mirror of
https://github.com/sqlite/sqlite.git
synced 2025-09-09 21:09:38 +03:00
the appropriate number of spaces. (CVS 565) FossilOrigin-Name: 690f9a163173c4c7af7e8e92e942cee4184c7974
4757 lines
135 KiB
C
4757 lines
135 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** The code in this file implements the Virtual Database Engine (VDBE)
|
|
**
|
|
** The SQL parser generates a program which is then executed by
|
|
** the VDBE to do the work of the SQL statement. VDBE programs are
|
|
** similar in form to assembly language. The program consists of
|
|
** a linear sequence of operations. Each operation has an opcode
|
|
** and 3 operands. Operands P1 and P2 are integers. Operand P3
|
|
** is a null-terminated string. The P2 operand must be non-negative.
|
|
** Opcodes will typically ignore one or more operands. Many opcodes
|
|
** ignore all three operands.
|
|
**
|
|
** Computation results are stored on a stack. Each entry on the
|
|
** stack is either an integer, a null-terminated string, a floating point
|
|
** number, or the SQL "NULL" value. An inplicit conversion from one
|
|
** type to the other occurs as necessary.
|
|
**
|
|
** Most of the code in this file is taken up by the sqliteVdbeExec()
|
|
** function which does the work of interpreting a VDBE program.
|
|
** But other routines are also provided to help in building up
|
|
** a program instruction by instruction.
|
|
**
|
|
** $Id: vdbe.c,v 1.143 2002/05/15 11:44:15 drh Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include <ctype.h>
|
|
|
|
/*
|
|
** The following global variable is incremented every time a cursor
|
|
** moves, either by the OP_MoveTo or the OP_Next opcode. The test
|
|
** procedures use this information to make sure that indices are
|
|
** working correctly.
|
|
*/
|
|
int sqlite_search_count = 0;
|
|
|
|
/*
|
|
** SQL is translated into a sequence of instructions to be
|
|
** executed by a virtual machine. Each instruction is an instance
|
|
** of the following structure.
|
|
*/
|
|
typedef struct VdbeOp Op;
|
|
|
|
/*
|
|
** Boolean values
|
|
*/
|
|
typedef unsigned char Bool;
|
|
|
|
/*
|
|
** A cursor is a pointer into a single BTree within a database file.
|
|
** The cursor can seek to a BTree entry with a particular key, or
|
|
** loop over all entries of the Btree. You can also insert new BTree
|
|
** entries or retrieve the key or data from the entry that the cursor
|
|
** is currently pointing to.
|
|
**
|
|
** Every cursor that the virtual machine has open is represented by an
|
|
** instance of the following structure.
|
|
*/
|
|
struct Cursor {
|
|
BtCursor *pCursor; /* The cursor structure of the backend */
|
|
int lastRecno; /* Last recno from a Next or NextIdx operation */
|
|
Bool recnoIsValid; /* True if lastRecno is valid */
|
|
Bool keyAsData; /* The OP_Column command works on key instead of data */
|
|
Bool atFirst; /* True if pointing to first entry */
|
|
Bool useRandomRowid; /* Generate new record numbers semi-randomly */
|
|
Bool nullRow; /* True if pointing to a row with no data */
|
|
Btree *pBt; /* Separate file holding temporary table */
|
|
};
|
|
typedef struct Cursor Cursor;
|
|
|
|
/*
|
|
** A sorter builds a list of elements to be sorted. Each element of
|
|
** the list is an instance of the following structure.
|
|
*/
|
|
typedef struct Sorter Sorter;
|
|
struct Sorter {
|
|
int nKey; /* Number of bytes in the key */
|
|
char *zKey; /* The key by which we will sort */
|
|
int nData; /* Number of bytes in the data */
|
|
char *pData; /* The data associated with this key */
|
|
Sorter *pNext; /* Next in the list */
|
|
};
|
|
|
|
/*
|
|
** Number of buckets used for merge-sort.
|
|
*/
|
|
#define NSORT 30
|
|
|
|
/*
|
|
** Number of bytes of string storage space available to each stack
|
|
** layer without having to malloc. NBFS is short for Number of Bytes
|
|
** For Strings.
|
|
*/
|
|
#define NBFS 32
|
|
|
|
/*
|
|
** A single level of the stack is an instance of the following
|
|
** structure. Except, string values are stored on a separate
|
|
** list of of pointers to character. The reason for storing
|
|
** strings separately is so that they can be easily passed
|
|
** to the callback function.
|
|
*/
|
|
struct Stack {
|
|
int i; /* Integer value */
|
|
int n; /* Number of characters in string value, including '\0' */
|
|
int flags; /* Some combination of STK_Null, STK_Str, STK_Dyn, etc. */
|
|
double r; /* Real value */
|
|
char z[NBFS]; /* Space for short strings */
|
|
};
|
|
typedef struct Stack Stack;
|
|
|
|
/*
|
|
** Memory cells use the same structure as the stack except that space
|
|
** for an arbitrary string is added.
|
|
*/
|
|
struct Mem {
|
|
Stack s; /* All values of the memory cell besides string */
|
|
char *z; /* String value for this memory cell */
|
|
};
|
|
typedef struct Mem Mem;
|
|
|
|
/*
|
|
** Allowed values for Stack.flags
|
|
*/
|
|
#define STK_Null 0x0001 /* Value is NULL */
|
|
#define STK_Str 0x0002 /* Value is a string */
|
|
#define STK_Int 0x0004 /* Value is an integer */
|
|
#define STK_Real 0x0008 /* Value is a real number */
|
|
#define STK_Dyn 0x0010 /* Need to call sqliteFree() on zStack[*] */
|
|
#define STK_Static 0x0020 /* zStack[] points to a static string */
|
|
|
|
/* The following STK_ value appears only in AggElem.aMem.s.flag fields.
