumpHere(v, addrIfPos1);
|
|
}
|
|
}
|
|
|
|
if( pMWin->eEnd==TK_FOLLOWING ){
|
|
addrIfPos1 = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0 , 1);
|
|
}
|
|
if( pMWin->eStart==TK_FOLLOWING ){
|
|
addrIfPos2 = sqlite3VdbeAddOp3(v, OP_IfPos, regStart, 0 , 1);
|
|
}
|
|
if( bRange ){
|
|
assert( pMWin->eStart==TK_CURRENT && pMWin->pOrderBy );
|
|
regPeer = ++pParse->nMem;
|
|
regPeerVal = pParse->nMem+1;
|
|
iPeer = pMWin->nBufferCol + (pMWin->pPartition?pMWin->pPartition->nExpr:0);
|
|
nPeerVal = pMWin->pOrderBy->nExpr;
|
|
pParse->nMem += (2 * nPeerVal);
|
|
for(k=0; k<nPeerVal; k++){
|
|
sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, iPeer+k, regPeerVal+k);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regPeer);
|
|
}
|
|
|
|
windowAggFinal(pParse, pMWin, 0);
|
|
if( bRange ){
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regPeer, 1);
|
|
}
|
|
windowReturnOneRow(pParse, pMWin, regGosub, addrGosub);
|
|
sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, sqlite3VdbeCurrentAddr(v)+2);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, lblFlushDone);
|
|
if( bRange ){
|
|
KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy,0,0);
|
|
int addrJump = sqlite3VdbeCurrentAddr(v)-4;
|
|
for(k=0; k<nPeerVal; k++){
|
|
int iOut = regPeerVal + nPeerVal + k;
|
|
sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, iPeer+k, iOut);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_Compare, regPeerVal, regPeerVal+nPeerVal, nPeerVal);
|
|
sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
|
|
addr = sqlite3VdbeCurrentAddr(v)+1;
|
|
sqlite3VdbeAddOp3(v, OP_Jump, addr, addrJump, addr);
|
|
}
|
|
if( pMWin->eStart==TK_FOLLOWING ){
|
|
sqlite3VdbeJumpHere(v, addrIfPos2);
|
|
}
|
|
|
|
if( pMWin->eStart==TK_CURRENT
|
|
|| pMWin->eStart==TK_PRECEDING
|
|
|| pMWin->eStart==TK_FOLLOWING
|
|
){
|
|
int addrJumpHere = 0;
|
|
if( pMWin->eStart==TK_PRECEDING ){
|
|
addrJumpHere = sqlite3VdbeAddOp3(v, OP_IfPos, regStart, 0 , 1);
|
|
}
|
|
if( bRange ){
|
|
sqlite3VdbeAddOp3(v, OP_IfPos, regPeer, sqlite3VdbeCurrentAddr(v)+2, 1);
|
|
addrJumpHere = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Next, csrStart, sqlite3VdbeCurrentAddr(v)+1);
|
|
windowAggStep(pParse, pMWin, csrStart, 1, regArg, regSize);
|
|
if( bRange ){
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrJumpHere-1);
|
|
}
|
|
if( addrJumpHere ){
|
|
sqlite3VdbeJumpHere(v, addrJumpHere);
|
|
}
|
|
}
|
|
if( pMWin->eEnd==TK_FOLLOWING ){
|
|
sqlite3VdbeJumpHere(v, addrIfPos1);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
|
|
|
|
/* flush_partition_done: */
|
|
sqlite3VdbeResolveLabel(v, lblFlushDone);
|
|
sqlite3VdbeAddOp1(v, OP_ResetSorter, pMWin->iEphCsr);
|
|
sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
|
|
|
|
/* Jump to here to skip over flush_partition */
|
|
sqlite3VdbeJumpHere(v, addrGoto);
