mirror of
https://github.com/sqlite/sqlite.git
synced 2025-11-14 00:22:38 +03:00
1796 lines
64 KiB
C
1796 lines
64 KiB
C
/*
|
|
** 2010 February 1
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file contains the implementation of a write-ahead log (WAL) used in
|
|
** "journal_mode=WAL" mode.
|
|
**
|
|
** WRITE-AHEAD LOG (WAL) FILE FORMAT
|
|
**
|
|
** A WAL file consists of a header followed by zero or more "frames".
|
|
** Each frame records the revised content of a single page from the
|
|
** database file. All changes to the database are recorded by writing
|
|
** frames into the WAL. Transactions commit when a frame is written that
|
|
** contains a commit marker. A single WAL can and usually does record
|
|
** multiple transactions. Periodically, the content of the WAL is
|
|
** transferred back into the database file in an operation called a
|
|
** "checkpoint".
|
|
**
|
|
** A single WAL file can be used multiple times. In other words, the
|
|
** WAL can fill up with frames and then be checkpointed and then new
|
|
** frames can overwrite the old ones. A WAL always grows from beginning
|
|
** toward the end. Checksums and counters attached to each frame are
|
|
** used to determine which frames within the WAL are valid and which
|
|
** are leftovers from prior checkpoints.
|
|
**
|
|
** The WAL header is 24 bytes in size and consists of the following six
|
|
** big-endian 32-bit unsigned integer values:
|
|
**
|
|
** 0: Magic number. 0x377f0682 (big endian)
|
|
** 4: File format version. Currently 3007000
|
|
** 8: Database page size. Example: 1024
|
|
** 12: Checkpoint sequence number
|
|
** 16: Salt-1, random integer incremented with each checkpoint
|
|
** 20: Salt-2, a different random integer changing with each ckpt
|
|
**
|
|
** Immediately following the wal-header are zero or more frames. Each
|
|
** frame consists of a 24-byte frame-header followed by a <page-size> bytes
|
|
** of page data. The frame-header is broken into 6 big-endian 32-bit unsigned
|
|
** integer values, as follows:
|
|
**
|
|
** 0: Page number.
|
|
** 4: For commit records, the size of the database image in pages
|
|
** after the commit. For all other records, zero.
|
|
** 8: Salt-1 (copied from the header)
|
|
** 12: Salt-2 (copied from the header)
|
|
** 16: Checksum-1.
|
|
** 20: Checksum-2.
|
|
**
|
|
** A frame is considered valid if and only if the following conditions are
|
|
** true:
|
|
**
|
|
** (1) The salt-1 and salt-2 values in the frame-header match
|
|
** salt values in the wal-header
|
|
**
|
|
** (2) The checksum values in the final 8 bytes of the frame-header
|
|
** exactly match the checksum computed consecutively on
|
|
** (a) the first 16 bytes of the frame-header, and
|
|
** (b) the frame data.
|
|
**
|
|
** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
|
|
** WAL is transferred into the database, then the database is VFS.xSync-ed.
|
|
** The VFS.xSync operations server as write barriers - all writes launched
|
|
** before the xSync must complete before any write that launches after the
|
|
** xSync begins.
|
|
**
|
|
** After each checkpoint, the salt-1 value is incremented and the salt-2
|
|
** value is randomized. This prevents old and new frames in the WAL from
|
|
** being considered valid at the same time and being checkpointing together
|
|
** following a crash.
|
|
**
|
|
** READER ALGORITHM
|
|
**
|
|
** To read a page from the database (call it page number P), a reader
|
|
** first checks the WAL to see if it contains page P. If so, then the
|
|
** last valid instance of page P that is or is followed by a commit frame
|
|
** become the value read. If the WAL contains no copies of page P that
|
|
** are valid and which are or are followed by a commit frame, then page
|
|
** P is read from the database file.
|
|
**
|
|
** The reader algorithm in the previous paragraph works correctly, but
|
|
** because frames for page P can appear anywhere within the WAL, the
|
|
** reader has to scan the entire WAL looking for page P frames. If the
|
|
** WAL is large (multiple megabytes is typical) that scan can be slow,
|
|
** and read performance suffers. To overcome this problem, a separate
|
|
** data structure called the wal-index is maintained to expedite the
|
|
** search for frames of a particular page.
|
|
**
|
|
** WAL-INDEX FORMAT
|
|
**
|
|
** Conceptually, the wal-index is shared memory, though VFS implementations
|
|
** might choose to implement the wal-index using a mmapped file. Because
|
|
** the wal-index is shared memory, SQLite does not support journal_mode=WAL
|
|
** on a network filesystem. All users of the database must be able to
|
|
** share memory.
|
|
**
|
|
** The wal-index is transient. After a crash, the wal-index can (and should
|
|
** be) reconstructed from the original WAL file. In fact, the VFS is required
|
|
** to either truncate or zero the header of the wal-index when the last
|
|
** connection to it closes. Because the wal-index is transient, it can
|
|
** use an architecture-specific format; it does not have to be cross-platform.
|
|
** Hence, unlike the database and WAL file formats which store all values
|
|
** as big endian, the wal-index can store multi-byte values in the native
|
|
** byte order of the host computer.
|
|
**
|
|
** The purpose of the wal-index is to answer this question quickly: Given
|
|
** a page number P, return the index of the last frame for page P in the WAL,
|
|
** or return NULL if there are no frames for page P in the WAL.
|
|
**
|
|
** The wal-index consists of a header region, followed by an one or
|
|
** more index blocks.
|
|
**
|
|
** The wal-index header contains the total number of frames within the WAL
|
|
** in the the mxFrame field. Each index block contains information on
|
|
** HASHTABLE_NPAGE frames. Each index block contains two sections, a
|
|
** mapping which is a database page number for each frame, and a hash
|
|
** table used to look up frames by page number. The mapping section is
|
|
** an array of HASHTABLE_NPAGE 32-bit page numbers. The first entry on the
|
|
** array is the page number for the first frame; the second entry is the
|
|
** page number for the second frame; and so forth. The last index block
|
|
** holds a total of (mxFrame%HASHTABLE_NPAGE) page numbers. All index
|
|
** blocks other than the last are completely full with HASHTABLE_NPAGE
|
|
** page numbers. All index blocks are the same size; the mapping section
|
|
** of the last index block merely contains unused entries if mxFrame is
|
|
** not an even multiple of HASHTABLE_NPAGE.
|
|
**
|
|
** Even without using the hash table, the last frame for page P
|
|
** can be found by scanning the mapping sections of each index block
|
|
** starting with the last index block and moving toward the first, and
|
|
** within each index block, starting at the end and moving toward the
|
|
** beginning. The first entry that equals P corresponds to the frame
|
|
** holding the content for that page.
|
|
**
|
|
** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
|
|
** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
|
|
** hash table for each page number in the mapping section, so the hash
|
|
** table is never more than half full. The expected number of collisions
|
|
** prior to finding a match is 1. Each entry of the hash table is an
|
|
** 1-based index of an entry in the mapping section of the same
|
|
** index block. Let K be the 1-based index of the largest entry in
|
|
** the mapping section. (For index blocks other than the last, K will
|
|
** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
|
|
** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
|
|
** contain a value greater than K. Note that no hash table slot ever
|
|
** contains a zero value.
|
|
**
|
|
** To look for page P in the hash table, first compute a hash iKey on
|
|
** P as follows:
|
|
**
|
|
** iKey = (P * 383) % HASHTABLE_NSLOT
|
|
**
|
|
** Then start scanning entries of the hash table, starting with iKey
|
|
** (wrapping around to the beginning when the end of the hash table is
|
|
** reached) until an unused hash slot is found. Let the first unused slot
|
|
** be at index iUnused. (iUnused might be less than iKey if there was
|
|
** wrap-around.) Because the hash table is never more than half full,
|
|
** the search is guaranteed to eventually hit an unused entry. Let
|
|
** iMax be the value between iKey and iUnused, closest to iUnused,
|
|
** where aHash[iMax]==P. If there is no iMax entry (if there exists
|
|
** no hash slot such that aHash[i]==p) then page P is not in the
|
|
** current index block. Otherwise the iMax-th mapping entry of the
|
|
** current index block corresponds to the last entry that references
|
|
** page P.
|
|
**
|
|
** A hash search begins with the last index block and moves toward the
|
|