|
|
** It indicates that the corresponding AggElem.aMem.z points to a
|
|
** aggregate function context that needs to be finalized.
|
|
*/
|
|
#define STK_AggCtx 0x0040 /* zStack[] points to an agg function context */
|
|
|
|
/*
|
|
** The "context" argument for a installable function. A pointer to an
|
|
** instance of this structure is the first argument to the routines used
|
|
** implement the SQL functions.
|
|
**
|
|
** There is a typedef for this structure in sqlite.h. So all routines,
|
|
** even the public interface to SQLite, can use a pointer to this structure.
|
|
** But this file is the only place where the internal details of this
|
|
** structure are known.
|
|
**
|
|
** This structure is defined inside of vdbe.c because it uses substructures
|
|
** (Stack) which are only defined there.
|
|
*/
|
|
struct sqlite_func {
|
|
FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
|
|
Stack s; /* Small strings, ints, and double values go here */
|
|
char *z; /* Space for holding dynamic string results */
|
|
void *pAgg; /* Aggregate context */
|
|
u8 isError; /* Set to true for an error */
|
|
u8 isStep; /* Current in the step function */
|
|
int cnt; /* Number of times that the step function has been called */
|
|
};
|
|
|
|
/*
|
|
** An Agg structure describes an Aggregator. Each Agg consists of
|
|
** zero or more Aggregator elements (AggElem). Each AggElem contains
|
|
** a key and one or more values. The values are used in processing
|
|
** aggregate functions in a SELECT. The key is used to implement
|
|
** the GROUP BY clause of a select.
|
|
*/
|
|
typedef struct Agg Agg;
|
|
typedef struct AggElem AggElem;
|
|
struct Agg {
|
|
int nMem; /* Number of values stored in each AggElem */
|
|
AggElem *pCurrent; /* The AggElem currently in focus */
|
|
HashElem *pSearch; /* The hash element for pCurrent */
|
|
Hash hash; /* Hash table of all aggregate elements */
|
|
FuncDef **apFunc; /* Information about aggregate functions */
|
|
};
|
|
struct AggElem {
|
|
char *zKey; /* The key to this AggElem */
|
|
int nKey; /* Number of bytes in the key, including '\0' at end */
|
|
Mem aMem[1]; /* The values for this AggElem */
|
|
};
|
|
|
|
/*
|
|
** A Set structure is used for quick testing to see if a value
|
|
** is part of a small set. Sets are used to implement code like
|
|
** this:
|
|
** x.y IN ('hi','hoo','hum')
|
|
*/
|
|
typedef struct Set Set;
|
|
struct Set {
|
|
Hash hash; /* A set is just a hash table */
|
|
};
|
|
|
|
/*
|
|
** A Keylist is a bunch of keys into a table. The keylist can
|
|
** grow without bound. The keylist stores the ROWIDs of database
|
|
** records that need to be deleted or updated.
|
|
*/
|
|
typedef struct Keylist Keylist;
|
|
struct Keylist {
|
|
int nKey; /* Number of slots in aKey[] */
|
|
int nUsed; /* Next unwritten slot in aKey[] */
|
|
int nRead; /* Next unread slot in aKey[] */
|
|
Keylist *pNext; /* Next block of keys */
|
|
int aKey[1]; /* One or more keys. Extra space allocated as needed */
|
|
};
|
|
|
|
/*
|
|
** An instance of the virtual machine
|
|
*/
|
|
struct Vdbe {
|
|
sqlite *db; /* The whole database */
|
|
Btree *pBt; /* Opaque context structure used by DB backend */
|
|
FILE *trace; /* Write an execution trace here, if not NULL */
|
|
int nOp; /* Number of instructions in the program */
|
|
int nOpAlloc; /* Number of slots allocated for aOp[] */
|
|
Op *aOp; /* Space to hold the virtual machine's program */
|
|
int nLabel; /* Number of labels used */
|
|
int nLabelAlloc; /* Number of slots allocated in aLabel[] */
|
|
int *aLabel; /* Space to hold the labels */
|
|
int tos; /* Index of top of stack */
|
|
int nStackAlloc; /* Size of the stack */
|
|
Stack *aStack; /* The operand stack, except string values */
|
|
char **zStack; /* Text or binary values of the stack */
|
|
char **azColName; /* Becomes the 4th parameter to callbacks */
|
|
int nCursor; /* Number of slots in aCsr[] */
|
|
Cursor *aCsr; /* On element of this array for each open cursor */
|
|
Keylist *pList; /* A list of ROWIDs */
|
|
Sorter *pSort; /* A linked list of objects to be sorted */
|
|
FILE *pFile; /* At most one open file handler */
|
|
int nField; /* Number of file fields */
|
|
char **azField; /* Data for each file field */
|
|
char *zLine; /* A single line from the input file */
|
|
int nLineAlloc; /* Number of spaces allocated for zLine */
|
|
int nMem; /* Number of memory locations currently allocated */
|
|
Mem *aMem; /* The memory locations */
|
|
Agg agg; /* Aggregate information */
|
|
int nSet; /* Number of sets allocated */
|
|
Set *aSet; /* An array of sets */
|
|
int nCallback; /* Number of callbacks invoked so far */
|
|
int iLimit; /* Limit on the number of callbacks remaining */
|
|
int iOffset; /* Offset before beginning to do callbacks */
|
|
|
|
int keylistStackDepth;
|
|
Keylist ** keylistStack;
|
|
};
