1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-11-11 01:42:22 +03:00
Files
sqlite/src/insert.c
drh 9ef5e7708a Add the capability to VACUUM an attached database by specifying the schema
name as an argument to the VACUUM command.  Since version 2.0, VACUUM has
accepted an argument which was silently ignored.  Now it has meaning.

FossilOrigin-Name: 29d63059b4d2bb612523ac55ebfef040d054a64f
2016-08-19 14:20:56 +00:00

2192 lines
82 KiB
C

/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
*/
#include "sqliteInt.h"
/*
** Generate code that will
**
** (1) acquire a lock for table pTab then
** (2) open pTab as cursor iCur.
**
** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
** for that table that is actually opened.
*/
void sqlite3OpenTable(
Parse *pParse, /* Generate code into this VDBE */
int iCur, /* The cursor number of the table */
int iDb, /* The database index in sqlite3.aDb[] */
Table *pTab, /* The table to be opened */
int opcode /* OP_OpenRead or OP_OpenWrite */
){
Vdbe *v;
assert( !IsVirtual(pTab) );
v = sqlite3GetVdbe(pParse);
assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
sqlite3TableLock(pParse, iDb, pTab->tnum,
(opcode==OP_OpenWrite)?1:0, pTab->zName);
if( HasRowid(pTab) ){
sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
VdbeComment((v, "%s", pTab->zName));
}else{
Index *pPk = sqlite3PrimaryKeyIndex(pTab);
assert( pPk!=0 );
assert( pPk->tnum==pTab->tnum );
sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
sqlite3VdbeSetP4KeyInfo(pParse, pPk);
VdbeComment((v, "%s", pTab->zName));
}
}
/*
** Return a pointer to the column affinity string associated with index
** pIdx. A column affinity string has one character for each column in
** the table, according to the affinity of the column:
**
** Character Column affinity
** ------------------------------
** 'A' BLOB
** 'B' TEXT
** 'C' NUMERIC
** 'D' INTEGER
** 'F' REAL
**
** An extra 'D' is appended to the end of the string to cover the
** rowid that appears as the last column in every index.
**
** Memory for the buffer containing the column index affinity string
** is managed along with the rest of the Index structure. It will be
** released when sqlite3DeleteIndex() is called.
*/
const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
if( !pIdx->zColAff ){
/* The first time a column affinity string for a particular index is
** required, it is allocated and populated here. It is then stored as
** a member of the Index structure for subsequent use.
**
** The column affinity string will eventually be deleted by
** sqliteDeleteIndex() when the Index structure itself is cleaned
** up.
*/
int n;
Table *pTab = pIdx->pTable;
pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
if( !pIdx->zColAff ){
sqlite3OomFault(db);
return 0;
}
for(n=0; n<pIdx->nColumn; n++){
i16 x = pIdx->aiColumn[n];
if( x>=0 ){
pIdx->zColAff[n] = pTab->aCol[x].affinity;
}else if( x==XN_ROWID ){
pIdx->zColAff[n] = SQLITE_AFF_INTEGER;
}else{
char aff;
assert( x==XN_EXPR );
assert( pIdx->aColExpr!=0 );
aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
if( aff==0 ) aff = SQLITE_AFF_BLOB;
pIdx->zColAff[n] = aff;
}
}
pIdx->zColAff[n] = 0;
}
return pIdx->zColAff;
}
/*
** Compute the affinity string for table pTab, if it has not already been
** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
**
** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
** if iReg>0 then code an OP_Affinity opcode that will set the affinities
** for register iReg and following. Or if affinities exists and iReg==0,
** then just set the P4 operand of the previous opcode (which should be
** an OP_MakeRecord) to the affinity string.
**
** A column affinity string has one character per column:
**
** Character Column affinity
** ------------------------------
** 'A' BLOB
** 'B' TEXT
** 'C' NUMERIC
** 'D' INTEGER
** 'E' REAL
*/
void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
int i;
char *zColAff = pTab->zColAff;
if( zColAff==0 ){
sqlite3 *db = sqlite3VdbeDb(v);
zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
if( !zColAff ){
sqlite3OomFault(db);
return;
}
for(i=0; i<pTab->nCol; i++){
zColAff[i] = pTab->aCol[i].affinity;
}
do{
zColAff[i--] = 0;
}while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB );
pTab->zColAff = zColAff;
}
i = sqlite3Strlen30(zColAff);
if( i ){
if( iReg ){
sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
}else{
sqlite3VdbeChangeP4(v, -1, zColAff, i);
}
}
}
/*
** Return non-zero if the table pTab in database iDb or any of its indices
** have been opened at any point in the VDBE program. This is used to see if
** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
** run without using a temporary table for the results of the SELECT.
*/
static int readsTable(Parse *p, int iDb, Table *pTab){
Vdbe *v = sqlite3GetVdbe(p);
int i;
int iEnd = sqlite3VdbeCurrentAddr(v);
#ifndef SQLITE_OMIT_VIRTUALTABLE
VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
#endif
for(i=1; i<iEnd; i++){
VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
assert( pOp!=0 );
if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
Index *pIndex;
int tnum = pOp->p2;
if( tnum==pTab->tnum ){
return 1;
}
for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
if( tnum==pIndex->tnum ){
return 1;
}
}
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
assert( pOp->p4.pVtab!=0 );
assert( pOp->p4type==P4_VTAB );
return 1;
}
#endif
}
return 0;
}
#ifndef SQLITE_OMIT_AUTOINCREMENT
/*
** Locate or create an AutoincInfo structure associated with table pTab
** which is in database iDb. Return the register number for the register
** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
** table. (Also return zero when doing a VACUUM since we do not want to
** update the AUTOINCREMENT counters during a VACUUM.)
**
** There is at most one AutoincInfo structure per table even if the
** same table is autoincremented multiple times due to inserts within
** triggers. A new AutoincInfo structure is created if this is the
** first use of table pTab. On 2nd and subsequent uses, the original
** AutoincInfo structure is used.
**
** Three memory locations are allocated:
**
** (1) Register to hold the name of the pTab table.
** (2) Register to hold the maximum ROWID of pTab.
** (3) Register to hold the rowid in sqlite_sequence of pTab
**
** The 2nd register is the one that is returned. That is all the
** insert routine needs to know about.
*/
static int autoIncBegin(
Parse *pParse, /* Parsing context */
int iDb, /* Index of the database holding pTab */
Table *pTab /* The table we are writing to */
){
int memId = 0; /* Register holding maximum rowid */
if( (pTab->tabFlags & TF_Autoincrement)!=0
&& (pParse->db->flags & SQLITE_Vacuum)==0
){
Parse *pToplevel = sqlite3ParseToplevel(pParse);
AutoincInfo *pInfo;
pInfo = pToplevel->pAinc;
while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
if( pInfo==0 ){
pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
if( pInfo==0 ) return 0;
pInfo->pNext = pToplevel->pAinc;
pToplevel->pAinc = pInfo;
pInfo->pTab = pTab;
pInfo->iDb = iDb;
pToplevel->nMem++; /* Register to hold name of table */
pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
pToplevel->nMem++; /* Rowid in sqlite_sequence */
}
memId = pInfo->regCtr;
}
return memId;