** first index block, looking for entries corresponding to page P. On
|
|
** average, only two or three slots in each index block need to be
|
|
** examined in order to either find the last entry for page P, or to
|
|
** establish that no such entry exists in the block. Each index block
|
|
** holds over 4000 entries. So two or three index blocks are sufficient
|
|
** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
|
|
** comparisons (on average) suffice to either locate a frame in the
|
|
** WAL or to establish that the frame does not exist in the WAL. This
|
|
** is much faster than scanning the entire 10MB WAL.
|
|
**
|
|
** Note that entries are added in order of increasing K. Hence, one
|
|
** reader might be using some value K0 and a second reader that started
|
|
** at a later time (after additional transactions were added to the WAL
|
|
** and to the wal-index) might be using a different value K1, where K1>K0.
|
|
** Both readers can use the same hash table and mapping section to get
|
|
** the correct result. There may be entries in the hash table with
|
|
** K>K0 but to the first reader, those entries will appear to be unused
|
|
** slots in the hash table and so the first reader will get an answer as
|
|
** if no values greater than K0 had ever been inserted into the hash table
|
|
** in the first place - which is what reader one wants. Meanwhile, the
|
|
** second reader using K1 will see additional values that were inserted
|
|
** later, which is exactly what reader two wants.
|
|
**
|
|
** When a rollback occurs, the value of K is decreased. Hash table entries
|
|
** that correspond to frames greater than the new K value are removed
|
|
** from the hash table at this point.
|
|
*/
|
|
#ifndef SQLITE_OMIT_WAL
|
|
|
|
#include "wal.h"
|
|
|
|
|
|
/* Object declarations */
|
|
typedef struct WalIndexHdr WalIndexHdr;
|
|
typedef struct WalIterator WalIterator;
|
|
|
|
|
|
/*
|
|
** The following object holds a copy of the wal-index header content.
|
|
**
|
|
** The actual header in the wal-index consists of two copies of this
|
|
** object.
|
|
*/
|
|
struct WalIndexHdr {
|
|
u32 iChange; /* Counter incremented each transaction */
|
|
u32 szPage; /* Database page size in bytes */
|
|
u32 mxFrame; /* Index of last valid frame in the WAL */
|
|
u32 nPage; /* Size of database in pages */
|
|
u32 aSalt[2]; /* Salt-1 and salt-2 values copied from WAL header */
|
|
u32 aCksum[2]; /* Checksum over all prior fields */
|
|
};
|
|
|
|
/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
|
|
** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
|
|
** only support mandatory file-locks, we do not read or write data
|
|
** from the region of the file on which locks are applied.
|
|
*/
|
|
#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2)
|
|
#define WALINDEX_LOCK_RESERVED 8
|
|
|
|
/* Size of header before each frame in wal */
|
|
#define WAL_FRAME_HDRSIZE 24
|
|
|
|
/* Size of write ahead log header */
|
|
#define WAL_HDRSIZE 24
|
|
|
|
/*
|
|
** Return the offset of frame iFrame in the write-ahead log file,
|
|
** assuming a database page size of szPage bytes. The offset returned
|
|
** is to the start of the write-ahead log frame-header.
|
|
*/
|
|
#define walFrameOffset(iFrame, szPage) ( \
|
|
WAL_HDRSIZE + ((iFrame)-1)*((szPage)+WAL_FRAME_HDRSIZE) \
|
|
)
|
|
|
|
/*
|
|
** An open write-ahead log file is represented by an instance of the
|
|
** following object.
|
|
*/
|
|
struct Wal {
|
|
sqlite3_vfs *pVfs; /* The VFS used to create pFd */
|
|
sqlite3_file *pDbFd; /* File handle for the database file */
|
|
sqlite3_file *pWalFd; /* File handle for WAL file */
|
|
u32 iCallback; /* Value to pass to log callback (or 0) */
|
|
int szWIndex; /* Size of the wal-index that is mapped in mem */
|
|
volatile u32 *pWiData; /* Pointer to wal-index content in memory */
|
|
u8 lockState; /* SQLITE_SHM_xxxx constant showing lock state */
|
|
u8 readerType; /* SQLITE_SHM_READ or SQLITE_SHM_READ_FULL */
|
|
u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
|
|
u8 isWindexOpen; /* True if ShmOpen() called on pDbFd */
|
|
WalIndexHdr hdr; /* Wal-index for current snapshot */
|
|
char *zWalName; /* Name of WAL file */
|
|
int szPage; /* Database page size */
|
|
u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
|
|
};
|
|
|
|
|
|
/*
|
|
** This structure is used to implement an iterator that loops through
|
|
** all frames in the WAL in database page order. Where two or more frames
|
|
** correspond to the same database page, the iterator visits only the
|
|
** frame most recently written to the WAL (in other words, the frame with
|
|
** the largest index).
|
|
**
|
|
** The internals of this structure are only accessed by:
|
|
**
|
|
** walIteratorInit() - Create a new iterator,
|
|
** walIteratorNext() - Step an iterator,
|
|
** walIteratorFree() - Free an iterator.
|
|
**
|
|
** This functionality is used by the checkpoint code (see walCheckpoint()).
|
|
*/
|
|
struct WalIterator {
|
|
int iPrior; /* Last result returned from the iterator */
|
|
int nSegment; /* Size of the aSegment[] array */
|
|
int nFinal; /* Elements in aSegment[nSegment-1] */
|
|
struct WalSegment {
|
|
int iNext; /* Next slot in aIndex[] not previously returned */
|
|
u8 *aIndex; /* i0, i1, i2... such that aPgno[iN] ascending */
|
|
u32 *aPgno; /* 256 page numbers. Pointer to Wal.pWiData */
|
|
} aSegment[1]; /* One for every 256 entries in the WAL */
|
|
};
|
|
|
|
|
|
/*
|
|
** Generate or extend an 8 byte checksum based on the data in
|
|
** array aByte[] and the initial values of aIn[0] and aIn[1] (or
|
|
** initial values of 0 and 0 if aIn==NULL).
|
|
**
|
|
** The checksum is written back into aOut[] before returning.
|
|
**
|
|
** nByte must be a positive multiple of 8.
|
|
*/
|
|
static void walChecksumBytes(
|
|
u8 *a, /* Content to be checksummed */
|
|
int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
|
|
const u32 *aIn, /* Initial checksum value input */
|
|
u32 *aOut /* OUT: Final checksum value output */
|
|
){
|
|
u32 s1, s2;
|
|
u8 *aEnd = (u8*)&a[nByte];
|
|
if( aIn ){
|
|
s1 = aIn[0];
|
|
s2 = aIn[1];
|
|
}else{
|
|
s1 = s2 = 0;
|
|
}
|
|
|
|
assert( nByte>=8 );
|
|
assert( (nByte&0x00000003)==0 );
|
|
|
|
do {
|
|
s1 += (a[0]<<24) + (a[1]<<16) + (a[2]<<8) + a[3] + s2;
|
|
s2 += (a[4]<<24) + (a[5]<<16) + (a[6]<<8) + a[7] + s1;
|
|
a += 8;
|
|
}while( a<aEnd );
|
|
aOut[0] = s1;
|
|
aOut[1] = s2;
|
|
}
|
|
|
|
/*
|
|
** Attempt to change the lock status.
|
|
**
|
|
** When changing the lock status to SQLITE_SHM_READ, store the
|
|
** type of reader lock (either SQLITE_SHM_READ or SQLITE_SHM_READ_FULL)
|
|
** in pWal->readerType.
|
|
*/
|
|
static int walSetLock(Wal *pWal, int desiredStatus){
|
|
int rc = SQLITE_OK; /* Return code */
|
|
if( pWal->exclusiveMode || pWal->lockState==desiredStatus ){
|
|
pWal->lockState = desiredStatus;
|
|
}else{
|
|
int got = pWal->lockState;
|
|
rc = sqlite3OsShmLock(pWal->pDbFd, desiredStatus, &got);
|
|
pWal->lockState = got;
|
|
if( got==SQLITE_SHM_READ_FULL || got==SQLITE_SHM_READ ){
|
|
pWal->readerType = got;
|
|
pWal->lockState = SQLITE_SHM_READ;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Write the header information in pWal->hdr into the wal-index.
|
|
**
|
|
** The checksum on pWal->hdr is updated before it is written.
|
|
*/
|
|
static void walIndexWriteHdr(Wal *pWal){
|
|
WalIndexHdr *aHdr;
|
|
walChecksumBytes((u8*)&pWal->hdr,
|
|
sizeof(pWal->hdr) - sizeof(pWal->hdr.aCksum),
|
|
0, pWal->hdr.aCksum);
|
|
aHdr = (WalIndexHdr*)pWal->pWiData;
|
|
memcpy(&aHdr[1], &pWal->hdr, sizeof(pWal->hdr));
|
|
sqlite3OsShmBarrier(pWal->pDbFd);
|
|
memcpy(&aHdr[0], &pWal->hdr, sizeof(pWal->hdr));
|
|
}
|
|
|
|
/*
|
|
** This function encodes a single frame header and writes it to a buffer
|
|
** supplied by the caller. A frame-header is made up of a series of
|
|
** 4-byte big-endian integers, as follows:
|
|
**
|
|
** 0: Page number.
|
|
** 4: For commit records, the size of the database image in pages
|
|
** after the commit. For all other records, zero.
|
|
** 8: Salt-1 (copied from the wal-header)
|
|
** 12: Salt-2 (copied from the wal-header)
|
|
** 16: Checksum-1.
|
|
** 20: Checksum-2.
|
|
*/
|
|
static void walEncodeFrame(
|
|
Wal *pWal, /* The write-ahead log */
|
|
u32 iPage, /* Database page number for frame */
|
|
u32 nTruncate, /* New db size (or 0 for non-commit frames) */
|
|
u8 *aData, /* Pointer to page data */
|
|
u8 *aFrame /* OUT: Write encoded frame here */
|
|
){
|
|
u32 aCksum[2];
|
|
assert( WAL_FRAME_HDRSIZE==24 );
|
|
sqlite3Put4byte(&aFrame[0], iPage);
|
|
sqlite3Put4byte(&aFrame[4], nTruncate);
|
|
memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
|
|
|
|
walChecksumBytes(aFrame, 16, 0, aCksum);
|
|
walChecksumBytes(aData, pWal->szPage, aCksum, aCksum);
|
|
|
|
sqlite3Put4byte(&aFrame[16], aCksum[0]);
|
|
sqlite3Put4byte(&aFrame[20], aCksum[1]);