|
|
|
|
/*
|
|
** Create a new virtual database engine.
|
|
*/
|
|
Vdbe *sqliteVdbeCreate(sqlite *db){
|
|
Vdbe *p;
|
|
p = sqliteMalloc( sizeof(Vdbe) );
|
|
if( p==0 ) return 0;
|
|
p->pBt = db->pBe;
|
|
p->db = db;
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Turn tracing on or off
|
|
*/
|
|
void sqliteVdbeTrace(Vdbe *p, FILE *trace){
|
|
p->trace = trace;
|
|
}
|
|
|
|
/*
|
|
** Add a new instruction to the list of instructions current in the
|
|
** VDBE. Return the address of the new instruction.
|
|
**
|
|
** Parameters:
|
|
**
|
|
** p Pointer to the VDBE
|
|
**
|
|
** op The opcode for this instruction
|
|
**
|
|
** p1, p2 First two of the three possible operands.
|
|
**
|
|
** Use the sqliteVdbeResolveLabel() function to fix an address and
|
|
** the sqliteVdbeChangeP3() function to change the value of the P3
|
|
** operand.
|
|
*/
|
|
int sqliteVdbeAddOp(Vdbe *p, int op, int p1, int p2){
|
|
int i;
|
|
|
|
i = p->nOp;
|
|
p->nOp++;
|
|
if( i>=p->nOpAlloc ){
|
|
int oldSize = p->nOpAlloc;
|
|
Op *aNew;
|
|
p->nOpAlloc = p->nOpAlloc*2 + 100;
|
|
aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
|
|
if( aNew==0 ){
|
|
p->nOpAlloc = oldSize;
|
|
return 0;
|
|
}
|
|
p->aOp = aNew;
|
|
memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
|
|
}
|
|
p->aOp[i].opcode = op;
|
|
p->aOp[i].p1 = p1;
|
|
if( p2<0 && (-1-p2)<p->nLabel && p->aLabel[-1-p2]>=0 ){
|
|
p2 = p->aLabel[-1-p2];
|
|
}
|
|
p->aOp[i].p2 = p2;
|
|
p->aOp[i].p3 = 0;
|
|
p->aOp[i].p3type = P3_NOTUSED;
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
** Create a new symbolic label for an instruction that has yet to be
|
|
** coded. The symbolic label is really just a negative number. The
|
|
** label can be used as the P2 value of an operation. Later, when
|
|
** the label is resolved to a specific address, the VDBE will scan
|
|
** through its operation list and change all values of P2 which match
|
|
** the label into the resolved address.
|
|
**
|
|
** The VDBE knows that a P2 value is a label because labels are
|
|
** always negative and P2 values are suppose to be non-negative.
|
|
** Hence, a negative P2 value is a label that has yet to be resolved.
|
|
*/
|
|
int sqliteVdbeMakeLabel(Vdbe *p){
|
|
int i;
|
|
i = p->nLabel++;
|
|
if( i>=p->nLabelAlloc ){
|
|
int *aNew;
|
|
p->nLabelAlloc = p->nLabelAlloc*2 + 10;
|
|
aNew = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0]));
|
|
if( aNew==0 ){
|
|
sqliteFree(p->aLabel);
|
|
}
|
|
p->aLabel = aNew;
|
|
}
|
|
if( p->aLabel==0 ){
|
|
p->nLabel = 0;
|
|
p->nLabelAlloc = 0;
|
|
return 0;
|
|
}
|
|
p->aLabel[i] = -1;
|
|
return -1-i;
|
|
}
|
|
|
|
/*
|
|
** Resolve label "x" to be the address of the next instruction to
|
|
** be inserted.
|
|
*/
|
|
void sqliteVdbeResolveLabel(Vdbe *p, int x){
|
|
int j;
|
|
if( x<0 && (-x)<=p->nLabel && p->aOp ){
|
|
if( p->aLabel[-1-x]==p->nOp ) return;
|
|
assert( p->aLabel[-1-x]<0 );
|
|
p->aLabel[-1-x] = p->nOp;
|
|
for(j=0; j<p->nOp; j++){
|
|
if( p->aOp[j].p2==x ) p->aOp[j].p2 = p->nOp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the address of the next instruction to be inserted.
|
|
*/
|
|
int sqliteVdbeCurrentAddr(Vdbe *p){
|
|
return p->nOp;
|
|
}
|
|
|
|
/*
|
|
** Add a whole list of operations to the operation stack. Return the
|
|
** address of the first operation added.
|
|
*/
|
|
int sqliteVdbeAddOpList(Vdbe *p, int nOp, VdbeOp const *aOp){
|
|
int addr;
|
|
if( p->nOp + nOp >= p->nOpAlloc ){
|
|
int oldSize = p->nOpAlloc;
|
|
Op *aNew;
|
|
p->nOpAlloc = p->nOpAlloc*2 + nOp + 10;
|
|
aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
|
|
if( aNew==0 ){
|
|
p->nOpAlloc = oldSize;
|
|
return 0;
|
|
}
|
|
p->aOp = aNew;
|
|
memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
|
|
}
|
|
addr = p->nOp;
|
|
if( nOp>0 ){
|
|
int i;
|
|
for(i=0; i<nOp; i++){
|
|
int p2 = aOp[i].p2;
|
|
p->aOp[i+addr] = aOp[i];
|
|
if( p2<0 ) p->aOp[i+addr].p2 = addr + ADDR(p2);
|
|
p->aOp[i+addr].p3type = aOp[i].p3 ? P3_STATIC : P3_NOTUSED;
|
|
}
|
|
p->nOp += nOp;
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
** Change the value of the P1 operand for a specific instruction.
|
|
** This routine is useful when a large program is loaded from a
|
|
** static array using sqliteVdbeAddOpList but we want to make a
|
|
** few minor changes to the program.
|
|
*/
|
|
void sqliteVdbeChangeP1(Vdbe *p, int addr, int val){
|
|
if( p && addr>=0 && p->nOp>addr && p->aOp ){
|
|
p->aOp[addr].p1 = val;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Change the value of the P2 operand for a specific instruction.