}
/*
** This routine generates code that will initialize all of the
** register used by the autoincrement tracker.
*/
void sqlite3AutoincrementBegin(Parse *pParse){
AutoincInfo *p; /* Information about an AUTOINCREMENT */
sqlite3 *db = pParse->db; /* The database connection */
Db *pDb; /* Database only autoinc table */
int memId; /* Register holding max rowid */
Vdbe *v = pParse->pVdbe; /* VDBE under construction */
/* This routine is never called during trigger-generation. It is
** only called from the top-level */
assert( pParse->pTriggerTab==0 );
assert( sqlite3IsToplevel(pParse) );
assert( v ); /* We failed long ago if this is not so */
for(p = pParse->pAinc; p; p = p->pNext){
static const int iLn = VDBE_OFFSET_LINENO(2);
static const VdbeOpList autoInc[] = {
/* 0 */ {OP_Null, 0, 0, 0},
/* 1 */ {OP_Rewind, 0, 9, 0},
/* 2 */ {OP_Column, 0, 0, 0},
/* 3 */ {OP_Ne, 0, 7, 0},
/* 4 */ {OP_Rowid, 0, 0, 0},
/* 5 */ {OP_Column, 0, 1, 0},
/* 6 */ {OP_Goto, 0, 9, 0},
/* 7 */ {OP_Next, 0, 2, 0},
/* 8 */ {OP_Integer, 0, 0, 0},
/* 9 */ {OP_Close, 0, 0, 0}
};
VdbeOp *aOp;
pDb = &db->aDb[p->iDb];
memId = p->regCtr;
assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
if( aOp==0 ) break;
aOp[0].p2 = memId;
aOp[0].p3 = memId+1;
aOp[2].p3 = memId;
aOp[3].p1 = memId-1;
aOp[3].p3 = memId;
aOp[3].p5 = SQLITE_JUMPIFNULL;
aOp[4].p2 = memId+1;
aOp[5].p3 = memId;
aOp[8].p2 = memId;
}
}
/*
** Update the maximum rowid for an autoincrement calculation.
**
** This routine should be called when the regRowid register holds a
** new rowid that is about to be inserted. If that new rowid is
** larger than the maximum rowid in the memId memory cell, then the
** memory cell is updated.
*/
static void autoIncStep(Parse *pParse, int memId, int regRowid){
if( memId>0 ){
sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
}
}
/*
** This routine generates the code needed to write autoincrement
** maximum rowid values back into the sqlite_sequence register.
** Every statement that might do an INSERT into an autoincrement
** table (either directly or through triggers) needs to call this
** routine just before the "exit" code.
*/
static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
AutoincInfo *p;
Vdbe *v = pParse->pVdbe;
sqlite3 *db = pParse->db;
assert( v );
for(p = pParse->pAinc; p; p = p->pNext){
static const int iLn = VDBE_OFFSET_LINENO(2);
static const VdbeOpList autoIncEnd[] = {
/* 0 */ {OP_NotNull, 0, 2, 0},
/* 1 */ {OP_NewRowid, 0, 0, 0},
/* 2 */ {OP_MakeRecord, 0, 2, 0},
/* 3 */ {OP_Insert, 0, 0, 0},
/* 4 */ {OP_Close, 0, 0, 0}
};
VdbeOp *aOp;
Db *pDb = &db->aDb[p->iDb];
int iRec;
int memId = p->regCtr;
iRec = sqlite3GetTempReg(pParse);
assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
if( aOp==0 ) break;
aOp[0].p1 = memId+1;
aOp[1].p2 = memId+1;
aOp[2].p1 = memId-1;
aOp[2].p3 = iRec;
aOp[3].p2 = iRec;
aOp[3].p3 = memId+1;
aOp[3].p5 = OPFLAG_APPEND;
sqlite3ReleaseTempReg(pParse, iRec);
}
}
void sqlite3AutoincrementEnd(Parse *pParse){
if( pParse->pAinc ) autoIncrementEnd(pParse);
}
#else
/*
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
** above are all no-ops
*/
# define autoIncBegin(A,B,C) (0)
# define autoIncStep(A,B,C)
#endif /* SQLITE_OMIT_AUTOINCREMENT */
/* Forward declaration */
static int xferOptimization(
Parse *pParse, /* Parser context */
Table *pDest, /* The table we are inserting into */
Select *pSelect, /* A SELECT statement to use as the data source */
int onError, /* How to handle constraint errors */
int iDbDest /* The database of pDest */
);
/*
** This routine is called to handle SQL of the following forms:
**
** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
** insert into TABLE (IDLIST) select
** insert into TABLE (IDLIST) default values
**
** The IDLIST following the table name is always optional. If omitted,
** then a list of all (non-hidden) columns for the table is substituted.
** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
** is omitted.
**
** For the pSelect parameter holds the values to be inserted for the
** first two forms shown above. A VALUES clause is really just short-hand
** for a SELECT statement that omits the FROM clause and everything else
** that follows. If the pSelect parameter is NULL, that means that the
** DEFAULT VALUES form of the INSERT statement is intended.
**
** The code generated follows one of four templates. For a simple
** insert with data coming from a single-row VALUES clause, the code executes
** once straight down through. Pseudo-code follows (we call this
** the "1st template"):
**
** open write cursor to <table> and its indices
** put VALUES clause expressions into registers
** write the resulting record into <table>
** cleanup
**
** The three remaining templates assume the statement is of the form
**
** INSERT INTO <table> SELECT ...
**
** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
** in other words if the SELECT pulls all columns from a single table
** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
** if <table2> and <table1> are distinct tables but have identical
** schemas, including all the same indices, then a special optimization
** is invoked that copies raw records from <table2> over to <table1>.
** See the xferOptimization() function for the implementation of this
** template. This is the 2nd template.
**
** open a write cursor to <table>
** open read cursor on <table2>
** transfer all records in <table2> over to <table>
** close cursors
** foreach index on <table>
** open a write cursor on the <table> index
** open a read cursor on the corresponding <table2> index
** transfer all records from the read to the write cursors
** close cursors
** end foreach
**
** The 3rd template is for when the second template does not apply
** and the SELECT clause does not read from <table> at any time.
** The generated code follows this template:
**
** X <- A
** goto B
** A: setup for the SELECT
** loop over the rows in the SELECT
** load values into registers R..R+n
** yield X
** end loop
** cleanup after the SELECT
** end-coroutine X
** B: open write cursor to <table> and its indices
** C: yield X, at EOF goto D
** insert the select result into <table> from R..R+n
** goto C
** D: cleanup
**
** The 4th template is used if the insert statement takes its
** values from a SELECT but the data is being inserted into a table
** that is also read as part of the SELECT. In the third form,
** we have to use an intermediate table to store the results of
** the select. The template is like this:
**
** X <- A
** goto B
** A: setup for the SELECT
** loop over the tables in the SELECT
** load value into register R..R+n
** yield X
** end loop
** cleanup after the SELECT
** end co-routine R
** B: open temp table
** L: yield X, at EOF goto M
** insert row from R..R+n into temp table
** goto L
** M: open write cursor to <table> and its indices
** rewind temp table
** C: loop over rows of intermediate table
** transfer values form intermediate table into <table>
** end loop
** D: cleanup
*/
void sqlite3Insert(
Parse *pParse, /* Parser context */
SrcList *pTabList, /* Name of table into which we are inserting */
Select *pSelect, /* A SELECT statement to use as the data source */
IdList *pColumn, /* Column names corresponding to IDLIST. */
int onError /* How to handle constraint errors */
){
sqlite3 *db; /* The main database structure */
Table *pTab; /* The table to insert into. aka TABLE */
char *zTab; /* Name of the table into which we are inserting */
const char *zDb; /* Name of the database holding this table */
int i, j, idx; /* Loop counters */
Vdbe *v; /* Generate code into this virtual machine */
Index *pIdx; /* For looping over indices of the table */
int nColumn; /* Number of columns in the data */
int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
int iDataCur = 0; /* VDBE cursor that is the main data repository */
int iIdxCur = 0; /* First index cursor */
int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
int endOfLoop; /* Label for the end of the insertion loop */
int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
int addrInsTop = 0; /* Jump to label "D" */
int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
SelectDest dest; /* Destination for SELECT on rhs of INSERT */
int iDb; /* Index of database holding TABLE */
Db *pDb; /* The database containing table being inserted into */
u8 useTempTable = 0; /* Store SELECT results in intermediate table */
u8 appendFlag = 0; /* True if the insert is likely to be an append */
u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
u8 bIdListInOrder; /* True if IDLIST is in table order */
ExprList *pList = 0; /* List of VALUES() to be inserted */
/* Register allocations */
int regFromSelect = 0;/* Base register for data coming from SELECT */
int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
int regRowCount = 0; /* Memory cell used for the row counter */
int regIns; /* Block of regs holding rowid+data being inserted */
int regRowid; /* registers holding insert rowid */
int regData; /* register holding first column to insert */
int *aRegIdx = 0; /* One register allocated to each index */
#ifndef SQLITE_OMIT_TRIGGER
int isView; /* True if attempting to insert into a view */
Trigger *pTrigger; /* List of triggers on pTab, if required */
int tmask; /* Mask of trigger times */
#endif
db = pParse->db;
memset(&dest, 0, sizeof(dest));
if( pParse->nErr || db->mallocFailed ){
goto insert_cleanup;
}
/* If the Select object is really just a simple VALUES() list with a
** single row (the common case) then keep that one row of values
** and discard the other (unused) parts of the pSelect object
*/
if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
pList = pSelect->pEList;
pSelect->pEList = 0;
sqlite3SelectDelete(db, pSelect);
pSelect = 0;
}
/* Locate the table into which we will be inserting new information.