|
|
}
|
|
|
|
/*
|
|
** Check to see if the frame with header in aFrame[] and content
|
|
** in aData[] is valid. If it is a valid frame, fill *piPage and
|
|
** *pnTruncate and return true. Return if the frame is not valid.
|
|
*/
|
|
static int walDecodeFrame(
|
|
Wal *pWal, /* The write-ahead log */
|
|
u32 *piPage, /* OUT: Database page number for frame */
|
|
u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
|
|
u8 *aData, /* Pointer to page data (for checksum) */
|
|
u8 *aFrame /* Frame data */
|
|
){
|
|
u32 aCksum[2];
|
|
assert( WAL_FRAME_HDRSIZE==24 );
|
|
|
|
/* A frame is only valid if the salt values in the frame-header
|
|
** match the salt values in the wal-header.
|
|
*/
|
|
if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
|
|
return 0;
|
|
}
|
|
|
|
/* A frame is only valid if a checksum of the first 16 bytes
|
|
** of the frame-header, and the frame-data matches
|
|
** the checksum in the last 8 bytes of the frame-header.
|
|
*/
|
|
walChecksumBytes(aFrame, 16, 0, aCksum);
|
|
walChecksumBytes(aData, pWal->szPage, aCksum, aCksum);
|
|
if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
|
|
|| aCksum[1]!=sqlite3Get4byte(&aFrame[20])
|
|
){
|
|
/* Checksum failed. */
|
|
return 0;
|
|
}
|
|
|
|
/* If we reach this point, the frame is valid. Return the page number
|
|
** and the new database size.
|
|
*/
|
|
*piPage = sqlite3Get4byte(&aFrame[0]);
|
|
*pnTruncate = sqlite3Get4byte(&aFrame[4]);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Define the parameters of the hash tables in the wal-index file. There
|
|
** is a hash-table following every HASHTABLE_NPAGE page numbers in the
|
|
** wal-index.
|
|
**
|
|
** Changing any of these constants will alter the wal-index format and
|
|
** create incompatibilities.
|
|
*/
|
|
#define HASHTABLE_NPAGE 4096 /* Must be power of 2 and multiple of 256 */
|
|
#define HASHTABLE_DATATYPE u16
|
|
#define HASHTABLE_HASH_1 383 /* Should be prime */
|
|
#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
|
|
#define HASHTABLE_NBYTE (sizeof(HASHTABLE_DATATYPE)*HASHTABLE_NSLOT)
|
|
|
|
/*
|
|
** Return the index in the Wal.pWiData array that corresponds to
|
|
** frame iFrame.
|
|
**
|
|
** Wal.pWiData is an array of u32 elements that is the wal-index.
|
|
** The array begins with a header and is then followed by alternating
|
|
** "map" and "hash-table" blocks. Each "map" block consists of
|
|
** HASHTABLE_NPAGE u32 elements which are page numbers corresponding
|
|
** to frames in the WAL file.
|
|
**
|
|
** This routine returns an index X such that Wal.pWiData[X] is part
|
|
** of a "map" block that contains the page number of the iFrame-th
|
|
** frame in the WAL file.
|
|
*/
|
|
static int walIndexEntry(u32 iFrame){
|
|
return (
|
|
(WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)/sizeof(u32)
|
|
+ (((iFrame-1)/HASHTABLE_NPAGE) * HASHTABLE_NBYTE)/sizeof(u32)
|
|
+ (iFrame-1)
|
|
);
|
|
}
|
|
|
|
/*
|
|
** Return the minimum mapping size in bytes that can be used to read the
|
|
** wal-index up to and including frame iFrame. If iFrame is the last frame
|
|
** in a block of 256 frames, the returned byte-count includes the space
|
|
** required by the 256-byte index block.
|
|
*/
|
|
static int walMappingSize(u32 iFrame){
|
|
const int nByte = (sizeof(u32)*HASHTABLE_NPAGE + HASHTABLE_NBYTE) ;
|
|
return ( WALINDEX_LOCK_OFFSET
|
|
+ WALINDEX_LOCK_RESERVED
|
|
+ nByte * ((iFrame + HASHTABLE_NPAGE - 1)/HASHTABLE_NPAGE)
|
|
);
|
|
}
|
|
|
|
/*
|
|
** Release our reference to the wal-index memory map, if we are holding
|
|
** it.
|
|
*/
|
|
static void walIndexUnmap(Wal *pWal){
|
|
if( pWal->pWiData ){
|
|
sqlite3OsShmRelease(pWal->pDbFd);
|
|
pWal->pWiData = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Map the wal-index file into memory if it isn't already.
|
|
**
|
|
** The reqSize parameter is the minimum required size of the mapping.
|
|
** A value of -1 means "don't care".
|
|
*/
|
|
static int walIndexMap(Wal *pWal, int reqSize){
|
|
int rc = SQLITE_OK;
|
|
if( pWal->pWiData==0 || reqSize>pWal->szWIndex ){
|
|
walIndexUnmap(pWal);
|
|
rc = sqlite3OsShmGet(pWal->pDbFd, reqSize, &pWal->szWIndex,
|
|
(void volatile**)(char volatile*)&pWal->pWiData);
|
|
if( rc==SQLITE_OK && pWal->pWiData==0 ){
|
|
/* Make sure pWal->pWiData is not NULL while we are holding the
|
|
** lock on the mapping. */
|
|
assert( pWal->szWIndex==0 );
|
|
pWal->pWiData = &pWal->iCallback;
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
walIndexUnmap(pWal);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Remap the wal-index so that the mapping covers the full size
|
|
** of the underlying file.
|
|
**
|
|
** If enlargeTo is non-negative, then increase the size of the underlying
|
|
** storage to be at least as big as enlargeTo before remapping.
|
|
*/
|
|
static int walIndexRemap(Wal *pWal, int enlargeTo){
|
|
int rc;
|
|
int sz;
|
|
rc = sqlite3OsShmSize(pWal->pDbFd, enlargeTo, &sz);
|
|
if( rc==SQLITE_OK && sz>pWal->szWIndex ){
|
|
walIndexUnmap(pWal);
|
|
rc = walIndexMap(pWal, sz);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Increment by which to increase the wal-index file size.
|
|
*/
|
|
#define WALINDEX_MMAP_INCREMENT (64*1024)
|
|
|
|
|
|
/*
|
|
** Compute a hash on a page number. The resulting hash value must land
|
|
** between 0 and (HASHTABLE_NSLOT-1).
|
|
*/
|
|
static int walHash(u32 iPage){
|
|
assert( iPage>0 );
|
|
assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
|
|
return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
|
|
}
|
|
static int walNextHash(int iPriorHash){
|
|
return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
|
|
}
|
|
|
|
|
|
/*
|
|
** Find the hash table and (section of the) page number array used to
|
|
** store data for WAL frame iFrame.
|
|
**
|
|
** Set output variable *paHash to point to the start of the hash table
|
|
** in the wal-index file. Set *piZero to one less than the frame
|
|
** number of the first frame indexed by this hash table. If a
|
|
** slot in the hash table is set to N, it refers to frame number
|
|
** (*piZero+N) in the log.
|
|
**
|
|
** Finally, set *paPgno such that for all frames F between (*piZero+1) and
|
|
** (*piZero+HASHTABLE_NPAGE), (*paPgno)[F] is the database page number
|
|
** associated with frame F.
|
|
*/
|
|
static void walHashFind(
|
|
Wal *pWal, /* WAL handle */
|
|
u32 iFrame, /* Find the hash table indexing this frame */
|
|
volatile HASHTABLE_DATATYPE **paHash, /* OUT: Pointer to hash index */
|
|
volatile u32 **paPgno, /* OUT: Pointer to page number array */
|
|
u32 *piZero /* OUT: Frame associated with *paPgno[0] */
|
|
){
|
|
u32 iZero;
|
|
volatile u32 *aPgno;
|
|
volatile HASHTABLE_DATATYPE *aHash;
|
|
|
|
iZero = ((iFrame-1)/HASHTABLE_NPAGE) * HASHTABLE_NPAGE;
|
|
aPgno = &pWal->pWiData[walIndexEntry(iZero+1)-iZero-1];
|
|
aHash = (HASHTABLE_DATATYPE *)&aPgno[iZero+HASHTABLE_NPAGE+1];
|
|
|
|
/* Assert that:
|
|
**
|
|
** + the mapping is large enough for this hash-table, and
|
|
**
|
|
** + that aPgno[iZero+1] really is the database page number associated
|
|
** with the first frame indexed by this hash table.
|
|
*/
|
|
assert( (u32*)(&aHash[HASHTABLE_NSLOT])<=&pWal->pWiData[pWal->szWIndex/4] );
|
|
assert( walIndexEntry(iZero+1)==(&aPgno[iZero+1] - pWal->pWiData) );
|
|
|
|
*paHash = aHash;
|
|
*paPgno = aPgno;
|
|
*piZero = iZero;