|
|
** This routine is useful for setting a jump destination.
|
|
*/
|
|
void sqliteVdbeChangeP2(Vdbe *p, int addr, int val){
|
|
assert( val>=0 );
|
|
if( p && addr>=0 && p->nOp>addr && p->aOp ){
|
|
p->aOp[addr].p2 = val;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Change the value of the P3 operand for a specific instruction.
|
|
** This routine is useful when a large program is loaded from a
|
|
** static array using sqliteVdbeAddOpList but we want to make a
|
|
** few minor changes to the program.
|
|
**
|
|
** If n>=0 then the P3 operand is dynamic, meaning that a copy of
|
|
** the string is made into memory obtained from sqliteMalloc().
|
|
** A value of n==0 means copy bytes of zP3 up to and including the
|
|
** first null byte. If n>0 then copy n+1 bytes of zP3.
|
|
**
|
|
** If n==P3_STATIC it means that zP3 is a pointer to a constant static
|
|
** string and we can just copy the pointer. n==P3_POINTER means zP3 is
|
|
** a pointer to some object other than a string.
|
|
**
|
|
** If addr<0 then change P3 on the most recently inserted instruction.
|
|
*/
|
|
void sqliteVdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
|
|
Op *pOp;
|
|
if( p==0 || p->aOp==0 ) return;
|
|
if( addr<0 || addr>=p->nOp ){
|
|
addr = p->nOp - 1;
|
|
if( addr<0 ) return;
|
|
}
|
|
pOp = &p->aOp[addr];
|
|
if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
|
|
sqliteFree(pOp->p3);
|
|
pOp->p3 = 0;
|
|
}
|
|
if( zP3==0 ){
|
|
pOp->p3 = 0;
|
|
pOp->p3type = P3_NOTUSED;
|
|
}else if( n<0 ){
|
|
pOp->p3 = (char*)zP3;
|
|
pOp->p3type = n;
|
|
}else{
|
|
sqliteSetNString(&pOp->p3, zP3, n, 0);
|
|
pOp->p3type = P3_DYNAMIC;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If the P3 operand to the specified instruction appears
|
|
** to be a quoted string token, then this procedure removes
|
|
** the quotes.
|
|
**
|
|
** The quoting operator can be either a grave ascent (ASCII 0x27)
|
|
** or a double quote character (ASCII 0x22). Two quotes in a row
|
|
** resolve to be a single actual quote character within the string.
|
|
*/
|
|
void sqliteVdbeDequoteP3(Vdbe *p, int addr){
|
|
Op *pOp;
|
|
if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
|
|
pOp = &p->aOp[addr];
|
|
if( pOp->p3==0 || pOp->p3[0]==0 ) return;
|
|
if( pOp->p3type==P3_POINTER ) return;
|
|
if( pOp->p3type!=P3_DYNAMIC ){
|
|
pOp->p3 = sqliteStrDup(pOp->p3);
|
|
pOp->p3type = P3_DYNAMIC;
|
|
}
|
|
sqliteDequote(pOp->p3);
|
|
}
|
|
|
|
/*
|
|
** On the P3 argument of the given instruction, change all
|
|
** strings of whitespace characters into a single space and
|
|
** delete leading and trailing whitespace.
|
|
*/
|
|
void sqliteVdbeCompressSpace(Vdbe *p, int addr){
|
|
char *z;
|
|
int i, j;
|
|
Op *pOp;
|
|
if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
|
|
pOp = &p->aOp[addr];
|
|
if( pOp->p3type==P3_POINTER ){
|
|
return;
|
|
}
|
|
if( pOp->p3type!=P3_DYNAMIC ){
|
|
pOp->p3 = sqliteStrDup(pOp->p3);
|
|
pOp->p3type = P3_DYNAMIC;
|
|
}
|
|
z = pOp->p3;
|
|
if( z==0 ) return;
|
|
i = j = 0;
|
|
while( isspace(z[i]) ){ i++; }
|
|
while( z[i] ){
|
|
if( isspace(z[i]) ){
|
|
z[j++] = ' ';
|
|
while( isspace(z[++i]) ){}
|
|
}else{
|
|
z[j++] = z[i++];
|
|
}
|
|
}
|
|
while( j>0 && isspace(z[j-1]) ){ j--; }
|
|
z[j] = 0;