*/
assert( pTabList->nSrc==1 );
zTab = pTabList->a[0].zName;
if( NEVER(zTab==0) ) goto insert_cleanup;
pTab = sqlite3SrcListLookup(pParse, pTabList);
if( pTab==0 ){
goto insert_cleanup;
}
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
assert( iDb<db->nDb );
pDb = &db->aDb[iDb];
zDb = pDb->zDbSName;
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
goto insert_cleanup;
}
withoutRowid = !HasRowid(pTab);
/* Figure out if we have any triggers and if the table being
** inserted into is a view
*/
#ifndef SQLITE_OMIT_TRIGGER
pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
isView = pTab->pSelect!=0;
#else
# define pTrigger 0
# define tmask 0
# define isView 0
#endif
#ifdef SQLITE_OMIT_VIEW
# undef isView
# define isView 0
#endif
assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
/* If pTab is really a view, make sure it has been initialized.
** ViewGetColumnNames() is a no-op if pTab is not a view.
*/
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
goto insert_cleanup;
}
/* Cannot insert into a read-only table.
*/
if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
goto insert_cleanup;
}
/* Allocate a VDBE
*/
v = sqlite3GetVdbe(pParse);
if( v==0 ) goto insert_cleanup;
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
#ifndef SQLITE_OMIT_XFER_OPT
/* If the statement is of the form
**
** INSERT INTO <table1> SELECT * FROM <table2>;
**
** Then special optimizations can be applied that make the transfer
** very fast and which reduce fragmentation of indices.
**
** This is the 2nd template.
*/
if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
assert( !pTrigger );
assert( pList==0 );
goto insert_end;
}
#endif /* SQLITE_OMIT_XFER_OPT */
/* If this is an AUTOINCREMENT table, look up the sequence number in the
** sqlite_sequence table and store it in memory cell regAutoinc.
*/
regAutoinc = autoIncBegin(pParse, iDb, pTab);
/* Allocate registers for holding the rowid of the new row,
** the content of the new row, and the assembled row record.
*/
regRowid = regIns = pParse->nMem+1;
pParse->nMem += pTab->nCol + 1;
if( IsVirtual(pTab) ){
regRowid++;
pParse->nMem++;
}
regData = regRowid+1;
/* If the INSERT statement included an IDLIST term, then make sure
** all elements of the IDLIST really are columns of the table and
** remember the column indices.
**
** If the table has an INTEGER PRIMARY KEY column and that column
** is named in the IDLIST, then record in the ipkColumn variable
** the index into IDLIST of the primary key column. ipkColumn is
** the index of the primary key as it appears in IDLIST, not as
** is appears in the original table. (The index of the INTEGER
** PRIMARY KEY in the original table is pTab->iPKey.)
*/
bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0;
if( pColumn ){
for(i=0; i<pColumn->nId; i++){
pColumn->a[i].idx = -1;
}
for(i=0; i<pColumn->nId; i++){
for(j=0; j<pTab->nCol; j++){
if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
pColumn->a[i].idx = j;
if( i!=j ) bIdListInOrder = 0;
if( j==pTab->iPKey ){
ipkColumn = i; assert( !withoutRowid );
}
break;
}
}
if( j>=pTab->nCol ){
if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
ipkColumn = i;
bIdListInOrder = 0;
}else{
sqlite3ErrorMsg(pParse, "table %S has no column named %s",
pTabList, 0, pColumn->a[i].zName);
pParse->checkSchema = 1;
goto insert_cleanup;
}
}
}
}
/* Figure out how many columns of data are supplied. If the data
** is coming from a SELECT statement, then generate a co-routine that
** produces a single row of the SELECT on each invocation. The
** co-routine is the common header to the 3rd and 4th templates.
*/
if( pSelect ){
/* Data is coming from a SELECT or from a multi-row VALUES clause.
** Generate a co-routine to run the SELECT. */
int regYield; /* Register holding co-routine entry-point */
int addrTop; /* Top of the co-routine */
int rc; /* Result code */
regYield = ++pParse->nMem;
addrTop = sqlite3VdbeCurrentAddr(v) + 1;
sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
dest.iSdst = bIdListInOrder ? regData : 0;
dest.nSdst = pTab->nCol;
rc = sqlite3Select(pParse, pSelect, &dest);
regFromSelect = dest.iSdst;
if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
sqlite3VdbeEndCoroutine(v, regYield);
sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */
assert( pSelect->pEList );
nColumn = pSelect->pEList->nExpr;
/* Set useTempTable to TRUE if the result of the SELECT statement
** should be written into a temporary table (template 4). Set to
** FALSE if each output row of the SELECT can be written directly into
** the destination table (template 3).
**
** A temp table must be used if the table being updated is also one
** of the tables being read by the SELECT statement. Also use a
** temp table in the case of row triggers.
*/
if( pTrigger || readsTable(pParse, iDb, pTab) ){
useTempTable = 1;
}
if( useTempTable ){
/* Invoke the coroutine to extract information from the SELECT
** and add it to a transient table srcTab. The code generated
** here is from the 4th template:
**
** B: open temp table
** L: yield X, goto M at EOF
** insert row from R..R+n into temp table
** goto L
** M: ...
*/
int regRec; /* Register to hold packed record */
int regTempRowid; /* Register to hold temp table ROWID */
int addrL; /* Label "L" */
srcTab = pParse->nTab++;
regRec = sqlite3GetTempReg(pParse);
regTempRowid = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
sqlite3VdbeGoto(v, addrL);
sqlite3VdbeJumpHere(v, addrL);
sqlite3ReleaseTempReg(pParse, regRec);
sqlite3ReleaseTempReg(pParse, regTempRowid);
}
}else{
/* This is the case if the data for the INSERT is coming from a
** single-row VALUES clause
*/
NameContext sNC;
memset(&sNC, 0, sizeof(sNC));
sNC.pParse = pParse;
srcTab = -1;
assert( useTempTable==0 );
if( pList ){
nColumn = pList->nExpr;
if( sqlite3ResolveExprListNames(&sNC, pList) ){
goto insert_cleanup;
}
}else{
nColumn = 0;
}
}
/* If there is no IDLIST term but the table has an integer primary
** key, the set the ipkColumn variable to the integer primary key
** column index in the original table definition.
*/
if( pColumn==0 && nColumn>0 ){
ipkColumn = pTab->iPKey;
}
/* Make sure the number of columns in the source data matches the number
** of columns to be inserted into the table.
*/
for(i=0; i<pTab->nCol; i++){
nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
}
if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
sqlite3ErrorMsg(pParse,
"table %S has %d columns but %d values were supplied",
pTabList, 0, pTab->nCol-nHidden, nColumn);
goto insert_cleanup;
}
if( pColumn!=0 && nColumn!=pColumn->nId ){
sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
goto insert_cleanup;
}
/* Initialize the count of rows to be inserted
*/
if( db->flags & SQLITE_CountRows ){
regRowCount = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
}
/* If this is not a view, open the table and and all indices */
if( !isView ){
int nIdx;
nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
&iDataCur, &iIdxCur);
aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1));
if( aRegIdx==0 ){
goto insert_cleanup;
}
for(i=0; i<nIdx; i++){
aRegIdx[i] = ++pParse->nMem;