|
|
}
|
|
|
|
|
|
/*
|
|
** Set an entry in the wal-index that will map database page number
|
|
** pPage into WAL frame iFrame.
|
|
*/
|
|
static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
|
|
int rc; /* Return code */
|
|
int nMapping; /* Required mapping size in bytes */
|
|
|
|
/* Make sure the wal-index is mapped. Enlarge the mapping if required. */
|
|
nMapping = walMappingSize(iFrame);
|
|
rc = walIndexMap(pWal, -1);
|
|
while( rc==SQLITE_OK && nMapping>pWal->szWIndex ){
|
|
int nByte = pWal->szWIndex + WALINDEX_MMAP_INCREMENT;
|
|
rc = walIndexRemap(pWal, nByte);
|
|
}
|
|
|
|
/* Assuming the wal-index file was successfully mapped, find the hash
|
|
** table and section of of the page number array that pertain to frame
|
|
** iFrame of the WAL. Then populate the page number array and the hash
|
|
** table entry.
|
|
*/
|
|
if( rc==SQLITE_OK ){
|
|
int iKey; /* Hash table key */
|
|
u32 iZero; /* One less than frame number of aPgno[1] */
|
|
volatile u32 *aPgno; /* Page number array */
|
|
volatile HASHTABLE_DATATYPE *aHash; /* Hash table */
|
|
int idx; /* Value to write to hash-table slot */
|
|
TESTONLY( int nCollide = 0; /* Number of hash collisions */ )
|
|
|
|
walHashFind(pWal, iFrame, &aHash, &aPgno, &iZero);
|
|
idx = iFrame - iZero;
|
|
if( idx==1 ) memset((void*)aHash, 0, HASHTABLE_NBYTE);
|
|
assert( idx <= HASHTABLE_NSLOT/2 + 1 );
|
|
aPgno[iFrame] = iPage;
|
|
for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
|
|
assert( nCollide++ < idx );
|
|
}
|
|
aHash[iKey] = idx;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Recover the wal-index by reading the write-ahead log file.
|
|
** The caller must hold RECOVER lock on the wal-index file.
|
|
*/
|
|
static int walIndexRecover(Wal *pWal){
|
|
int rc; /* Return Code */
|
|
i64 nSize; /* Size of log file */
|
|
WalIndexHdr hdr; /* Recovered wal-index header */
|
|
|
|
assert( pWal->lockState>SQLITE_SHM_READ );
|
|
memset(&hdr, 0, sizeof(hdr));
|
|
|
|
rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
if( nSize>WAL_FRAME_HDRSIZE ){
|
|
u8 aBuf[WAL_HDRSIZE]; /* Buffer to load first frame header into */
|
|
u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
|
|
int szFrame; /* Number of bytes in buffer aFrame[] */
|
|
u8 *aData; /* Pointer to data part of aFrame buffer */
|
|
int iFrame; /* Index of last frame read */
|
|
i64 iOffset; /* Next offset to read from log file */
|
|
int szPage; /* Page size according to the log */
|
|
|
|
/* Read in the first frame header in the file (to determine the
|
|
** database page size).
|
|
*/
|
|
rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
/* If the database page size is not a power of two, or is greater than
|
|
** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid data.
|
|
*/
|
|
szPage = sqlite3Get4byte(&aBuf[8]);
|
|
if( szPage&(szPage-1) || szPage>SQLITE_MAX_PAGE_SIZE || szPage<512 ){
|
|
goto finished;
|
|
}
|
|
pWal->szPage = szPage;
|
|
pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
|
|
memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
|
|
|
|
/* Malloc a buffer to read frames into. */
|
|
szFrame = szPage + WAL_FRAME_HDRSIZE;
|
|
aFrame = (u8 *)sqlite3_malloc(szFrame);
|
|
if( !aFrame ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
aData = &aFrame[WAL_FRAME_HDRSIZE];
|
|
|
|
/* Read all frames from the log file. */
|
|
iFrame = 0;
|
|
for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
|
|
u32 pgno; /* Database page number for frame */
|
|
u32 nTruncate; /* dbsize field from frame header */
|
|
int isValid; /* True if this frame is valid */
|
|
|
|
/* Read and decode the next log frame. */
|
|
rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
|
|
if( rc!=SQLITE_OK ) break;
|
|
isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
|
|
if( !isValid ) break;
|
|
rc = walIndexAppend(pWal, ++iFrame, pgno);
|
|
if( rc!=SQLITE_OK ) break;
|
|
|
|
/* If nTruncate is non-zero, this is a commit record. */
|
|
if( nTruncate ){
|
|
hdr.mxFrame = iFrame;
|
|
hdr.nPage = nTruncate;
|
|
hdr.szPage = szPage;
|
|
}
|
|
}
|
|
|
|
sqlite3_free(aFrame);
|
|
}else{
|
|
memset(&hdr, 0, sizeof(hdr));
|
|
}
|
|
|
|
finished:
|
|
if( rc==SQLITE_OK && hdr.mxFrame==0 ){
|
|
rc = walIndexRemap(pWal, WALINDEX_MMAP_INCREMENT);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
memcpy(&pWal->hdr, &hdr, sizeof(hdr));
|
|
walIndexWriteHdr(pWal);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Close an open wal-index.
|
|
*/
|
|
static void walIndexClose(Wal *pWal, int isDelete){
|
|
if( pWal->isWindexOpen ){
|
|
int notUsed;
|
|
sqlite3OsShmLock(pWal->pDbFd, SQLITE_SHM_UNLOCK, ¬Used);
|
|
sqlite3OsShmClose(pWal->pDbFd, isDelete);
|
|
pWal->isWindexOpen = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Open a connection to the log file associated with database zDb. The
|
|
** database file does not actually have to exist. zDb is used only to
|
|
** figure out the name of the log file to open. If the log file does not
|
|
** exist it is created by this call.
|
|
**
|
|
** A SHARED lock should be held on the database file when this function
|
|
** is called. The purpose of this SHARED lock is to prevent any other
|
|
** client from unlinking the log or wal-index file. If another process
|
|
** were to do this just after this client opened one of these files, the
|
|
** system would be badly broken.
|
|
**
|
|
** If the log file is successfully opened, SQLITE_OK is returned and
|
|
** *ppWal is set to point to a new WAL handle. If an error occurs,
|
|
** an SQLite error code is returned and *ppWal is left unmodified.
|
|
*/
|
|
int sqlite3WalOpen(
|
|
sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
|
|
sqlite3_file *pDbFd, /* The open database file */
|
|
const char *zDbName, /* Name of the database file */
|
|
Wal **ppWal /* OUT: Allocated Wal handle */
|
|
){
|
|
int rc; /* Return Code */
|
|
Wal *pRet; /* Object to allocate and return */
|
|
int flags; /* Flags passed to OsOpen() */
|
|
char *zWal; /* Name of write-ahead log file */
|
|
int nWal; /* Length of zWal in bytes */
|
|
|
|
assert( zDbName && zDbName[0] );
|
|
assert( pDbFd );
|
|
|
|
/* Allocate an instance of struct Wal to return. */
|
|
*ppWal = 0;
|
|
nWal = sqlite3Strlen30(zDbName) + 5;
|
|
pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile + nWal);
|
|
if( !pRet ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
pRet->pVfs = pVfs;
|
|
pRet->pWalFd = (sqlite3_file *)&pRet[1];
|
|
pRet->pDbFd = pDbFd;
|
|
sqlite3_randomness(8, &pRet->hdr.aSalt);
|
|
pRet->zWalName = zWal = pVfs->szOsFile + (char*)pRet->pWalFd;
|
|
sqlite3_snprintf(nWal, zWal, "%s-wal", zDbName);
|
|
rc = sqlite3OsShmOpen(pDbFd);
|
|
|
|
/* Open file handle on the write-ahead log file. */
|
|
if( rc==SQLITE_OK ){
|
|
pRet->isWindexOpen = 1;
|
|
flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_JOURNAL);
|
|
rc = sqlite3OsOpen(pVfs, zWal, pRet->pWalFd, flags, &flags);
|
|
}
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
walIndexClose(pRet, 0);
|
|
sqlite3OsClose(pRet->pWalFd);
|
|
sqlite3_free(pRet);
|
|
}else{
|
|
*ppWal = pRet;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Find the smallest page number out of all pages held in the WAL that