|
|
}
|
|
|
|
/*
|
|
** The following group or routines are employed by installable functions
|
|
** to return their results.
|
|
**
|
|
** The sqlite_set_result_string() routine can be used to return a string
|
|
** value or to return a NULL. To return a NULL, pass in NULL for zResult.
|
|
** A copy is made of the string before this routine returns so it is safe
|
|
** to pass in a ephemeral string.
|
|
**
|
|
** sqlite_set_result_error() works like sqlite_set_result_string() except
|
|
** that it signals a fatal error. The string argument, if any, is the
|
|
** error message. If the argument is NULL a generic substitute error message
|
|
** is used.
|
|
**
|
|
** The sqlite_set_result_int() and sqlite_set_result_double() set the return
|
|
** value of the user function to an integer or a double.
|
|
**
|
|
** These routines are defined here in vdbe.c because they depend on knowing
|
|
** the internals of the sqlite_func structure which is only defined in that
|
|
** one source file.
|
|
*/
|
|
char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){
|
|
assert( !p->isStep );
|
|
if( p->s.flags & STK_Dyn ){
|
|
sqliteFree(p->z);
|
|
}
|
|
if( zResult==0 ){
|
|
p->s.flags = STK_Null;
|
|
n = 0;
|
|
p->z = 0;
|
|
p->s.n = 0;
|
|
}else{
|
|
if( n<0 ) n = strlen(zResult);
|
|
if( n<NBFS-1 ){
|
|
memcpy(p->s.z, zResult, n);
|
|
p->s.z[n] = 0;
|
|
p->s.flags = STK_Str;
|
|
p->z = p->s.z;
|
|
}else{
|
|
p->z = sqliteMalloc( n+1 );
|
|
if( p->z ){
|
|
memcpy(p->z, zResult, n);
|
|
p->z[n] = 0;
|
|
}
|
|
p->s.flags = STK_Str | STK_Dyn;
|
|
}
|
|
p->s.n = n+1;
|
|
}
|
|
return p->z;
|
|
}
|
|
void sqlite_set_result_int(sqlite_func *p, int iResult){
|
|
assert( !p->isStep );
|
|
if( p->s.flags & STK_Dyn ){
|
|
sqliteFree(p->z);
|
|
}
|
|
p->s.i = iResult;
|
|
p->s.flags = STK_Int;
|
|
}
|
|
void sqlite_set_result_double(sqlite_func *p, double rResult){
|
|
assert( !p->isStep );
|
|
if( p->s.flags & STK_Dyn ){
|
|
sqliteFree(p->z);
|
|
}
|
|
p->s.r = rResult;
|
|
p->s.flags = STK_Real;
|
|
}
|
|
void sqlite_set_result_error(sqlite_func *p, const char *zMsg, int n){
|
|
assert( !p->isStep );
|
|
sqlite_set_result_string(p, zMsg, n);
|
|
p->isError = 1;
|
|
}
|
|
|
|
/*
|
|
** Extract the user data from a sqlite_func structure and return a
|
|
** pointer to it.
|
|
**
|
|
** This routine is defined here in vdbe.c because it depends on knowing
|
|
** the internals of the sqlite_func structure which is only defined in that
|
|
** one source file.
|
|
*/
|
|
void *sqlite_user_data(sqlite_func *p){
|
|
assert( p && p->pFunc );
|
|
return p->pFunc->pUserData;
|
|
}
|
|
|
|
/*
|
|
** Allocate or return the aggregate context for a user function. A new
|
|
** context is allocated on the first call. Subsequent calls return the
|
|
** same context that was returned on prior calls.
|
|
**
|
|
** This routine is defined here in vdbe.c because it depends on knowing
|
|
** the internals of the sqlite_func structure which is only defined in that
|
|
** one source file.
|
|
*/
|
|
void *sqlite_aggregate_context(sqlite_func *p, int nByte){
|
|
assert( p && p->pFunc && p->pFunc->xStep );
|
|
if( p->pAgg==0 ){
|
|
if( nByte<=NBFS ){
|
|
p->pAgg = (void*)p->z;
|
|
}else{
|
|
p->pAgg = sqliteMalloc( nByte );
|
|
}
|
|
}
|
|
return p->pAgg;
|
|
}
|
|
|
|
/*
|
|
** Return the number of times the Step function of a aggregate has been
|
|
** called.
|
|
**
|
|
** This routine is defined here in vdbe.c because it depends on knowing
|
|
** the internals of the sqlite_func structure which is only defined in that
|
|
** one source file.
|
|
*/
|
|
int sqlite_aggregate_count(sqlite_func *p){
|
|
assert( p && p->pFunc && p->pFunc->xStep );
|
|
return p->cnt;
|
|
}
|
|
|
|
/*
|
|
** Reset an Agg structure. Delete all its contents.
|
|
**
|
|
** For installable aggregate functions, if the step function has been
|
|
** called, make sure the finalizer function has also been called. The
|
|
** finalizer might need to free memory that was allocated as part of its
|
|
** private context. If the finalizer has not been called yet, call it
|
|
** now.
|
|
*/
|
|
static void AggReset(Agg *pAgg){
|
|
int i;
|
|
HashElem *p;
|
|
for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){
|
|
AggElem *pElem = sqliteHashData(p);
|
|
assert( pAgg->apFunc!=0 );
|
|
for(i=0; i<pAgg->nMem; i++){
|
|
Mem *pMem = &pElem->aMem[i];
|
|
if( pAgg->apFunc[i] && (pMem->s.flags & STK_AggCtx)!=0 ){
|
|
sqlite_func ctx;
|
|
ctx.pFunc = pAgg->apFunc[i];
|
|
ctx.s.flags = STK_Null;
|
|
ctx.z = 0;
|
|
ctx.pAgg = pMem->z;
|
|
ctx.cnt = pMem->s.i;
|
|
ctx.isStep = 0;
|
|
ctx.isError = 0;
|
|
(*pAgg->apFunc[i]->xFinalize)(&ctx);
|
|
if( pMem->z!=0 && pMem->z!=pMem->s.z ){
|
|
sqliteFree(pMem->z);
|
|
}
|
|
}else if( pMem->s.flags & STK_Dyn ){
|
|
sqliteFree(pMem->z);
|
|
}
|
|
}
|
|
sqliteFree(pElem);
|
|
}
|
|
sqliteHashClear(&pAgg->hash);
|
|
sqliteFree(pAgg->apFunc);
|
|
pAgg->apFunc = 0;
|
|
pAgg->pCurrent = 0;
|
|
pAgg->pSearch = 0;
|
|
pAgg->nMem = 0;