}
}
/* This is the top of the main insertion loop */
if( useTempTable ){
/* This block codes the top of loop only. The complete loop is the
** following pseudocode (template 4):
**
** rewind temp table, if empty goto D
** C: loop over rows of intermediate table
** transfer values form intermediate table into <table>
** end loop
** D: ...
*/
addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
addrCont = sqlite3VdbeCurrentAddr(v);
}else if( pSelect ){
/* This block codes the top of loop only. The complete loop is the
** following pseudocode (template 3):
**
** C: yield X, at EOF goto D
** insert the select result into <table> from R..R+n
** goto C
** D: ...
*/
addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
VdbeCoverage(v);
}
/* Run the BEFORE and INSTEAD OF triggers, if there are any
*/
endOfLoop = sqlite3VdbeMakeLabel(v);
if( tmask & TRIGGER_BEFORE ){
int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
/* build the NEW.* reference row. Note that if there is an INTEGER
** PRIMARY KEY into which a NULL is being inserted, that NULL will be
** translated into a unique ID for the row. But on a BEFORE trigger,
** we do not know what the unique ID will be (because the insert has
** not happened yet) so we substitute a rowid of -1
*/
if( ipkColumn<0 ){
sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
}else{
int addr1;
assert( !withoutRowid );
if( useTempTable ){
sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
}else{
assert( pSelect==0 ); /* Otherwise useTempTable is true */
sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
}
addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
sqlite3VdbeJumpHere(v, addr1);
sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
}
/* Cannot have triggers on a virtual table. If it were possible,
** this block would have to account for hidden column.
*/
assert( !IsVirtual(pTab) );
/* Create the new column data
*/
for(i=j=0; i<pTab->nCol; i++){
if( pColumn ){
for(j=0; j<pColumn->nId; j++){
if( pColumn->a[j].idx==i ) break;
}
}
if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId)
|| (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
}else if( useTempTable ){
sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
}else{
assert( pSelect==0 ); /* Otherwise useTempTable is true */
sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
}
if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++;
}
/* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
** do not attempt any conversions before assembling the record.
** If this is a real table, attempt conversions as required by the
** table column affinities.
*/
if( !isView ){
sqlite3TableAffinity(v, pTab, regCols+1);
}
/* Fire BEFORE or INSTEAD OF triggers */
sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
pTab, regCols-pTab->nCol-1, onError, endOfLoop);
sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
}
/* Compute the content of the next row to insert into a range of
** registers beginning at regIns.
*/
if( !isView ){
if( IsVirtual(pTab) ){
/* The row that the VUpdate opcode will delete: none */
sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
}
if( ipkColumn>=0 ){
if( useTempTable ){
sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
}else if( pSelect ){
sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
}else{
VdbeOp *pOp;
sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
pOp = sqlite3VdbeGetOp(v, -1);
if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
appendFlag = 1;
pOp->opcode = OP_NewRowid;
pOp->p1 = iDataCur;
pOp->p2 = regRowid;
pOp->p3 = regAutoinc;
}
}
/* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
** to generate a unique primary key value.
*/
if( !appendFlag ){
int addr1;
if( !IsVirtual(pTab) ){
addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
sqlite3VdbeJumpHere(v, addr1);
}else{
addr1 = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
}
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
}
}else if( IsVirtual(pTab) || withoutRowid ){
sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
}else{
sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
appendFlag = 1;
}
autoIncStep(pParse, regAutoinc, regRowid);
/* Compute data for all columns of the new entry, beginning
** with the first column.
*/
nHidden = 0;
for(i=0; i<pTab->nCol; i++){
int iRegStore = regRowid+1+i;
if( i==pTab->iPKey ){
/* The value of the INTEGER PRIMARY KEY column is always a NULL.
** Whenever this column is read, the rowid will be substituted
** in its place. Hence, fill this column with a NULL to avoid
** taking up data space with information that will never be used.
** As there may be shallow copies of this value, make it a soft-NULL */
sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
continue;
}
if( pColumn==0 ){
if( IsHiddenColumn(&pTab->aCol[i]) ){
j = -1;
nHidden++;
}else{
j = i - nHidden;
}
}else{
for(j=0; j<pColumn->nId; j++){
if( pColumn->a[j].idx==i ) break;
}
}
if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
}else if( useTempTable ){
sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
}else if( pSelect ){
if( regFromSelect!=regData ){
sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
}
}else{
sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
}
}
/* Generate code to check constraints and generate index keys and
** do the insertion.
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( IsVirtual(pTab) ){
const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
sqlite3VtabMakeWritable(pParse, pTab);
sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
sqlite3MayAbort(pParse);
}else
#endif
{
int isReplace; /* Set to true if constraints may cause a replace */
sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0
);
sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
regIns, aRegIdx, 0, appendFlag, isReplace==0);
}
}
/* Update the count of rows that are inserted
*/
if( (db->flags & SQLITE_CountRows)!=0 ){
sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
}
if( pTrigger ){
/* Code AFTER triggers */
sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
pTab, regData-2-pTab->nCol, onError, endOfLoop);
}
/* The bottom of the main insertion loop, if the data source
** is a SELECT statement.
*/
sqlite3VdbeResolveLabel(v, endOfLoop);
if( useTempTable ){
sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
sqlite3VdbeJumpHere(v, addrInsTop);
sqlite3VdbeAddOp1(v, OP_Close, srcTab);
}else if( pSelect ){
sqlite3VdbeGoto(v, addrCont);
sqlite3VdbeJumpHere(v, addrInsTop);
}
if( !IsVirtual(pTab) && !isView ){
/* Close all tables opened */
if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur);
for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur);
}
}
insert_end:
/* Update the sqlite_sequence table by storing the content of the
** maximum rowid counter values recorded while inserting into
** autoincrement tables.
*/
if( pParse->nested==0 && pParse->pTriggerTab==0 ){
sqlite3AutoincrementEnd(pParse);
}
/*
** Return the number of rows inserted. If this routine is
** generating code because of a call to sqlite3NestedParse(), do not
** invoke the callback function.
*/
if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
}
insert_cleanup:
sqlite3SrcListDelete(db, pTabList);
sqlite3ExprListDelete(db, pList);
sqlite3SelectDelete(db, pSelect);
sqlite3IdListDelete(db, pColumn);
sqlite3DbFree(db, aRegIdx);
}
/* Make sure "isView" and other macros defined above are undefined. Otherwise
** they may interfere with compilation of other functions in this file
** (or in another file, if this file becomes part of the amalgamation). */
#ifdef isView
#undef isView
#endif
#ifdef pTrigger
#undef pTrigger
#endif
#ifdef tmask
#undef tmask
#endif
/*
** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged()
*/
#define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
#define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
/* This is the Walker callback from checkConstraintUnchanged(). Set
** bit 0x01 of pWalker->eCode if
** pWalker->eCode to 0 if this expression node references any of the
** columns that are being modifed by an UPDATE statement.
*/
static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
if( pExpr->op==TK_COLUMN ){
assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
if( pExpr->iColumn>=0 ){
if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
pWalker->eCode |= CKCNSTRNT_COLUMN;
}
}else{
pWalker->eCode |= CKCNSTRNT_ROWID;
}
}
return WRC_Continue;
}
/*
** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
** only columns that are modified by the UPDATE are those for which
** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
**
** Return true if CHECK constraint pExpr does not use any of the
** changing columns (or the rowid if it is changing). In other words,
** return true if this CHECK constraint can be skipped when validating
** the new row in the UPDATE statement.
*/
static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){
Walker w;
memset(&w, 0, sizeof(w));
w.eCode = 0;
w.xExprCallback = checkConstraintExprNode;
w.u.aiCol = aiChng;
sqlite3WalkExpr(&w, pExpr);
if( !chngRowid ){
testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
w.eCode &= ~CKCNSTRNT_ROWID;
}
testcase( w.eCode==0 );
testcase( w.eCode==CKCNSTRNT_COLUMN );
testcase( w.eCode==CKCNSTRNT_ROWID );
testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
return !w.eCode;