|
|
** has not been returned by any prior invocation of this method on the
|
|
** same WalIterator object. Write into *piFrame the frame index where
|
|
** that page was last written into the WAL. Write into *piPage the page
|
|
** number.
|
|
**
|
|
** Return 0 on success. If there are no pages in the WAL with a page
|
|
** number larger than *piPage, then return 1.
|
|
*/
|
|
static int walIteratorNext(
|
|
WalIterator *p, /* Iterator */
|
|
u32 *piPage, /* OUT: The page number of the next page */
|
|
u32 *piFrame /* OUT: Wal frame index of next page */
|
|
){
|
|
u32 iMin; /* Result pgno must be greater than iMin */
|
|
u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
|
|
int i; /* For looping through segments */
|
|
int nBlock = p->nFinal; /* Number of entries in current segment */
|
|
|
|
iMin = p->iPrior;
|
|
assert( iMin<0xffffffff );
|
|
for(i=p->nSegment-1; i>=0; i--){
|
|
struct WalSegment *pSegment = &p->aSegment[i];
|
|
while( pSegment->iNext<nBlock ){
|
|
u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
|
|
if( iPg>iMin ){
|
|
if( iPg<iRet ){
|
|
iRet = iPg;
|
|
*piFrame = i*256 + 1 + pSegment->aIndex[pSegment->iNext];
|
|
}
|
|
break;
|
|
}
|
|
pSegment->iNext++;
|
|
}
|
|
nBlock = 256;
|
|
}
|
|
|
|
*piPage = p->iPrior = iRet;
|
|
return (iRet==0xFFFFFFFF);
|
|
}
|
|
|
|
|
|
static void walMergesort8(
|
|
Pgno *aContent, /* Pages in wal */
|
|
u8 *aBuffer, /* Buffer of at least *pnList items to use */
|
|
u8 *aList, /* IN/OUT: List to sort */
|
|
int *pnList /* IN/OUT: Number of elements in aList[] */
|
|
){
|
|
int nList = *pnList;
|
|
if( nList>1 ){
|
|
int nLeft = nList / 2; /* Elements in left list */
|
|
int nRight = nList - nLeft; /* Elements in right list */
|
|
u8 *aLeft = aList; /* Left list */
|
|
u8 *aRight = &aList[nLeft]; /* Right list */
|
|
int iLeft = 0; /* Current index in aLeft */
|
|
int iRight = 0; /* Current index in aright */
|
|
int iOut = 0; /* Current index in output buffer */
|
|
|
|
/* TODO: Change to non-recursive version. */
|
|
walMergesort8(aContent, aBuffer, aLeft, &nLeft);
|
|
walMergesort8(aContent, aBuffer, aRight, &nRight);
|
|
|
|
while( iRight<nRight || iLeft<nLeft ){
|
|
u8 logpage;
|
|
Pgno dbpage;
|
|
|
|
if( (iLeft<nLeft)
|
|
&& (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
|
|
){
|
|
logpage = aLeft[iLeft++];
|
|
}else{
|
|
logpage = aRight[iRight++];
|
|
}
|
|
dbpage = aContent[logpage];
|
|
|
|
aBuffer[iOut++] = logpage;
|
|
if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
|
|
|
|
assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
|
|
assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
|
|
}
|
|
memcpy(aList, aBuffer, sizeof(aList[0])*iOut);
|
|
*pnList = iOut;
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
{
|
|
int i;
|
|
for(i=1; i<*pnList; i++){
|
|
assert( aContent[aList[i]] > aContent[aList[i-1]] );
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Map the wal-index into memory owned by this thread, if it is not
|
|
** mapped already. Then construct a WalInterator object that can be
|
|
** used to loop over all pages in the WAL in ascending order.
|
|
**
|
|
** On success, make *pp point to the newly allocated WalInterator object
|
|
** return SQLITE_OK. Otherwise, leave *pp unchanged and return an error
|
|
** code.
|
|
**
|
|
** The calling routine should invoke walIteratorFree() to destroy the
|
|
** WalIterator object when it has finished with it. The caller must
|
|
** also unmap the wal-index. But the wal-index must not be unmapped
|
|
** prior to the WalIterator object being destroyed.
|
|
*/
|
|
static int walIteratorInit(Wal *pWal, WalIterator **pp){
|
|
u32 *aData; /* Content of the wal-index file */
|
|
WalIterator *p; /* Return value */
|
|
int nSegment; /* Number of segments to merge */
|
|
u32 iLast; /* Last frame in log */
|
|
int nByte; /* Number of bytes to allocate */
|
|
int i; /* Iterator variable */
|
|
int nFinal; /* Number of unindexed entries */
|
|
u8 *aTmp; /* Temp space used by merge-sort */
|
|
int rc; /* Return code of walIndexMap() */
|
|
u8 *aSpace; /* Surplus space on the end of the allocation */
|
|
|
|
/* Make sure the wal-index is mapped into local memory */
|
|
rc = walIndexMap(pWal, walMappingSize(pWal->hdr.mxFrame));
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
/* This routine only runs while holding SQLITE_SHM_CHECKPOINT. No other
|
|
** thread is able to write to shared memory while this routine is
|
|
** running (or, indeed, while the WalIterator object exists). Hence,
|
|
** we can cast off the volatile qualifacation from shared memory
|
|
*/
|
|
assert( pWal->lockState==SQLITE_SHM_CHECKPOINT );
|
|
aData = (u32*)pWal->pWiData;
|
|
|
|
/* Allocate space for the WalIterator object */
|
|
iLast = pWal->hdr.mxFrame;
|
|
nSegment = (iLast >> 8) + 1;
|
|
nFinal = (iLast & 0x000000FF);
|
|
nByte = sizeof(WalIterator) + (nSegment+1)*(sizeof(struct WalSegment)+256);
|
|
p = (WalIterator *)sqlite3_malloc(nByte);
|
|
if( !p ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memset(p, 0, nByte);
|
|
|
|
/* Initialize the WalIterator object. Each 256-entry segment is
|
|
** presorted in order to make iterating through all entries much
|
|
** faster.
|
|
*/
|
|
p->nSegment = nSegment;
|
|
aSpace = (u8 *)&p->aSegment[nSegment];
|
|
aTmp = &aSpace[nSegment*256];
|
|
for(i=0; i<nSegment; i++){
|
|
int j;
|
|
int nIndex = (i==nSegment-1) ? nFinal : 256;
|
|
p->aSegment[i].aPgno = &aData[walIndexEntry(i*256+1)];
|
|
p->aSegment[i].aIndex = aSpace;
|
|
for(j=0; j<nIndex; j++){
|
|
aSpace[j] = j;
|
|
}
|
|
walMergesort8(p->aSegment[i].aPgno, aTmp, aSpace, &nIndex);
|
|
memset(&aSpace[nIndex], aSpace[nIndex-1], 256-nIndex);
|
|
aSpace += 256;
|
|
p->nFinal = nIndex;
|
|
}
|
|
|
|
/* Return the fully initializd WalIterator object */
|
|
*pp = p;
|
|
return SQLITE_OK ;
|
|
}
|
|
|
|
/*
|
|
** Free an iterator allocated by walIteratorInit().
|
|
*/
|
|
static void walIteratorFree(WalIterator *p){
|
|
sqlite3_free(p);
|
|
}
|
|
|
|
/*
|
|
** Checkpoint the contents of the log file.
|
|
*/
|
|
static int walCheckpoint(
|
|
Wal *pWal, /* Wal connection */
|
|
int sync_flags, /* Flags for OsSync() (or 0) */
|
|
int nBuf, /* Size of zBuf in bytes */
|
|
u8 *zBuf /* Temporary buffer to use */
|
|
){
|
|
int rc; /* Return code */
|
|
int szPage = pWal->hdr.szPage; /* Database page-size */
|
|
WalIterator *pIter = 0; /* Wal iterator context */
|
|
u32 iDbpage = 0; /* Next database page to write */
|
|
u32 iFrame = 0; /* Wal frame containing data for iDbpage */
|
|
|
|
/* Allocate the iterator */
|
|
rc = walIteratorInit(pWal, &pIter);
|
|
if( rc!=SQLITE_OK || pWal->hdr.mxFrame==0 ){
|
|
goto out;
|
|
}
|
|
|
|
if( pWal->hdr.szPage!=nBuf ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto out;
|
|
}
|
|
|
|
/* Sync the log file to disk */
|
|
if( sync_flags ){
|
|
rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
|
|
if( rc!=SQLITE_OK ) goto out;
|
|
}
|
|
|
|
/* Iterate through the contents of the log, copying data to the db file. */
|
|
while( 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
|
|
rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage,
|
|
walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE
|
|
);
|
|
if( rc!=SQLITE_OK ) goto out;
|
|
rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, (iDbpage-1)*szPage);
|
|
if( rc!=SQLITE_OK ) goto out;
|
|
}
|
|
|
|
/* Truncate the database file */
|
|
rc = sqlite3OsTruncate(pWal->pDbFd, ((i64)pWal->hdr.nPage*(i64)szPage));
|
|
if( rc!=SQLITE_OK ) goto out;
|
|
|
|
/* Sync the database file. If successful, update the wal-index. */
|
|
if( sync_flags ){
|
|
rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
|
|
if( rc!=SQLITE_OK ) goto out;
|
|
}
|
|
pWal->hdr.mxFrame = 0;
|
|
pWal->nCkpt++;
|
|
sqlite3Put4byte((u8*)pWal->hdr.aSalt,
|
|
1 + sqlite3Get4byte((u8*)pWal->hdr.aSalt));
|
|
sqlite3_randomness(4, &pWal->hdr.aSalt[1]);
|
|
walIndexWriteHdr(pWal);
|
|
|
|
out:
|
|
walIteratorFree(pIter);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Close a connection to a log file.