|
|
}
|
|
|
|
/*
|
|
** Insert a new element and make it the current element.
|
|
**
|
|
** Return 0 on success and 1 if memory is exhausted.
|
|
*/
|
|
static int AggInsert(Agg *p, char *zKey, int nKey){
|
|
AggElem *pElem, *pOld;
|
|
int i;
|
|
pElem = sqliteMalloc( sizeof(AggElem) + nKey +
|
|
(p->nMem-1)*sizeof(pElem->aMem[0]) );
|
|
if( pElem==0 ) return 1;
|
|
pElem->zKey = (char*)&pElem->aMem[p->nMem];
|
|
memcpy(pElem->zKey, zKey, nKey);
|
|
pElem->nKey = nKey;
|
|
pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
|
|
if( pOld!=0 ){
|
|
assert( pOld==pElem ); /* Malloc failed on insert */
|
|
sqliteFree(pOld);
|
|
return 0;
|
|
}
|
|
for(i=0; i<p->nMem; i++){
|
|
pElem->aMem[i].s.flags = STK_Null;
|
|
}
|
|
p->pCurrent = pElem;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Get the AggElem currently in focus
|
|
*/
|
|
#define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P)))
|
|
static AggElem *_AggInFocus(Agg *p){
|
|
HashElem *pElem = sqliteHashFirst(&p->hash);
|
|
if( pElem==0 ){
|
|
AggInsert(p,"",1);
|
|
pElem = sqliteHashFirst(&p->hash);
|
|
}
|
|
return pElem ? sqliteHashData(pElem) : 0;
|
|
}
|
|
|
|
/*
|
|
** Convert the given stack entity into a string if it isn't one
|
|
** already. Return non-zero if we run out of memory.
|
|
**
|
|
** NULLs are converted into an empty string.
|
|
*/
|
|
#define Stringify(P,I) \
|
|
((P->aStack[I].flags & STK_Str)==0 ? hardStringify(P,I) : 0)
|
|
static int hardStringify(Vdbe *p, int i){
|
|
Stack *pStack = &p->aStack[i];
|
|
char **pzStack = &p->zStack[i];
|
|
int fg = pStack->flags;
|
|
if( fg & STK_Real ){
|
|
sprintf(pStack->z,"%.15g",pStack->r);
|
|
}else if( fg & STK_Int ){
|
|
sprintf(pStack->z,"%d",pStack->i);
|
|
}else{
|
|
pStack->z[0] = 0;
|
|
}
|
|
*pzStack = pStack->z;
|
|
pStack->n = strlen(*pzStack)+1;
|
|
pStack->flags = STK_Str;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Release the memory associated with the given stack level
|
|
*/
|
|
#define Release(P,I) if((P)->aStack[I].flags&STK_Dyn){ hardRelease(P,I); }
|
|
static void hardRelease(Vdbe *p, int i){
|
|
sqliteFree(p->zStack[i]);
|
|
p->zStack[i] = 0;
|
|
p->aStack[i].flags &= ~(STK_Str|STK_Dyn|STK_Static);
|
|
}
|
|
|
|
/*
|
|
** Convert the given stack entity into a integer if it isn't one
|
|
** already.
|
|
**
|
|
** Any prior string or real representation is invalidated.
|
|
** NULLs are converted into 0.
|
|
*/
|
|
#define Integerify(P,I) \
|
|
if(((P)->aStack[(I)].flags&STK_Int)==0){ hardIntegerify(P,I); }
|
|
static void hardIntegerify(Vdbe *p, int i){
|
|
if( p->aStack[i].flags & STK_Real ){
|
|
p->aStack[i].i = (int)p->aStack[i].r;
|
|
Release(p, i);
|
|
}else if( p->aStack[i].flags & STK_Str ){
|
|
p->aStack[i].i = atoi(p->zStack[i]);
|
|
Release(p, i);
|
|
}else{
|
|
p->aStack[i].i = 0;
|
|
}
|
|
p->aStack[i].flags = STK_Int;
|
|
}
|
|
|
|
/*
|
|
** Get a valid Real representation for the given stack element.
|
|
**
|
|
** Any prior string or integer representation is retained.
|
|
** NULLs are converted into 0.0.
|
|
*/
|
|
#define Realify(P,I) \
|
|
if(((P)->aStack[(I)].flags&STK_Real)==0){ hardRealify(P,I); }
|
|
static void hardRealify(Vdbe *p, int i){
|
|
if( p->aStack[i].flags & STK_Str ){
|
|
p->aStack[i].r = atof(p->zStack[i]);
|
|
}else if( p->aStack[i].flags & STK_Int ){
|
|
p->aStack[i].r = p->aStack[i].i;
|
|
}else{
|
|
p->aStack[i].r = 0.0;
|
|
}
|
|
p->aStack[i].flags |= STK_Real;
|
|
}
|
|
|
|
/*
|
|
** Pop the stack N times. Free any memory associated with the
|
|
** popped stack elements.
|
|
*/
|
|
static void PopStack(Vdbe *p, int N){
|
|
char **pzStack;
|
|
Stack *pStack;
|
|
if( p->zStack==0 ) return;
|
|
pStack = &p->aStack[p->tos];
|
|
pzStack = &p->zStack[p->tos];
|
|
p->tos -= N;
|
|
while( N-- > 0 ){
|
|
if( pStack->flags & STK_Dyn ){
|
|
sqliteFree(*pzStack);
|
|
}
|
|
pStack->flags = 0;
|
|
*pzStack = 0;
|
|
pStack--;
|
|
pzStack--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Here is a macro to handle the common case of popping the stack