}
/*
** Generate code to do constraint checks prior to an INSERT or an UPDATE
** on table pTab.
**
** The regNewData parameter is the first register in a range that contains
** the data to be inserted or the data after the update. There will be
** pTab->nCol+1 registers in this range. The first register (the one
** that regNewData points to) will contain the new rowid, or NULL in the
** case of a WITHOUT ROWID table. The second register in the range will
** contain the content of the first table column. The third register will
** contain the content of the second table column. And so forth.
**
** The regOldData parameter is similar to regNewData except that it contains
** the data prior to an UPDATE rather than afterwards. regOldData is zero
** for an INSERT. This routine can distinguish between UPDATE and INSERT by
** checking regOldData for zero.
**
** For an UPDATE, the pkChng boolean is true if the true primary key (the
** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
** might be modified by the UPDATE. If pkChng is false, then the key of
** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
**
** For an INSERT, the pkChng boolean indicates whether or not the rowid
** was explicitly specified as part of the INSERT statement. If pkChng
** is zero, it means that the either rowid is computed automatically or
** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
** pkChng will only be true if the INSERT statement provides an integer
** value for either the rowid column or its INTEGER PRIMARY KEY alias.
**
** The code generated by this routine will store new index entries into
** registers identified by aRegIdx[]. No index entry is created for
** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
** the same as the order of indices on the linked list of indices
** at pTab->pIndex.
**
** The caller must have already opened writeable cursors on the main
** table and all applicable indices (that is to say, all indices for which
** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
** for the first index in the pTab->pIndex list. Cursors for other indices
** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
**
** This routine also generates code to check constraints. NOT NULL,
** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
** then the appropriate action is performed. There are five possible
** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
**
** Constraint type Action What Happens
** --------------- ---------- ----------------------------------------
** any ROLLBACK The current transaction is rolled back and
** sqlite3_step() returns immediately with a
** return code of SQLITE_CONSTRAINT.
**
** any ABORT Back out changes from the current command
** only (do not do a complete rollback) then
** cause sqlite3_step() to return immediately
** with SQLITE_CONSTRAINT.
**
** any FAIL Sqlite3_step() returns immediately with a
** return code of SQLITE_CONSTRAINT. The
** transaction is not rolled back and any
** changes to prior rows are retained.
**
** any IGNORE The attempt in insert or update the current
** row is skipped, without throwing an error.
** Processing continues with the next row.
** (There is an immediate jump to ignoreDest.)
**
** NOT NULL REPLACE The NULL value is replace by the default
** value for that column. If the default value
** is NULL, the action is the same as ABORT.
**
** UNIQUE REPLACE The other row that conflicts with the row
** being inserted is removed.
**
** CHECK REPLACE Illegal. The results in an exception.
**
** Which action to take is determined by the overrideError parameter.
** Or if overrideError==OE_Default, then the pParse->onError parameter
** is used. Or if pParse->onError==OE_Default then the onError value
** for the constraint is used.
*/
void sqlite3GenerateConstraintChecks(
Parse *pParse, /* The parser context */
Table *pTab, /* The table being inserted or updated */
int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */
int iDataCur, /* Canonical data cursor (main table or PK index) */
int iIdxCur, /* First index cursor */
int regNewData, /* First register in a range holding values to insert */
int regOldData, /* Previous content. 0 for INSERTs */
u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */
u8 overrideError, /* Override onError to this if not OE_Default */
int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */
int *aiChng /* column i is unchanged if aiChng[i]<0 */
){
Vdbe *v; /* VDBE under constrution */
Index *pIdx; /* Pointer to one of the indices */
Index *pPk = 0; /* The PRIMARY KEY index */
sqlite3 *db; /* Database connection */
int i; /* loop counter */
int ix; /* Index loop counter */
int nCol; /* Number of columns */
int onError; /* Conflict resolution strategy */
int addr1; /* Address of jump instruction */
int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
int ipkTop = 0; /* Top of the rowid change constraint check */
int ipkBottom = 0; /* Bottom of the rowid change constraint check */
u8 isUpdate; /* True if this is an UPDATE operation */
u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */
int regRowid = -1; /* Register holding ROWID value */
isUpdate = regOldData!=0;
db = pParse->db;
v = sqlite3GetVdbe(pParse);
assert( v!=0 );
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
nCol = pTab->nCol;
/* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
** normal rowid tables. nPkField is the number of key fields in the
** pPk index or 1 for a rowid table. In other words, nPkField is the
** number of fields in the true primary key of the table. */
if( HasRowid(pTab) ){
pPk = 0;
nPkField = 1;
}else{
pPk = sqlite3PrimaryKeyIndex(pTab);
nPkField = pPk->nKeyCol;
}
/* Record that this module has started */
VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
iDataCur, iIdxCur, regNewData, regOldData, pkChng));
/* Test all NOT NULL constraints.
*/
for(i=0; i<nCol; i++){
if( i==pTab->iPKey ){
continue; /* ROWID is never NULL */
}
if( aiChng && aiChng[i]<0 ){
/* Don't bother checking for NOT NULL on columns that do not change */
continue;
}
onError = pTab->aCol[i].notNull;
if( onError==OE_None ) continue; /* This column is allowed to be NULL */
if( overrideError!=OE_Default ){
onError = overrideError;
}else if( onError==OE_Default ){
onError = OE_Abort;
}
if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
onError = OE_Abort;
}
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|| onError==OE_Ignore || onError==OE_Replace );
switch( onError ){
case OE_Abort:
sqlite3MayAbort(pParse);
/* Fall through */
case OE_Rollback:
case OE_Fail: {
char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
pTab->aCol[i].zName);
sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
regNewData+1+i, zMsg, P4_DYNAMIC);
sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
VdbeCoverage(v);
break;
}
case OE_Ignore: {
sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
VdbeCoverage(v);
break;
}
default: {
assert( onError==OE_Replace );
addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i);
VdbeCoverage(v);
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
sqlite3VdbeJumpHere(v, addr1);
break;
}
}
}
/* Test all CHECK constraints
*/
#ifndef SQLITE_OMIT_CHECK
if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
ExprList *pCheck = pTab->pCheck;
pParse->ckBase = regNewData+1;
onError = overrideError!=OE_Default ? overrideError : OE_Abort;
for(i=0; i<pCheck->nExpr; i++){
int allOk;
Expr *pExpr = pCheck->a[i].pExpr;
if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue;
allOk = sqlite3VdbeMakeLabel(v);
sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
if( onError==OE_Ignore ){
sqlite3VdbeGoto(v, ignoreDest);
}else{
char *zName = pCheck->a[i].zName;
if( zName==0 ) zName = pTab->zName;
if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
onError, zName, P4_TRANSIENT,
P5_ConstraintCheck);
}
sqlite3VdbeResolveLabel(v, allOk);
}
}
#endif /* !defined(SQLITE_OMIT_CHECK) */
/* If rowid is changing, make sure the new rowid does not previously
** exist in the table.
*/
if( pkChng && pPk==0 ){
int addrRowidOk = sqlite3VdbeMakeLabel(v);
/* Figure out what action to take in case of a rowid collision */
onError = pTab->keyConf;
if( overrideError!=OE_Default ){
onError = overrideError;
}else if( onError==OE_Default ){
onError = OE_Abort;
}
if( isUpdate ){
/* pkChng!=0 does not mean that the rowid has change, only that
** it might have changed. Skip the conflict logic below if the rowid
** is unchanged. */
sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
VdbeCoverage(v);