|
|
}
|
|
|
|
/*
|
|
** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
|
|
**
|
|
** flush_partition:
|
|
** Once {
|
|
** OpenDup (iEphCsr -> csrLead)
|
|
** }
|
|
** Integer ctr 0
|
|
** foreach row (csrLead){
|
|
** if( new peer ){
|
|
** AggFinal (xValue)
|
|
** for(i=0; i<ctr; i++){
|
|
** Gosub addrGosub
|
|
** Next iEphCsr
|
|
** }
|
|
** Integer ctr 0
|
|
** }
|
|
** AggStep (csrLead)
|
|
** Incr ctr
|
|
** }
|
|
**
|
|
** AggFinal (xFinalize)
|
|
** for(i=0; i<ctr; i++){
|
|
** Gosub addrGosub
|
|
** Next iEphCsr
|
|
** }
|
|
**
|
|
** ResetSorter (csr)
|
|
** Return
|
|
**
|
|
** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
|
|
** RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
|
|
** RANGE BETWEEN CURRENT ROW AND CURRENT ROW
|
|
**
|
|
** TODO.
|
|
*/
|
|
static void windowCodeCacheStep(
|
|
Parse *pParse,
|
|
Select *p,
|
|
WhereInfo *pWInfo,
|
|
int regGosub,
|
|
int addrGosub
|
|
){
|
|
Window *pMWin = p->pWin;
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
Window *pWin;
|
|
int k;
|
|
int addr;
|
|
ExprList *pPart = pMWin->pPartition;
|
|
ExprList *pOrderBy = pMWin->pOrderBy;
|
|
int nPeer = pOrderBy->nExpr;
|
|
int regNewPeer;
|
|
|
|
int addrGoto; /* Address of Goto used to jump flush_par.. */
|
|
int addrRewind; /* Address of Rewind that starts loop */
|
|
int regFlushPart;
|
|
int lblFlushPart;
|
|
int csrLead;
|
|
int regCtr;
|
|
int regArg; /* Register array to martial function args */
|
|
int regSize;
|
|
int nArg;
|
|
|
|
assert( (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_CURRENT)
|
|
|| (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_UNBOUNDED)
|
|
|| (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_CURRENT)
|
|
);
|
|
|
|
regNewPeer = pParse->nMem+1;
|
|
pParse->nMem += nPeer;
|
|
|
|
/* Allocate register and label for the "flush_partition" sub-routine. */
|
|
regFlushPart = ++pParse->nMem;
|
|
lblFlushPart = sqlite3VdbeMakeLabel(v);
|
|
|
|
csrLead = pParse->nTab++;
|
|
regCtr = ++pParse->nMem;
|
|
|
|
windowPartitionCache(pParse, p, pWInfo, regFlushPart, lblFlushPart, ®Size);
|
|
addrGoto = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
|
|
/* Start of "flush_partition" */
|
|
sqlite3VdbeResolveLabel(v, lblFlushPart);
|
|
sqlite3VdbeAddOp2(v, OP_Once, 0, sqlite3VdbeCurrentAddr(v)+2);
|
|
sqlite3VdbeAddOp2(v, OP_OpenDup, csrLead, pMWin->iEphCsr);
|
|
|
|
/* Initialize the accumulator register for each window function to NULL */
|
|
regArg = windowInitAccum(pParse, pMWin);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regCtr);
|
|
addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, csrLead);
|
|
sqlite3VdbeAddOp1(v, OP_Rewind, pMWin->iEphCsr);
|
|
|
|
if( pOrderBy && pMWin->eEnd==TK_CURRENT ){
|
|
int bCurrent = (pMWin->eEnd==TK_CURRENT && pMWin->eStart==TK_CURRENT);
|
|
int addrJump = 0; /* Address of OP_Jump below */
|
|
if( pMWin->eType==TK_RANGE ){
|
|
int iOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
|
|
int regPeer = pMWin->regPart + (pPart ? pPart->nExpr : 0);
|
|
KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
|
|
for(k=0; k<nPeer; k++){
|
|
sqlite3VdbeAddOp3(v, OP_Column, csrLead, iOff+k, regNewPeer+k);
|
|
}
|
|
addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPeer, regPeer, nPeer);
|
|
sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
|
|
addrJump = sqlite3VdbeAddOp3(v, OP_Jump, addr+2, 0, addr+2);
|
|
sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, nPeer-1);
|
|
}
|
|
|
|
windowReturnRows(pParse, pMWin, regCtr, 0, regGosub, addrGosub,
|
|
(bCurrent ? regArg : 0), (bCurrent ? regSize : 0)
|
|
);
|
|
if( addrJump ) sqlite3VdbeJumpHere(v, addrJump);
|
|
}
|
|
|
|
windowAggStep(pParse, pMWin, csrLead, 0, regArg, regSize);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regCtr, 1);
|
|
sqlite3VdbeAddOp2(v, OP_Next, csrLead, addrRewind+2);
|
|
|
|
windowReturnRows(pParse, pMWin, regCtr, 1, regGosub, addrGosub, 0, 0);
|
|
|
|
sqlite3VdbeJumpHere(v, addrRewind);
|
|
sqlite3VdbeJumpHere(v, addrRewind+1);
|
|
sqlite3VdbeAddOp1(v, OP_ResetSorter, pMWin->iEphCsr);
|
|
sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
|
|
|
|
/* Jump to here to skip over flush_partition */
|
|
sqlite3VdbeJumpHere(v, addrGoto);