|
|
*/
|
|
int sqlite3WalClose(
|
|
Wal *pWal, /* Wal to close */
|
|
int sync_flags, /* Flags to pass to OsSync() (or 0) */
|
|
int nBuf,
|
|
u8 *zBuf /* Buffer of at least nBuf bytes */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
if( pWal ){
|
|
int isDelete = 0; /* True to unlink wal and wal-index files */
|
|
|
|
/* If an EXCLUSIVE lock can be obtained on the database file (using the
|
|
** ordinary, rollback-mode locking methods, this guarantees that the
|
|
** connection associated with this log file is the only connection to
|
|
** the database. In this case checkpoint the database and unlink both
|
|
** the wal and wal-index files.
|
|
**
|
|
** The EXCLUSIVE lock is not released before returning.
|
|
*/
|
|
rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3WalCheckpoint(pWal, sync_flags, nBuf, zBuf, 0, 0);
|
|
if( rc==SQLITE_OK ){
|
|
isDelete = 1;
|
|
}
|
|
walIndexUnmap(pWal);
|
|
}
|
|
|
|
walIndexClose(pWal, isDelete);
|
|
sqlite3OsClose(pWal->pWalFd);
|
|
if( isDelete ){
|
|
sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
|
|
}
|
|
sqlite3_free(pWal);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Try to read the wal-index header. Return 0 on success and 1 if
|
|
** there is a problem.
|
|
**
|
|
** The wal-index is in shared memory. Another thread or process might
|
|
** be writing the header at the same time this procedure is trying to
|
|
** read it, which might result in inconsistency. A dirty read is detected
|
|
** by verifying a checksum on the header.
|
|
**
|
|
** If and only if the read is consistent and the header is different from
|
|
** pWal->hdr, then pWal->hdr is updated to the content of the new header
|
|
** and *pChanged is set to 1.
|
|
**
|
|
** If the checksum cannot be verified return non-zero. If the header
|
|
** is read successfully and the checksum verified, return zero.
|
|
*/
|
|
int walIndexTryHdr(Wal *pWal, int *pChanged){
|
|
u32 aCksum[2]; /* Checksum on the header content */
|
|
WalIndexHdr h1, h2; /* Two copies of the header content */
|
|
WalIndexHdr *aHdr; /* Header in shared memory */
|
|
|
|
assert( pWal->pWiData );
|
|
if( pWal->szWIndex==0 ){
|
|
/* The wal-index is of size 0 bytes. This is handled in the same way
|
|
** as an invalid header. The caller will run recovery to construct
|
|
** a valid wal-index file before accessing the database.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/* Read the header. The caller may or may not have an exclusive
|
|
** (WRITE, PENDING, CHECKPOINT or RECOVER) lock on the wal-index
|
|
** file, meaning it is possible that an inconsistent snapshot is read
|
|
** from the file. If this happens, return non-zero.
|
|
**
|
|
** There are two copies of the header at the beginning of the wal-index.
|
|
** When reading, read [0] first then [1]. Writes are in the reverse order.
|
|
** Memory barriers are used to prevent the compiler or the hardware from
|
|
** reordering the reads and writes.
|
|
*/
|
|
aHdr = (WalIndexHdr*)pWal->pWiData;
|
|
memcpy(&h1, &aHdr[0], sizeof(h1));
|
|
sqlite3OsShmBarrier(pWal->pDbFd);
|
|
memcpy(&h2, &aHdr[1], sizeof(h2));
|
|
|
|
if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
|
|
return 1; /* Dirty read */
|
|
}
|
|
if( h1.szPage==0 ){
|
|
return 1; /* Malformed header - probably all zeros */
|
|
}
|
|
walChecksumBytes((u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
|
|
if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
|
|
return 1; /* Checksum does not match */
|
|
}
|
|
|
|
if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
|
|
*pChanged = 1;
|
|
memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
|
|
pWal->szPage = pWal->hdr.szPage;
|
|
}
|
|
|
|
/* The header was successfully read. Return zero. */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Read the wal-index header from the wal-index and into pWal->hdr.
|
|
** If the wal-header appears to be corrupt, try to recover the log
|
|
** before returning.
|
|
**
|
|
** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
|
|
** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
|
|
** to 0.
|
|
**
|
|
** This routine also maps the wal-index content into memory and assigns
|
|
** ownership of that mapping to the current thread. In some implementations,
|
|
** only one thread at a time can hold a mapping of the wal-index. Hence,
|
|
** the caller should strive to invoke walIndexUnmap() as soon as possible
|
|
** after this routine returns.
|
|
**
|
|
** If the wal-index header is successfully read, return SQLITE_OK.
|
|
** Otherwise an SQLite error code.
|
|
*/
|
|
static int walIndexReadHdr(Wal *pWal, int *pChanged){
|
|
int rc; /* Return code */
|
|
int lockState; /* pWal->lockState before running recovery */
|
|
|
|
assert( pWal->lockState>=SQLITE_SHM_READ );
|
|
assert( pChanged );
|
|
rc = walIndexMap(pWal, -1);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
/* First attempt to read the wal-index header. This may fail for one
|
|
** of two reasons: (a) the wal-index does not yet exist or has been
|
|
** corrupted and needs to be constructed by running recovery, or (b)
|
|
** the caller is only holding a READ lock and made a dirty read of
|
|
** the wal-index header.
|
|
**
|
|
** A dirty read of the wal-index header occurs if another thread or
|
|
** process happens to be writing to the wal-index header at roughly
|
|
** the same time as this thread is reading it. In this case it is
|
|
** possible that an inconsistent header is read (which is detected
|
|
** using the header checksum mechanism).
|
|
*/
|
|
if( walIndexTryHdr(pWal, pChanged)==0 ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* If the first attempt to read the header failed, lock the wal-index
|
|
** file with an exclusive lock and try again. If the header checksum
|
|
** verification fails again, we can be sure that it is not simply a
|
|
** dirty read, but that the wal-index really does need to be
|
|
** reconstructed by running log recovery.
|
|
**
|
|
** In the paragraph above, an "exclusive lock" may be any of WRITE,
|
|
** PENDING, CHECKPOINT or RECOVER. If any of these are already held,
|
|
** no locking operations are required. If the caller currently holds
|
|
** a READ lock, then upgrade to a RECOVER lock before re-reading the
|
|
** wal-index header and revert to a READ lock before returning.
|
|
*/
|
|
lockState = pWal->lockState;
|
|
if( lockState>SQLITE_SHM_READ
|
|
|| SQLITE_OK==(rc = walSetLock(pWal, SQLITE_SHM_RECOVER))
|
|
){
|
|
if( walIndexTryHdr(pWal, pChanged) ){
|
|
*pChanged = 1;
|
|
rc = walIndexRecover(pWal);
|
|
}
|
|
if( lockState==SQLITE_SHM_READ ){
|
|
walSetLock(pWal, SQLITE_SHM_READ);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Take a snapshot of the state of the WAL and wal-index for the current
|
|
** instant in time. The current thread will continue to use this snapshot.
|
|
** Other threads might containing appending to the WAL and wal-index but
|
|
** the extra content appended will be ignored by the current thread.
|
|
**
|
|
** A snapshot is like a read transaction.
|
|
**
|
|
** No other threads are allowed to run a checkpoint while this thread is
|
|
** holding the snapshot since a checkpoint would remove data out from under
|
|
** this thread.
|
|
**
|
|
** If this call obtains a new read-lock and the database contents have been
|
|
** modified since the most recent call to WalCloseSnapshot() on this Wal
|
|
** connection, then *pChanged is set to 1 before returning. Otherwise, it
|
|
** is left unmodified. This is used by the pager layer to determine whether
|
|
** or not any cached pages may be safely reused.
|
|
*/
|
|
int sqlite3WalOpenSnapshot(Wal *pWal, int *pChanged){
|
|
int rc; /* Return code */
|
|
|
|
rc = walSetLock(pWal, SQLITE_SHM_READ);
|
|
assert( rc!=SQLITE_OK || pWal->lockState==SQLITE_SHM_READ );
|
|
|
|
if( rc==SQLITE_OK ){
|
|
rc = walIndexReadHdr(pWal, pChanged);
|
|
if( rc!=SQLITE_OK ){
|
|
/* An error occured while attempting log recovery. */
|
|
sqlite3WalCloseSnapshot(pWal);
|
|
}
|
|
}
|
|
|
|
walIndexUnmap(pWal);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Unlock the current snapshot.
|
|
*/
|
|
void sqlite3WalCloseSnapshot(Wal *pWal){
|
|
assert( pWal->lockState==SQLITE_SHM_READ
|
|
|| pWal->lockState==SQLITE_SHM_UNLOCK
|
|
);
|
|
walSetLock(pWal, SQLITE_SHM_UNLOCK);
|
|
}
|
|
|
|
/*
|
|
** Read a page from the log, if it is present.
|
|
*/
|
|
int sqlite3WalRead(
|
|
Wal *pWal, /* WAL handle */
|
|
Pgno pgno, /* Database page number to read data for */
|
|
int *pInWal, /* OUT: True if data is read from WAL */
|
|
int nOut, /* Size of buffer pOut in bytes */
|
|
u8 *pOut /* Buffer to write page data to */
|
|
){
|
|
int rc; /* Return code */
|
|
u32 iRead = 0; /* If !=0, WAL frame to return data from */
|
|
u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
|
|
int iHash; /* Used to loop through N hash tables */
|
|
|
|
/* If the "last page" field of the wal-index header snapshot is 0, then
|
|
** no data will be read from the wal under any circumstances. Return early
|
|
** in this case to avoid the walIndexMap/Unmap overhead.
|
|
*/
|
|
if( iLast==0 ){
|
|
*pInWal = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Ensure the wal-index is mapped. */
|
|
assert( pWal->lockState==SQLITE_SHM_READ||pWal->lockState==SQLITE_SHM_WRITE );
|
|
rc = walIndexMap(pWal, walMappingSize(iLast));