}
/* If the response to a rowid conflict is REPLACE but the response
** to some other UNIQUE constraint is FAIL or IGNORE, then we need
** to defer the running of the rowid conflict checking until after
** the UNIQUE constraints have run.
*/
if( onError==OE_Replace && overrideError!=OE_Replace ){
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
break;
}
}
}
/* Check to see if the new rowid already exists in the table. Skip
** the following conflict logic if it does not. */
sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
VdbeCoverage(v);
/* Generate code that deals with a rowid collision */
switch( onError ){
default: {
onError = OE_Abort;
/* Fall thru into the next case */
}
case OE_Rollback:
case OE_Abort:
case OE_Fail: {
sqlite3RowidConstraint(pParse, onError, pTab);
break;
}
case OE_Replace: {
/* If there are DELETE triggers on this table and the
** recursive-triggers flag is set, call GenerateRowDelete() to
** remove the conflicting row from the table. This will fire
** the triggers and remove both the table and index b-tree entries.
**
** Otherwise, if there are no triggers or the recursive-triggers
** flag is not set, but the table has one or more indexes, call
** GenerateRowIndexDelete(). This removes the index b-tree entries
** only. The table b-tree entry will be replaced by the new entry
** when it is inserted.
**
** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
** also invoke MultiWrite() to indicate that this VDBE may require
** statement rollback (if the statement is aborted after the delete
** takes place). Earlier versions called sqlite3MultiWrite() regardless,
** but being more selective here allows statements like:
**
** REPLACE INTO t(rowid) VALUES($newrowid)
**
** to run without a statement journal if there are no indexes on the
** table.
*/
Trigger *pTrigger = 0;
if( db->flags&SQLITE_RecTriggers ){
pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
}
if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
sqlite3MultiWrite(pParse);
sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
regNewData, 1, 0, OE_Replace, 1, -1);
}else{
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
if( HasRowid(pTab) ){
/* This OP_Delete opcode fires the pre-update-hook only. It does
** not modify the b-tree. It is more efficient to let the coming
** OP_Insert replace the existing entry than it is to delete the
** existing entry and then insert a new one. */
sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
sqlite3VdbeChangeP4(v, -1, (char *)pTab, P4_TABLE);
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
if( pTab->pIndex ){
sqlite3MultiWrite(pParse);
sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
}
}
seenReplace = 1;
break;
}
case OE_Ignore: {
/*assert( seenReplace==0 );*/
sqlite3VdbeGoto(v, ignoreDest);
break;
}
}
sqlite3VdbeResolveLabel(v, addrRowidOk);
if( ipkTop ){
ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
sqlite3VdbeJumpHere(v, ipkTop);
}
}
/* Test all UNIQUE constraints by creating entries for each UNIQUE
** index and making sure that duplicate entries do not already exist.
** Compute the revised record entries for indices as we go.
**
** This loop also handles the case of the PRIMARY KEY index for a
** WITHOUT ROWID table.
*/
for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
int regIdx; /* Range of registers hold conent for pIdx */
int regR; /* Range of registers holding conflicting PK */
int iThisCur; /* Cursor for this UNIQUE index */
int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
if( bAffinityDone==0 ){
sqlite3TableAffinity(v, pTab, regNewData+1);
bAffinityDone = 1;
}
iThisCur = iIdxCur+ix;
addrUniqueOk = sqlite3VdbeMakeLabel(v);
/* Skip partial indices for which the WHERE clause is not true */
if( pIdx->pPartIdxWhere ){
sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
pParse->ckBase = regNewData+1;
sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
SQLITE_JUMPIFNULL);
pParse->ckBase = 0;
}
/* Create a record for this index entry as it should appear after
** the insert or update. Store that record in the aRegIdx[ix] register
*/
regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn);
for(i=0; i<pIdx->nColumn; i++){
int iField = pIdx->aiColumn[i];
int x;
if( iField==XN_EXPR ){
pParse->ckBase = regNewData+1;
sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
pParse->ckBase = 0;
VdbeComment((v, "%s column %d", pIdx->zName, i));
}else{
if( iField==XN_ROWID || iField==pTab->iPKey ){
if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */
x = regNewData;
regRowid = pIdx->pPartIdxWhere ? -1 : regIdx+i;
}else{
x = iField + regNewData + 1;
}
sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i);
VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
}
}
sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
VdbeComment((v, "for %s", pIdx->zName));
sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn);
/* In an UPDATE operation, if this index is the PRIMARY KEY index
** of a WITHOUT ROWID table and there has been no change the
** primary key, then no collision is possible. The collision detection
** logic below can all be skipped. */
if( isUpdate && pPk==pIdx && pkChng==0 ){
sqlite3VdbeResolveLabel(v, addrUniqueOk);
continue;
}
/* Find out what action to take in case there is a uniqueness conflict */
onError = pIdx->onError;
if( onError==OE_None ){
sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
sqlite3VdbeResolveLabel(v, addrUniqueOk);
continue; /* pIdx is not a UNIQUE index */
}
if( overrideError!=OE_Default ){
onError = overrideError;
}else if( onError==OE_Default ){
onError = OE_Abort;
}
/* Check to see if the new index entry will be unique */
sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
regIdx, pIdx->nKeyCol); VdbeCoverage(v);
/* Generate code to handle collisions */
regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
if( isUpdate || onError==OE_Replace ){
if( HasRowid(pTab) ){
sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
/* Conflict only if the rowid of the existing index entry
** is different from old-rowid */
if( isUpdate ){
sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
VdbeCoverage(v);
}
}else{
int x;
/* Extract the PRIMARY KEY from the end of the index entry and
** store it in registers regR..regR+nPk-1 */
if( pIdx!=pPk ){
for(i=0; i<pPk->nKeyCol; i++){
assert( pPk->aiColumn[i]>=0 );
x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
VdbeComment((v, "%s.%s", pTab->zName,
pTab->aCol[pPk->aiColumn[i]].zName));
}
}
if( isUpdate ){
/* If currently processing the PRIMARY KEY of a WITHOUT ROWID
** table, only conflict if the new PRIMARY KEY values are actually
** different from the old.
**
** For a UNIQUE index, only conflict if the PRIMARY KEY values
** of the matched index row are different from the original PRIMARY
** KEY values of this row before the update. */
int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
int op = OP_Ne;
int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
for(i=0; i<pPk->nKeyCol; i++){
char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
x = pPk->aiColumn[i];
assert( x>=0 );
if( i==(pPk->nKeyCol-1) ){
addrJump = addrUniqueOk;
op = OP_Eq;
}
sqlite3VdbeAddOp4(v, op,
regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
);
sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
VdbeCoverageIf(v, op==OP_Eq);
VdbeCoverageIf(v, op==OP_Ne);
}
}
}
}
/* Generate code that executes if the new index entry is not unique */
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|| onError==OE_Ignore || onError==OE_Replace );
switch( onError ){
case OE_Rollback:
case OE_Abort:
case OE_Fail: {
sqlite3UniqueConstraint(pParse, onError, pIdx);
break;
}
case OE_Ignore: {
sqlite3VdbeGoto(v, ignoreDest);
break;
}
default: {
Trigger *pTrigger = 0;
assert( onError==OE_Replace );
sqlite3MultiWrite(pParse);
if( db->flags&SQLITE_RecTriggers ){
pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
}
sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
regR, nPkField, 0, OE_Replace,
(pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), -1);
seenReplace = 1;
break;
}
}
sqlite3VdbeResolveLabel(v, addrUniqueOk);
sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
}
if( ipkTop ){
sqlite3VdbeGoto(v, ipkTop+1);
sqlite3VdbeJumpHere(v, ipkBottom);
}
*pbMayReplace = seenReplace;
VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
}
/*
** This routine generates code to finish the INSERT or UPDATE operation
** that was started by a prior call to sqlite3GenerateConstraintChecks.
** A consecutive range of registers starting at regNewData contains the
** rowid and the content to be inserted.
**
** The arguments to this routine should be the same as the first six
** arguments to sqlite3GenerateConstraintChecks.
*/
void sqlite3CompleteInsertion(
Parse *pParse, /* The parser context */
Table *pTab, /* the table into which we are inserting */
int iDataCur, /* Cursor of the canonical data source */
int iIdxCur, /* First index cursor */
int regNewData, /* Range of content */
int *aRegIdx, /* Register used by each index. 0 for unused indices */
int isUpdate, /* True for UPDATE, False for INSERT */
int appendBias, /* True if this is likely to be an append */
int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
){
Vdbe *v; /* Prepared statements under construction */
Index *pIdx; /* An index being inserted or updated */
u8 pik_flags; /* flag values passed to the btree insert */
int regData; /* Content registers (after the rowid) */
int regRec; /* Register holding assembled record for the table */
int i; /* Loop counter */
u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */
v = sqlite3GetVdbe(pParse);
assert( v!=0 );
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
if( aRegIdx[i]==0 ) continue;
bAffinityDone = 1;
if( pIdx->pPartIdxWhere ){
sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
VdbeCoverage(v);
}
sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]);
pik_flags = 0;
if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
assert( pParse->nested==0 );
pik_flags |= OPFLAG_NCHANGE;
}
sqlite3VdbeChangeP5(v, pik_flags);
}
if( !HasRowid(pTab) ) return;
regData = regNewData + 1;
regRec = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0);
sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
if( pParse->nested ){
pik_flags = 0;
}else{
pik_flags = OPFLAG_NCHANGE;
pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
}
if( appendBias ){
pik_flags |= OPFLAG_APPEND;
}
if( useSeekResult ){
pik_flags |= OPFLAG_USESEEKRESULT;
}
sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
if( !pParse->nested ){
sqlite3VdbeChangeP4(v, -1, (char *)pTab, P4_TABLE);
}
sqlite3VdbeChangeP5(v, pik_flags);
}
/*
** Allocate cursors for the pTab table and all its indices and generate
** code to open and initialized those cursors.
**
** The cursor for the object that contains the complete data (normally
** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
** ROWID table) is returned in *piDataCur. The first index cursor is
** returned in *piIdxCur. The number of indices is returned.
**
** Use iBase as the first cursor (either the *piDataCur for rowid tables
** or the first index for WITHOUT ROWID tables) if it is non-negative.
** If iBase is negative, then allocate the next available cursor.
**
** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
** pTab->pIndex list.
**
** If pTab is a virtual table, then this routine is a no-op and the
** *piDataCur and *piIdxCur values are left uninitialized.
*/
int sqlite3OpenTableAndIndices(
Parse *pParse, /* Parsing context */
Table *pTab, /* Table to be opened */
int op, /* OP_OpenRead or OP_OpenWrite */
u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
int iBase, /* Use this for the table cursor, if there is one */
u8 *aToOpen, /* If not NULL: boolean for each table and index */
int *piDataCur, /* Write the database source cursor number here */
int *piIdxCur /* Write the first index cursor number here */
){
int i;
int iDb;
int iDataCur;
Index *pIdx;
Vdbe *v;
assert( op==OP_OpenRead || op==OP_OpenWrite );
assert( op==OP_OpenWrite || p5==0 );
if( IsVirtual(pTab) ){
/* This routine is a no-op for virtual tables. Leave the output
** variables *piDataCur and *piIdxCur uninitialized so that valgrind
** can detect if they are used by mistake in the caller. */
return 0;
}
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
v = sqlite3GetVdbe(pParse);
assert( v!=0 );
if( iBase<0 ) iBase = pParse->nTab;
iDataCur = iBase++;
if( piDataCur ) *piDataCur = iDataCur;
if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
}else{
sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
}
if( piIdxCur ) *piIdxCur = iBase;
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
int iIdxCur = iBase++;
assert( pIdx->pSchema==pTab->pSchema );
if( aToOpen==0 || aToOpen[i+1] ){
sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
VdbeComment((v, "%s", pIdx->zName));
}
if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
if( piDataCur ) *piDataCur = iIdxCur;
}else{
sqlite3VdbeChangeP5(v, p5);
}
}
if( iBase>pParse->nTab ) pParse->nTab = iBase;
return i;
}
#ifdef SQLITE_TEST
/*
** The following global variable is incremented whenever the
** transfer optimization is used. This is used for testing
** purposes only - to make sure the transfer optimization really
** is happening when it is supposed to.
*/
int sqlite3_xferopt_count;
#endif /* SQLITE_TEST */
#ifndef SQLITE_OMIT_XFER_OPT
/*
** Check to see if index pSrc is compatible as a source of data
** for index pDest in an insert transfer optimization. The rules
** for a compatible index:
**
** * The index is over the same set of columns
** * The same DESC and ASC markings occurs on all columns
** * The same onError processing (OE_Abort, OE_Ignore, etc)
** * The same collating sequence on each column
** * The index has the exact same WHERE clause
*/
static int xferCompatibleIndex(Index *pDest, Index *pSrc){
int i;
assert( pDest && pSrc );
assert( pDest->pTable!=pSrc->pTable );
if( pDest->nKeyCol!=pSrc->nKeyCol ){
return 0; /* Different number of columns */
}
if( pDest->onError!=pSrc->onError ){
return 0; /* Different conflict resolution strategies */
}
for(i=0; i<pSrc->nKeyCol; i++){
if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
return 0; /* Different columns indexed */
}
if( pSrc->aiColumn[i]==XN_EXPR ){
assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
if( sqlite3ExprCompare(pSrc->aColExpr->a[i].pExpr,
pDest->aColExpr->a[i].pExpr, -1)!=0 ){
return 0; /* Different expressions in the index */
}
}
if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
return 0; /* Different sort orders */
}
if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
return 0; /* Different collating sequences */
}
}
if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
return 0; /* Different WHERE clauses */
}
/* If no test above fails then the indices must be compatible */
return 1;