|
|
}
|
|
|
|
|
|
/*
|
|
** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
|
|
**
|
|
** ...
|
|
** if( new partition ){
|
|
** AggFinal (xFinalize)
|
|
** Gosub addrGosub
|
|
** ResetSorter eph-table
|
|
** }
|
|
** else if( new peer ){
|
|
** AggFinal (xValue)
|
|
** Gosub addrGosub
|
|
** ResetSorter eph-table
|
|
** }
|
|
** AggStep
|
|
** Insert (record into eph-table)
|
|
** sqlite3WhereEnd()
|
|
** AggFinal (xFinalize)
|
|
** Gosub addrGosub
|
|
**
|
|
** RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
|
|
**
|
|
** As above, except take no action for a "new peer". Invoke
|
|
** the sub-routine once only for each partition.
|
|
**
|
|
** RANGE BETWEEN CURRENT ROW AND CURRENT ROW
|
|
**
|
|
** As above, except that the "new peer" condition is handled in the
|
|
** same way as "new partition" (so there is no "else if" block).
|
|
**
|
|
** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
|
|
**
|
|
** As above, except assume every row is a "new peer".
|
|
*/
|
|
static void windowCodeDefaultStep(
|
|
Parse *pParse,
|
|
Select *p,
|
|
WhereInfo *pWInfo,
|
|
int regGosub,
|
|
int addrGosub
|
|
){
|
|
Window *pMWin = p->pWin;
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
Window *pWin;
|
|
int k;
|
|
int iSubCsr = p->pSrc->a[0].iCursor;
|
|
int nSub = p->pSrc->a[0].pTab->nCol;
|
|
int reg = pParse->nMem+1;
|
|
int regRecord = reg+nSub;
|
|
int regRowid = regRecord+1;
|
|
int addr;
|
|
ExprList *pPart = pMWin->pPartition;
|
|
ExprList *pOrderBy = pMWin->pOrderBy;
|
|
|
|
assert( pMWin->eType==TK_RANGE
|
|
|| (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_CURRENT)
|
|
);
|
|
|
|
assert( (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_CURRENT)
|
|
|| (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_UNBOUNDED)
|
|
|| (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_CURRENT)
|
|
|| (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_UNBOUNDED && !pOrderBy)
|
|
);
|
|
|
|
if( pMWin->eEnd==TK_UNBOUNDED ){
|
|
pOrderBy = 0;
|
|
}
|
|
|
|
pParse->nMem += nSub + 2;
|
|
|
|
/* Martial the row returned by the sub-select into an array of
|
|
** registers. */
|
|
for(k=0; k<nSub; k++){
|
|
sqlite3VdbeAddOp3(v, OP_Column, iSubCsr, k, reg+k);
|
|
}
|
|
|
|
/* Check if this is the start of a new partition or peer group. */
|
|
if( pPart || pOrderBy ){
|
|
int nPart = (pPart ? pPart->nExpr : 0);
|
|
int addrGoto = 0;
|
|
int addrJump = 0;
|
|
int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
|
|
|
|
if( pPart ){
|
|
int regNewPart = reg + pMWin->nBufferCol;
|
|
KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
|
|
addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart,nPart);
|
|
sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
|
|
addrJump = sqlite3VdbeAddOp3(v, OP_Jump, addr+2, 0, addr+2);
|
|
windowAggFinal(pParse, pMWin, 1);
|
|
if( pOrderBy ){
|
|
addrGoto = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
}
|
|
}
|
|
|
|
if( pOrderBy ){
|
|
int regNewPeer = reg + pMWin->nBufferCol + nPart;
|
|
int regPeer = pMWin->regPart + nPart;
|
|
|
|
if( addrJump ) sqlite3VdbeJumpHere(v, addrJump);
|
|
if( pMWin->eType==TK_RANGE ){
|
|
KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
|
|
addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPeer, regPeer, nPeer);
|
|
sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
|
|
addrJump = sqlite3VdbeAddOp3(v, OP_Jump, addr+2, 0, addr+2);
|
|
}else{
|
|
addrJump = 0;
|
|
}
|
|
windowAggFinal(pParse, pMWin, pMWin->eStart==TK_CURRENT);
|
|
if( addrGoto ) sqlite3VdbeJumpHere(v, addrGoto);
|
|
}
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr,sqlite3VdbeCurrentAddr(v)+3);
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, regGosub, addrGosub);
|
|
sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, sqlite3VdbeCurrentAddr(v)-1);
|
|
|