|
|
** once. This macro only works from within the sqliteVdbeExec()
|
|
** function.
|
|
*/
|
|
#define POPSTACK \
|
|
if( aStack[p->tos].flags & STK_Dyn ) sqliteFree(zStack[p->tos]); \
|
|
p->tos--;
|
|
|
|
/*
|
|
** Make sure space has been allocated to hold at least N
|
|
** stack elements. Allocate additional stack space if
|
|
** necessary.
|
|
**
|
|
** Return 0 on success and non-zero if there are memory
|
|
** allocation errors.
|
|
*/
|
|
#define NeedStack(P,N) (((P)->nStackAlloc<=(N)) ? hardNeedStack(P,N) : 0)
|
|
static int hardNeedStack(Vdbe *p, int N){
|
|
int oldAlloc;
|
|
int i;
|
|
if( N>=p->nStackAlloc ){
|
|
Stack *aNew;
|
|
char **zNew;
|
|
oldAlloc = p->nStackAlloc;
|
|
p->nStackAlloc = N + 20;
|
|
aNew = sqliteRealloc(p->aStack, p->nStackAlloc*sizeof(p->aStack[0]));
|
|
zNew = aNew ? sqliteRealloc(p->zStack, p->nStackAlloc*sizeof(char*)) : 0;
|
|
if( zNew==0 ){
|
|
sqliteFree(aNew);
|
|
sqliteFree(p->aStack);
|
|
sqliteFree(p->zStack);
|
|
p->aStack = 0;
|
|
p->zStack = 0;
|
|
p->nStackAlloc = 0;
|
|
p->aStack = 0;
|
|
p->zStack = 0;
|
|
return 1;
|
|
}
|
|
p->aStack = aNew;
|
|
p->zStack = zNew;
|
|
for(i=oldAlloc; i<p->nStackAlloc; i++){
|
|
p->zStack[i] = 0;
|
|
p->aStack[i].flags = 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if zNum is a floating-point or integer number.
|
|
*/
|
|
static int isNumber(const char *zNum){
|
|
if( *zNum=='-' || *zNum=='+' ) zNum++;
|
|
if( !isdigit(*zNum) ) return 0;
|
|
while( isdigit(*zNum) ) zNum++;
|
|
if( *zNum==0 ) return 1;
|
|
if( *zNum!='.' ) return 0;
|
|
zNum++;
|
|
if( !isdigit(*zNum) ) return 0;
|
|
while( isdigit(*zNum) ) zNum++;
|
|
if( *zNum==0 ) return 1;
|
|
if( *zNum!='e' && *zNum!='E' ) return 0;
|
|
zNum++;
|
|
if( *zNum=='-' || *zNum=='+' ) zNum++;
|
|
if( !isdigit(*zNum) ) return 0;
|
|
while( isdigit(*zNum) ) zNum++;
|
|
return *zNum==0;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if zNum is an integer.
|
|
*/
|
|
static int isInteger(const char *zNum){
|
|
if( *zNum=='-' || *zNum=='+' ) zNum++;
|
|
while( isdigit(*zNum) ) zNum++;
|
|
return *zNum==0;
|
|
}
|
|
|
|
/*
|
|
** Delete a keylist
|
|
*/
|
|
static void KeylistFree(Keylist *p){
|
|
while( p ){
|
|
Keylist *pNext = p->pNext;
|
|
sqliteFree(p);
|
|
p = pNext;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Close a cursor and release all the resources that cursor happens
|
|
** to hold.
|
|
*/
|
|
static void cleanupCursor(Cursor *pCx){
|
|
if( pCx->pCursor ){
|
|
sqliteBtreeCloseCursor(pCx->pCursor);
|
|
}
|
|
if( pCx->pBt ){
|
|
sqliteBtreeClose(pCx->pBt);
|
|
}
|
|
memset(pCx, 0, sizeof(Cursor));
|
|
}
|
|
|
|
/*
|
|
** Close all cursors
|
|
*/
|
|
static void closeAllCursors(Vdbe *p){
|
|
int i;
|
|
for(i=0; i<p->nCursor; i++){
|
|
cleanupCursor(&p->aCsr[i]);
|
|
}
|
|
sqliteFree(p->aCsr);
|
|
p->aCsr = 0;
|
|
p->nCursor = 0;
|
|
}
|
|
|
|
/*
|
|
** Remove any elements that remain on the sorter for the VDBE given.
|
|
*/
|
|
static void SorterReset(Vdbe *p){
|
|
while( p->pSort ){
|
|
Sorter *pSorter = p->pSort;
|
|
p->pSort = pSorter->pNext;
|
|
sqliteFree(pSorter->zKey);
|
|
sqliteFree(pSorter->pData);
|
|
sqliteFree(pSorter);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Clean up the VM after execution.