}
/*
** Attempt the transfer optimization on INSERTs of the form
**
** INSERT INTO tab1 SELECT * FROM tab2;
**
** The xfer optimization transfers raw records from tab2 over to tab1.
** Columns are not decoded and reassembled, which greatly improves
** performance. Raw index records are transferred in the same way.
**
** The xfer optimization is only attempted if tab1 and tab2 are compatible.
** There are lots of rules for determining compatibility - see comments
** embedded in the code for details.
**
** This routine returns TRUE if the optimization is guaranteed to be used.
** Sometimes the xfer optimization will only work if the destination table
** is empty - a factor that can only be determined at run-time. In that
** case, this routine generates code for the xfer optimization but also
** does a test to see if the destination table is empty and jumps over the
** xfer optimization code if the test fails. In that case, this routine
** returns FALSE so that the caller will know to go ahead and generate
** an unoptimized transfer. This routine also returns FALSE if there
** is no chance that the xfer optimization can be applied.
**
** This optimization is particularly useful at making VACUUM run faster.
*/
static int xferOptimization(
Parse *pParse, /* Parser context */
Table *pDest, /* The table we are inserting into */
Select *pSelect, /* A SELECT statement to use as the data source */
int onError, /* How to handle constraint errors */
int iDbDest /* The database of pDest */
){
sqlite3 *db = pParse->db;
ExprList *pEList; /* The result set of the SELECT */
Table *pSrc; /* The table in the FROM clause of SELECT */
Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
struct SrcList_item *pItem; /* An element of pSelect->pSrc */
int i; /* Loop counter */
int iDbSrc; /* The database of pSrc */
int iSrc, iDest; /* Cursors from source and destination */
int addr1, addr2; /* Loop addresses */
int emptyDestTest = 0; /* Address of test for empty pDest */
int emptySrcTest = 0; /* Address of test for empty pSrc */
Vdbe *v; /* The VDBE we are building */
int regAutoinc; /* Memory register used by AUTOINC */
int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
int regData, regRowid; /* Registers holding data and rowid */
if( pSelect==0 ){
return 0; /* Must be of the form INSERT INTO ... SELECT ... */
}
if( pParse->pWith || pSelect->pWith ){
/* Do not attempt to process this query if there are an WITH clauses
** attached to it. Proceeding may generate a false "no such table: xxx"
** error if pSelect reads from a CTE named "xxx". */
return 0;
}
if( sqlite3TriggerList(pParse, pDest) ){
return 0; /* tab1 must not have triggers */
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( pDest->tabFlags & TF_Virtual ){
return 0; /* tab1 must not be a virtual table */
}
#endif
if( onError==OE_Default ){
if( pDest->iPKey>=0 ) onError = pDest->keyConf;
if( onError==OE_Default ) onError = OE_Abort;
}
assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
if( pSelect->pSrc->nSrc!=1 ){
return 0; /* FROM clause must have exactly one term */
}
if( pSelect->pSrc->a[0].pSelect ){
return 0; /* FROM clause cannot contain a subquery */
}
if( pSelect->pWhere ){
return 0; /* SELECT may not have a WHERE clause */
}
if( pSelect->pOrderBy ){
return 0; /* SELECT may not have an ORDER BY clause */
}
/* Do not need to test for a HAVING clause. If HAVING is present but
** there is no ORDER BY, we will get an error. */
if( pSelect->pGroupBy ){
return 0; /* SELECT may not have a GROUP BY clause */
}
if( pSelect->pLimit ){
return 0; /* SELECT may not have a LIMIT clause */
}
assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
if( pSelect->pPrior ){
return 0; /* SELECT may not be a compound query */
}
if( pSelect->selFlags & SF_Distinct ){
return 0; /* SELECT may not be DISTINCT */
}
pEList = pSelect->pEList;
assert( pEList!=0 );
if( pEList->nExpr!=1 ){
return 0; /* The result set must have exactly one column */
}
assert( pEList->a[0].pExpr );
if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
return 0; /* The result set must be the special operator "*" */
}
/* At this point we have established that the statement is of the
** correct syntactic form to participate in this optimization. Now
** we have to check the semantics.
*/
pItem = pSelect->pSrc->a;
pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
if( pSrc==0 ){
return 0; /* FROM clause does not contain a real table */
}
if( pSrc==pDest ){
return 0; /* tab1 and tab2 may not be the same table */
}
if( HasRowid(pDest)!=HasRowid(pSrc) ){
return 0; /* source and destination must both be WITHOUT ROWID or not */
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( pSrc->tabFlags & TF_Virtual ){
return 0; /* tab2 must not be a virtual table */
}
#endif
if( pSrc->pSelect ){
return 0; /* tab2 may not be a view */
}
if( pDest->nCol!=pSrc->nCol ){
return 0; /* Number of columns must be the same in tab1 and tab2 */
}
if( pDest->iPKey!=pSrc->iPKey ){
return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
}
for(i=0; i<pDest->nCol; i++){
Column *pDestCol = &pDest->aCol[i];
Column *pSrcCol = &pSrc->aCol[i];
#ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
if( (db->flags & SQLITE_Vacuum)==0
&& (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
){
return 0; /* Neither table may have __hidden__ columns */
}
#endif
if( pDestCol->affinity!=pSrcCol->affinity ){
return 0; /* Affinity must be the same on all columns */
}
if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){
return 0; /* Collating sequence must be the same on all columns */
}
if( pDestCol->notNull && !pSrcCol->notNull ){
return 0; /* tab2 must be NOT NULL if tab1 is */
}
/* Default values for second and subsequent columns need to match. */
if( i>0 ){
assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN );
assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN );
if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0)
|| (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken,
pSrcCol->pDflt->u.zToken)!=0)
){
return 0; /* Default values must be the same for all columns */
}
}
}
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
if( IsUniqueIndex(pDestIdx) ){
destHasUniqueIdx = 1;
}
for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
}
if( pSrcIdx==0 ){
return 0; /* pDestIdx has no corresponding index in pSrc */
}
}
#ifndef SQLITE_OMIT_CHECK
if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
return 0; /* Tables have different CHECK constraints. Ticket #2252 */
}
#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
/* Disallow the transfer optimization if the destination table constains
** any foreign key constraints. This is more restrictive than necessary.
** But the main beneficiary of the transfer optimization is the VACUUM
** command, and the VACUUM command disables foreign key constraints. So
** the extra complication to make this rule less restrictive is probably
** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
*/
if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
return 0;
}
#endif
if( (db->flags & SQLITE_CountRows)!=0 ){
return 0; /* xfer opt does not play well with PRAGMA count_changes */
}
/* If we get this far, it means that the xfer optimization is at
** least a possibility, though it might only work if the destination
** table (tab1) is initially empty.
*/
#ifdef SQLITE_TEST
sqlite3_xferopt_count++;
#endif
iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
v = sqlite3GetVdbe(pParse);
sqlite3CodeVerifySchema(pParse, iDbSrc);
iSrc = pParse->nTab++;
iDest = pParse->nTab++;
regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
regData = sqlite3GetTempReg(pParse);
regRowid = sqlite3GetTempReg(pParse);
sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
assert( HasRowid(pDest) || destHasUniqueIdx );
if( (db->flags & SQLITE_Vacuum)==0 && (
(pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */
|| destHasUniqueIdx /* (2) */
|| (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */
)){
/* In some circumstances, we are able to run the xfer optimization
** only if the destination table is initially empty. Unless the
** SQLITE_Vacuum flag is set, this block generates code to make
** that determination. If SQLITE_Vacuum is set, then the destination
** table is always empty.
**
** Conditions under which the destination must be empty:
**
** (1) There is no INTEGER PRIMARY KEY but there are indices.
** (If the destination is not initially empty, the rowid fields
** of index entries might need to change.)
**
** (2) The destination has a unique index. (The xfer optimization
** is unable to test uniqueness.)
**
** (3) onError is something other than OE_Abort and OE_Rollback.
*/
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
sqlite3VdbeJumpHere(v, addr1);
}
if( HasRowid(pSrc) ){
sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
if( pDest->iPKey>=0 ){
addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
VdbeCoverage(v);
sqlite3RowidConstraint(pParse, onError, pDest);
sqlite3VdbeJumpHere(v, addr2);
autoIncStep(pParse, regAutoinc, regRowid);
}else if( pDest->pIndex==0 ){
addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
}else{
addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
assert( (pDest->tabFlags & TF_Autoincrement)==0 );
}
sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid,
(char*)pDest, P4_TABLE);
sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
}else{
sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
}
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
u8 idxInsFlags = 0;
for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
}
assert( pSrcIdx );
sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
VdbeComment((v, "%s", pSrcIdx->zName));
sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
VdbeComment((v, "%s", pDestIdx->zName));
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
if( db->flags & SQLITE_Vacuum ){
/* This INSERT command is part of a VACUUM operation, which guarantees
** that the destination table is empty. If all indexed columns use
** collation sequence BINARY, then it can also be assumed that the
** index will be populated by inserting keys in strictly sorted
** order. In this case, instead of seeking within the b-tree as part
** of every OP_IdxInsert opcode, an OP_Last is added before the
** OP_IdxInsert to seek to the point within the b-tree where each key
** should be inserted. This is faster.
**
** If any of the indexed columns use a collation sequence other than
** BINARY, this optimization is disabled. This is because the user
** might change the definition of a collation sequence and then run
** a VACUUM command. In that case keys may not be written in strictly
** sorted order. */
for(i=0; i<pSrcIdx->nColumn; i++){
const char *zColl = pSrcIdx->azColl[i];
assert( sqlite3_stricmp(sqlite3StrBINARY, zColl)!=0
|| sqlite3StrBINARY==zColl );
if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
}
if( i==pSrcIdx->nColumn ){
idxInsFlags = OPFLAG_USESEEKRESULT;
sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1);
}
}
if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){
idxInsFlags |= OPFLAG_NCHANGE;
}
sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
sqlite3VdbeChangeP5(v, idxInsFlags);
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
sqlite3VdbeJumpHere(v, addr1);
sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
}
if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
sqlite3ReleaseTempReg(pParse, regRowid);
sqlite3ReleaseTempReg(pParse, regData);
if( emptyDestTest ){
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
sqlite3VdbeJumpHere(v, emptyDestTest);
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
return 0;
}else{
return 1;
}
}
#endif /* SQLITE_OMIT_XFER_OPT */