|
sqlite3VdbeAddOp1(v, OP_ResetSorter, pMWin->iEphCsr);
|
|
sqlite3VdbeAddOp3(
|
|
v, OP_Copy, reg+pMWin->nBufferCol, pMWin->regPart, nPart+nPeer-1
|
|
);
|
|
|
|
if( addrJump ) sqlite3VdbeJumpHere(v, addrJump);
|
|
}
|
|
|
|
/* Invoke step function for window functions */
|
|
windowAggStep(pParse, pMWin, -1, 0, reg, 0);
|
|
|
|
/* Buffer the current row in the ephemeral table. */
|
|
if( pMWin->nBufferCol>0 ){
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, reg, pMWin->nBufferCol, regRecord);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Blob, 0, regRecord);
|
|
sqlite3VdbeAppendP4(v, (void*)"", 0);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, pMWin->iEphCsr, regRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, pMWin->iEphCsr, regRecord, regRowid);
|
|
|
|
/* End the database scan loop. */
|
|
sqlite3WhereEnd(pWInfo);
|
|
|
|
windowAggFinal(pParse, pMWin, 1);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr,sqlite3VdbeCurrentAddr(v)+3);
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, regGosub, addrGosub);
|
|
sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, sqlite3VdbeCurrentAddr(v)-1);
|
|
}
|
|
|
|
Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
|
|
Window *pNew = 0;
|
|
if( p ){
|
|
pNew = sqlite3DbMallocZero(db, sizeof(Window));
|
|
if( pNew ){
|
|
pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
|
|
pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
|
|
pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
|
|
pNew->eType = p->eType;
|
|
pNew->eEnd = p->eEnd;
|
|
pNew->eStart = p->eStart;
|
|
pNew->pStart = sqlite3ExprDup(db, pNew->pStart, 0);
|
|
pNew->pEnd = sqlite3ExprDup(db, pNew->pEnd, 0);
|
|
pNew->pOwner = pOwner;
|
|
}
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** sqlite3WhereBegin() has already been called for the SELECT statement
|
|
** passed as the second argument when this function is invoked. It generates
|
|
** code to populate the Window.regResult register for each window function and
|
|
** invoke the sub-routine at instruction addrGosub once for each row.
|
|
** This function calls sqlite3WhereEnd() before returning.
|
|
*/
|
|
void sqlite3WindowCodeStep(
|
|
Parse *pParse, /* Parse context */
|
|
Select *p, /* Rewritten SELECT statement */
|
|
WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */
|
|
int regGosub, /* Register for OP_Gosub */
|
|
int addrGosub /* OP_Gosub here to return each row */
|
|
){
|
|
Window *pMWin = p->pWin;
|
|
Window *pWin;
|
|
|
|
/* Call windowCodeRowExprStep() for all window modes *except*:
|
|
**
|
|
** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
|
|
** RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
|
|
** RANGE BETWEEN CURRENT ROW AND CURRENT ROW
|
|
** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
|
|
*/
|
|
if( (pMWin->eType==TK_ROWS
|
|
&& (pMWin->eStart!=TK_UNBOUNDED||pMWin->eEnd!=TK_CURRENT||!pMWin->pOrderBy))
|
|
|| (pMWin->eStart==TK_CURRENT&&pMWin->eEnd==TK_UNBOUNDED&&pMWin->pOrderBy)
|
|
){
|
|
windowCodeRowExprStep(pParse, p, pWInfo, regGosub, addrGosub);
|
|
return;
|
|
}
|
|
|
|
/* Call windowCodeCacheStep() if there is a window function that requires
|
|
** that the entire partition be cached in a temp table before any rows
|
|
** are returned. */
|
|
for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
|
|
FuncDef *pFunc = pWin->pFunc;
|
|
if( (pFunc->funcFlags & SQLITE_FUNC_WINDOW_SIZE)
|
|
|| (pFunc->xSFunc==nth_valueStepFunc)
|
|
|| (pFunc->xSFunc==first_valueStepFunc)
|
|
|| (pFunc->xSFunc==leadStepFunc)
|
|
|| (pFunc->xSFunc==lagStepFunc)
|
|
){
|
|
windowCodeCacheStep(pParse, p, pWInfo, regGosub, addrGosub);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Otherwise, call windowCodeDefaultStep(). */
|
|
windowCodeDefaultStep(pParse, p, pWInfo, regGosub, addrGosub);
|
|
}
|
|
|