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
/* Search the hash table or tables for an entry matching page number
|
|
** pgno. Each iteration of the following for() loop searches one
|
|
** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
|
|
**
|
|
** This code may run concurrently to the code in walIndexAppend()
|
|
** that adds entries to the wal-index (and possibly to this hash
|
|
** table). This means the value just read from the hash
|
|
** slot (aHash[iKey]) may have been added before or after the
|
|
** current read transaction was opened. Values added after the
|
|
** read transaction was opened may have been written incorrectly -
|
|
** i.e. these slots may contain garbage data. However, we assume
|
|
** that any slots written before the current read transaction was
|
|
** opened remain unmodified.
|
|
**
|
|
** For the reasons above, the if(...) condition featured in the inner
|
|
** loop of the following block is more stringent that would be required
|
|
** if we had exclusive access to the hash-table:
|
|
**
|
|
** (aPgno[iFrame]==pgno):
|
|
** This condition filters out normal hash-table collisions.
|
|
**
|
|
** (iFrame<=iLast):
|
|
** This condition filters out entries that were added to the hash
|
|
** table after the current read-transaction had started.
|
|
**
|
|
** (iFrame>iRead):
|
|
** This filters out a dangerous class of garbage data. The
|
|
** garbage hash slot may refer to a frame with the correct page
|
|
** number, but not the most recent version of the frame. For
|
|
** example, if at the start of the read-transaction the WAL
|
|
** contains three copies of the desired page in frames 2, 3 and 4,
|
|
** the hash table may contain the following:
|
|
**
|
|
** { ..., 2, 3, 4, 99, 99, ..... }
|
|
**
|
|
** The correct answer is to read data from frame 4. But a
|
|
** dirty-read may potentially cause the hash-table to appear as
|
|
** follows to the reader:
|
|
**
|
|
** { ..., 2, 3, 4, 3, 99, ..... }
|
|
**
|
|
** Without this part of the if(...) clause, the reader might
|
|
** incorrectly read data from frame 3 instead of 4. This would be
|
|
** an error.
|
|
**
|
|
** It is not actually clear to the developers that such a dirty-read
|
|
** can occur. But if it does, it should not cause any problems.
|
|
*/
|
|
for(iHash=iLast; iHash>0 && iRead==0; iHash-=HASHTABLE_NPAGE){
|
|
volatile HASHTABLE_DATATYPE *aHash; /* Pointer to hash table */
|
|
volatile u32 *aPgno; /* Pointer to array of page numbers */
|
|
u32 iZero; /* Frame number corresponding to aPgno[0] */
|
|
int iKey; /* Hash slot index */
|
|
int mxHash; /* upper bound on aHash[] values */
|
|
|
|
walHashFind(pWal, iHash, &aHash, &aPgno, &iZero);
|
|
mxHash = iLast - iZero;
|
|
if( mxHash > HASHTABLE_NPAGE ) mxHash = HASHTABLE_NPAGE;
|
|
for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
|
|
u32 iFrame = aHash[iKey] + iZero;
|
|
if( iFrame<=iLast && aPgno[iFrame]==pgno && iFrame>iRead ){
|
|
iRead = iFrame;
|
|
}
|
|
}
|
|
}
|
|
assert( iRead==0 || pWal->pWiData[walIndexEntry(iRead)]==pgno );
|
|
|
|
#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
|
|
/* If expensive assert() statements are available, do a linear search
|
|
** of the wal-index file content. Make sure the results agree with the
|
|
** result obtained using the hash indexes above. */
|
|
{
|
|
u32 iRead2 = 0;
|
|
u32 iTest;
|
|
for(iTest=iLast; iTest>0; iTest--){
|
|
if( pWal->pWiData[walIndexEntry(iTest)]==pgno ){
|
|
iRead2 = iTest;
|
|
break;
|
|
}
|
|
}
|
|
assert( iRead==iRead2 );
|
|
}
|
|
#endif
|
|
|
|
/* If iRead is non-zero, then it is the log frame number that contains the
|
|
** required page. Read and return data from the log file.
|
|
*/
|
|
walIndexUnmap(pWal);
|
|
if( iRead ){
|
|
i64 iOffset = walFrameOffset(iRead, pWal->hdr.szPage) + WAL_FRAME_HDRSIZE;
|
|
*pInWal = 1;
|
|
return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
|
|
}
|
|
|
|
*pInWal = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
** Set *pPgno to the size of the database file (or zero, if unknown).
|
|
*/
|
|
void sqlite3WalDbsize(Wal *pWal, Pgno *pPgno){
|
|
assert( pWal->lockState==SQLITE_SHM_READ
|
|
|| pWal->lockState==SQLITE_SHM_WRITE );
|
|
*pPgno = pWal->hdr.nPage;
|
|
}
|
|
|
|
/*
|
|
** This function returns SQLITE_OK if the caller may write to the database.
|
|
** Otherwise, if the caller is operating on a snapshot that has already
|
|
** been overwritten by another writer, SQLITE_BUSY is returned.
|
|
*/
|
|
int sqlite3WalWriteLock(Wal *pWal, int op){
|
|
int rc = SQLITE_OK;
|
|
if( op ){
|
|
assert( pWal->lockState==SQLITE_SHM_READ );
|
|
rc = walSetLock(pWal, SQLITE_SHM_WRITE);
|
|
|
|
/* If this connection is not reading the most recent database snapshot,
|
|
** it is not possible to write to the database. In this case release
|
|
** the write locks and return SQLITE_BUSY.
|
|
*/
|
|
if( rc==SQLITE_OK ){
|
|
rc = walIndexMap(pWal, sizeof(WalIndexHdr));
|
|
if( rc==SQLITE_OK
|
|
&& memcmp(&pWal->hdr, (void*)pWal->pWiData, sizeof(WalIndexHdr))
|
|
){
|
|
rc = SQLITE_BUSY;
|
|
}
|
|
walIndexUnmap(pWal);
|
|
if( rc!=SQLITE_OK ){
|
|
walSetLock(pWal, SQLITE_SHM_READ);
|
|
}
|
|
}
|
|
}else if( pWal->lockState==SQLITE_SHM_WRITE ){
|
|
rc = walSetLock(pWal, SQLITE_SHM_READ);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Remove entries from zero or more hash-table indexes in the wal-index
|
|
** file.
|
|
**
|
|
** This function is called when rolling back a transaction or savepoint
|
|
** transaction in WAL mode. Argument iNewMx is the value that
|
|
** Wal.hdr.mxFrame will be set to following the rollback. Argument iOldMx
|
|
** is the value that it had before the rollback. This function removes
|
|
** entries that refer to frames with frame numbers greater than iNewMx
|
|
** from the hash table that contains the entry associated with iNewMx.
|
|
** It is not necessary to remove any entries from any subsequent hash
|
|
** tables, as they will be zeroed by walIndexAppend() before they are
|
|
** next used.
|
|
*/
|
|
static void walClearHash(Wal *pWal, u32 iOldMx, u32 iNewMx){
|
|
if( iOldMx>iNewMx ){
|
|
volatile HASHTABLE_DATATYPE *aHash; /* Pointer to hash table to clear */
|
|
volatile u32 *unused1; /* Only to satisfy walHashFind() */
|
|
u32 iZero; /* frame == (aHash[x]+iZero) */
|
|
int iLimit; /* Zero values greater than this */
|
|
|
|
walHashFind(pWal, iNewMx+1, &aHash, &unused1, &iZero);
|
|
iLimit = iNewMx - iZero;
|
|
if( iLimit>0 ){
|
|
int i; /* Used to iterate through aHash[] */
|
|
for(i=1; i<=HASHTABLE_NPAGE; i++){
|
|
if( aHash[i]>iLimit ){
|
|
aHash[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If any data has been written (but not committed) to the log file, this
|
|
** function moves the write-pointer back to the start of the transaction.
|
|
**
|
|
** Additionally, the callback function is invoked for each frame written
|
|
** to the log since the start of the transaction. If the callback returns
|
|
** other than SQLITE_OK, it is not invoked again and the error code is
|
|
** returned to the caller.
|
|
**
|
|
** Otherwise, if the callback function does not return an error, this
|
|
** function returns SQLITE_OK.
|
|
*/
|
|
int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
|
|
int rc = SQLITE_OK;
|
|
if( pWal->lockState==SQLITE_SHM_WRITE ){
|
|
int unused;
|
|
Pgno iMax = pWal->hdr.mxFrame;
|
|
Pgno iFrame;
|
|
|
|
assert( pWal->pWiData==0 );
|
|
rc = walIndexReadHdr(pWal, &unused);
|
|
for(iFrame=pWal->hdr.mxFrame+1; rc==SQLITE_OK && iFrame<=iMax; iFrame++){
|
|
assert( pWal->lockState==SQLITE_SHM_WRITE );
|
|
rc = xUndo(pUndoCtx, pWal->pWiData[walIndexEntry(iFrame)]);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
walClearHash(pWal, iMax, pWal->hdr.mxFrame);
|
|
}
|
|
walIndexUnmap(pWal);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Return an integer that records the current (uncommitted) write
|
|
** position in the WAL
|
|
*/
|
|
u32 sqlite3WalSavepoint(Wal *pWal){
|
|
assert( pWal->lockState==SQLITE_SHM_WRITE );
|
|
return pWal->hdr.mxFrame;
|
|
}
|
|
|
|
/* Move the write position of the WAL back to iFrame. Called in
|
|
** response to a ROLLBACK TO command.
|
|
*/
|
|
int sqlite3WalSavepointUndo(Wal *pWal, u32 iFrame){
|
|
int rc = SQLITE_OK;
|
|
assert( pWal->lockState==SQLITE_SHM_WRITE );
|
|
|
|
rc = walIndexMap(pWal, walMappingSize(pWal->hdr.mxFrame));
|
|
if( rc==SQLITE_OK ){
|
|
walClearHash(pWal, pWal->hdr.mxFrame, iFrame);
|
|
walIndexUnmap(pWal);
|
|
}
|
|
pWal->hdr.mxFrame = iFrame;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Write a set of frames to the log. The caller must hold the write-lock
|
|
** on the log file (obtained using sqlite3WalWriteLock()).
|
|
*/
|
|
int sqlite3WalFrames(
|
|
Wal *pWal, /* Wal handle to write to */
|
|
int szPage, /* Database page-size in bytes */
|
|
PgHdr *pList, /* List of dirty pages to write */
|
|
Pgno nTruncate, /* Database size after this commit */
|
|
int isCommit, /* True if this is a commit */
|
|
int sync_flags /* Flags to pass to OsSync() (or 0) */
|
|
){
|
|
int rc; /* Used to catch return codes */
|
|
u32 iFrame; /* Next frame address */
|
|
u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
|
|
PgHdr *p; /* Iterator to run through pList with. */
|
|
PgHdr *pLast = 0; /* Last frame in list */
|
|
int nLast = 0; /* Number of extra copies of last page */
|
|
|
|
assert( pList );
|
|
assert( pWal->lockState==SQLITE_SHM_WRITE );
|
|
assert( pWal->pWiData==0 );
|
|
|
|
/* If this is the first frame written into the log, write the WAL
|
|
** header to the start of the WAL file. See comments at the top of
|
|
** this source file for a description of the WAL header format.
|
|
*/
|
|
iFrame = pWal->hdr.mxFrame;
|
|
if( iFrame==0 ){
|
|
u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assembly wal-header in */
|
|
sqlite3Put4byte(&aWalHdr[0], 0x377f0682);
|
|
sqlite3Put4byte(&aWalHdr[4], 3007000);
|
|
sqlite3Put4byte(&aWalHdr[8], szPage);
|
|
pWal->szPage = szPage;
|
|
sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
|
|
memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
|
|
rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
}
|
|
assert( pWal->szPage==szPage );
|
|
|
|
/* Write the log file. */
|
|
for(p=pList; p; p=p->pDirty){
|
|
u32 nDbsize; /* Db-size field for frame header */
|
|
i64 iOffset; /* Write offset in log file */
|
|
|
|
iOffset = walFrameOffset(++iFrame, szPage);
|
|
|
|
/* Populate and write the frame header */
|
|
nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
|
|
walEncodeFrame(pWal, p->pgno, nDbsize, p->pData, aFrame);
|
|
rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
/* Write the page data */
|
|
rc = sqlite3OsWrite(pWal->pWalFd, p->pData, szPage, iOffset+sizeof(aFrame));
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
pLast = p;
|
|
}
|
|
|
|
/* Sync the log file if the 'isSync' flag was specified. */
|
|
if( sync_flags ){
|
|
i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
|
|
i64 iOffset = walFrameOffset(iFrame+1, szPage);
|
|
|
|
assert( isCommit );
|
|
assert( iSegment>0 );
|
|
|
|
iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
|
|
while( iOffset<iSegment ){
|
|
walEncodeFrame(pWal, pLast->pgno, nTruncate, pLast->pData, aFrame);
|
|
rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
iOffset += WAL_FRAME_HDRSIZE;
|
|
rc = sqlite3OsWrite(pWal->pWalFd, pLast->pData, szPage, iOffset);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
nLast++;
|
|
iOffset += szPage;
|
|
}
|
|
|
|
rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
|
|
}
|
|
assert( pWal->pWiData==0 );
|
|
|
|
/* Append data to the wal-index. It is not necessary to lock the
|
|
** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
|
|
** guarantees that there are no other writers, and no data that may
|
|
** be in use by existing readers is being overwritten.
|
|
*/
|
|
iFrame = pWal->hdr.mxFrame;
|
|
for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
|
|
iFrame++;
|
|
rc = walIndexAppend(pWal, iFrame, p->pgno);
|
|
}
|
|
while( nLast>0 && rc==SQLITE_OK ){
|
|
iFrame++;
|
|
nLast--;
|
|
rc = walIndexAppend(pWal, iFrame, pLast->pgno);
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
/* Update the private copy of the header. */
|
|
pWal->hdr.szPage = szPage;
|
|
pWal->hdr.mxFrame = iFrame;
|
|
if( isCommit ){
|
|
pWal->hdr.iChange++;
|
|
pWal->hdr.nPage = nTruncate;
|
|
}
|
|
/* If this is a commit, update the wal-index header too. */
|
|
if( isCommit ){
|
|
walIndexWriteHdr(pWal);
|
|
pWal->iCallback = iFrame;
|
|
}
|
|
}
|
|
|
|
walIndexUnmap(pWal);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Checkpoint the database:
|
|
**
|
|
** 1. Acquire a CHECKPOINT lock
|
|
** 2. Copy the contents of the log into the database file.
|
|
** 3. Zero the wal-index header (so new readers will ignore the log).
|
|
** 4. Drop the CHECKPOINT lock.
|
|
*/
|
|
int sqlite3WalCheckpoint(
|
|
Wal *pWal, /* Wal connection */
|
|
int sync_flags, /* Flags to sync db file with (or 0) */
|
|
int nBuf, /* Size of temporary buffer */
|
|
u8 *zBuf, /* Temporary buffer to use */
|
|
int (*xBusyHandler)(void *), /* Pointer to busy-handler function */
|
|
void *pBusyHandlerArg /* Argument to pass to xBusyHandler */
|
|
){
|
|
int rc; /* Return code */
|
|
int isChanged = 0; /* True if a new wal-index header is loaded */
|
|
|
|
assert( pWal->pWiData==0 );
|
|
|
|
/* Get the CHECKPOINT lock.
|
|
**
|
|
** Normally, the connection will be in UNLOCK state at this point. But
|
|
** if the connection is in exclusive-mode it may still be in READ state
|
|
** even though the upper layer has no active read-transaction (because
|
|
** WalCloseSnapshot() is not called in exclusive mode). The state will
|
|
** be set to UNLOCK when this function returns. This is Ok.
|
|
*/
|
|
assert( (pWal->lockState==SQLITE_SHM_UNLOCK)
|
|
|| (pWal->lockState==SQLITE_SHM_READ) );
|
|
walSetLock(pWal, SQLITE_SHM_UNLOCK);
|
|
do {
|
|
rc = walSetLock(pWal, SQLITE_SHM_CHECKPOINT);
|
|
}while( rc==SQLITE_BUSY && xBusyHandler(pBusyHandlerArg) );
|
|
if( rc!=SQLITE_OK ){
|
|
walSetLock(pWal, SQLITE_SHM_UNLOCK);
|
|
return rc;
|
|
}
|
|
|
|
/* Copy data from the log to the database file. */
|
|
rc = walIndexReadHdr(pWal, &isChanged);
|
|
if( rc==SQLITE_OK ){
|
|
rc = walCheckpoint(pWal, sync_flags, nBuf, zBuf);
|
|
}
|
|
if( isChanged ){
|
|
/* If a new wal-index header was loaded before the checkpoint was
|
|
** performed, then the pager-cache associated with pWal is now
|
|
** out of date. So zero the cached wal-index header to ensure that
|
|
** next time the pager opens a snapshot on this database it knows that
|
|
** the cache needs to be reset.
|
|
*/
|
|
memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
|
|
}
|
|
|
|
/* Release the locks. */
|
|
walIndexUnmap(pWal);
|
|
walSetLock(pWal, SQLITE_SHM_UNLOCK);
|
|
return rc;
|
|
}
|
|
|
|
/* Return the value to pass to a sqlite3_wal_hook callback, the
|
|
** number of frames in the WAL at the point of the last commit since
|
|
** sqlite3WalCallback() was called. If no commits have occurred since
|
|
** the last call, then return 0.
|
|
*/
|
|
int sqlite3WalCallback(Wal *pWal){
|
|
u32 ret = 0;
|
|
if( pWal ){
|
|
ret = pWal->iCallback;
|
|
pWal->iCallback = 0;
|
|
}
|
|
return (int)ret;
|
|
}
|
|
|
|
/*
|
|
** This function is called to set or query the exclusive-mode flag
|
|
** associated with the WAL connection passed as the first argument. The
|
|
** exclusive-mode flag should be set to indicate that the caller is
|
|
** holding an EXCLUSIVE lock on the database file (it does this in
|
|
** locking_mode=exclusive mode). If the EXCLUSIVE lock is to be dropped,
|
|
** the flag set by this function should be cleared before doing so.
|
|
**
|
|
** The value of the exclusive-mode flag may only be modified when
|
|
** the WAL connection is in READ state.
|
|
**
|
|
** When the flag is set, this module does not call the VFS xShmLock()
|
|
** method to obtain any locks on the wal-index (as it assumes it
|
|
** has exclusive access to the wal and wal-index files anyhow). It
|
|
** continues to hold (and does not drop) the existing READ lock on
|
|
** the wal-index.
|
|
**
|
|
** To set or clear the flag, the "op" parameter is passed 1 or 0,
|
|
** respectively. To query the flag, pass -1. In all cases, the value
|
|
** returned is the value of the exclusive-mode flag (after its value
|
|
** has been modified, if applicable).
|
|
*/
|
|
int sqlite3WalExclusiveMode(Wal *pWal, int op){
|
|
if( op>=0 ){
|
|
assert( pWal->lockState==SQLITE_SHM_READ );
|
|
pWal->exclusiveMode = (u8)op;
|
|
}
|
|
return pWal->exclusiveMode;
|
|
}
|
|
|
|
#endif /* #ifndef SQLITE_OMIT_WAL */
|