|
|
**
|
|
** This routine will automatically close any cursors, lists, and/or
|
|
** sorters that were left open.
|
|
*/
|
|
static void Cleanup(Vdbe *p){
|
|
int i;
|
|
PopStack(p, p->tos+1);
|
|
sqliteFree(p->azColName);
|
|
p->azColName = 0;
|
|
closeAllCursors(p);
|
|
for(i=0; i<p->nMem; i++){
|
|
if( p->aMem[i].s.flags & STK_Dyn ){
|
|
sqliteFree(p->aMem[i].z);
|
|
}
|
|
}
|
|
sqliteFree(p->aMem);
|
|
p->aMem = 0;
|
|
p->nMem = 0;
|
|
if( p->pList ){
|
|
KeylistFree(p->pList);
|
|
p->pList = 0;
|
|
}
|
|
SorterReset(p);
|
|
if( p->pFile ){
|
|
if( p->pFile!=stdin ) fclose(p->pFile);
|
|
p->pFile = 0;
|
|
}
|
|
if( p->azField ){
|
|
sqliteFree(p->azField);
|
|
p->azField = 0;
|
|
}
|
|
p->nField = 0;
|
|
if( p->zLine ){
|
|
sqliteFree(p->zLine);
|
|
p->zLine = 0;
|
|
}
|
|
p->nLineAlloc = 0;
|
|
AggReset(&p->agg);
|
|
for(i=0; i<p->nSet; i++){
|
|
sqliteHashClear(&p->aSet[i].hash);
|
|
}
|
|
sqliteFree(p->aSet);
|
|
p->aSet = 0;
|
|
p->nSet = 0;
|
|
if (p->keylistStackDepth > 0) {
|
|
int ii;
|
|
for (ii = 0; ii < p->keylistStackDepth; ii++) {
|
|
KeylistFree(p->keylistStack[ii]);
|
|
}
|
|
sqliteFree(p->keylistStack);
|
|
p->keylistStackDepth = 0;
|
|
p->keylistStack = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Delete an entire VDBE.
|
|
*/
|
|
void sqliteVdbeDelete(Vdbe *p){
|
|
int i;
|
|
if( p==0 ) return;
|
|
Cleanup(p);
|
|
if( p->nOpAlloc==0 ){
|
|
p->aOp = 0;
|
|
p->nOp = 0;
|
|
}
|
|
for(i=0; i<p->nOp; i++){
|
|
if( p->aOp[i].p3type==P3_DYNAMIC ){
|
|
sqliteFree(p->aOp[i].p3);
|
|
}
|
|
}
|
|
sqliteFree(p->aOp);
|
|
sqliteFree(p->aLabel);
|
|
sqliteFree(p->aStack);
|
|
sqliteFree(p->zStack);
|
|
sqliteFree(p);
|
|
}
|
|
|
|
/*
|
|
** A translation from opcode numbers to opcode names. Used for testing
|
|
** and debugging only.
|
|
**
|
|
** If any of the numeric OP_ values for opcodes defined in sqliteVdbe.h
|
|
** change, be sure to change this array to match. You can use the
|
|
** "opNames.awk" awk script which is part of the source tree to regenerate
|
|
** this array, then copy and paste it into this file, if you want.
|
|
*/
|
|
static char *zOpName[] = { 0,
|
|
"Transaction", "Checkpoint", "Commit", "Rollback",
|
|
"ReadCookie", "SetCookie", "VerifyCookie", "Open",
|
|
"OpenTemp", "OpenWrite", "OpenAux", "OpenWrAux",
|
|
"Close", "MoveTo", "NewRecno", "PutIntKey",
|
|
"PutStrKey", "Distinct", "Found", "NotFound",
|
|
"IsUnique", "NotExists", "Delete", "Column",
|
|
"KeyAsData", "Recno", "FullKey", "NullRow",
|
|
"Last", "Rewind", "Next", "Destroy",
|
|
"Clear", "CreateIndex", "CreateTable", "IntegrityCk",
|
|
"IdxPut", "IdxDelete", "IdxRecno", "IdxGT",
|
|
"IdxGE", "MemLoad", "MemStore", "ListWrite",
|
|
"ListRewind", "ListRead", "ListReset", "SortPut",
|
|
"SortMakeRec", "SortMakeKey", "Sort", "SortNext",
|
|
"SortCallback", "SortReset", "FileOpen", "FileRead",
|
|
"FileColumn", "AggReset", "AggFocus", "AggNext",
|
|
"AggSet", "AggGet", "AggFunc", "AggInit",
|
|
"SetInsert", "SetFound", "SetNotFound", "MakeRecord",
|
|
"MakeKey", "MakeIdxKey", "IncrKey", "Goto",
|
|
"If", "Halt", "ColumnCount", "ColumnName",
|
|
"Callback", "NullCallback", "Integer", "String",
|
|
"Pop", "Dup", "Pull", "Push",
|
|
"MustBeInt", "Add", "AddImm", "Subtract",
|
|
"Multiply", "Divide", "Remainder", "BitAnd",
|
|
"BitOr", "BitNot", "ShiftLeft", "ShiftRight",
|
|
"AbsValue", "Eq", "Ne", "Lt",
|
|
"Le", "Gt", "Ge", "IsNull",
|
|
"NotNull", "Negative", "And", "Or",
|
|
"Not", "Concat", "Noop", "Function",
|
|
"Limit", "PushList", "PopList",
|
|
};
|
|
|
|
/*
|
|
** Given the name of an opcode, return its number. Return 0 if
|
|
** there is no match.
|
|
**
|
|
** This routine is used for testing and debugging.
|
|
*/
|
|
int sqliteVdbeOpcode(const char *zName){
|
|
int i;
|
|
for(i=1; i<=OP_MAX; i++){
|
|
if( sqliteStrICmp(zName, zOpName[i])==0 ) return i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Give a listing of the program in the virtual machine.
|
|
**
|
|
** The interface is the same as sqliteVdbeExec(). But instead of
|
|
** running the code, it invokes the callback once for each instruction.
|
|
** This feature is used to implement "EXPLAIN".
|
|
*/
|
|
int sqliteVdbeList(
|
|
Vdbe *p, /* The VDBE */
|
|
sqlite_callback xCallback, /* The callback */
|
|
void *pArg, /* 1st argument to callback */
|
|
char **pzErrMsg /* Error msg written here */
|
|
){
|
|
sqlite *db = p->db;
|
|
int i, rc;
|
|
char *azValue[6];
|
|
char zAddr[20];
|
|
char zP1[20];
|
|
char zP2[20];
|
|
char zP3[40];
|
|
static char *azColumnNames[] = {
|
|
"addr", "opcode", "p1", "p2", "p3", 0
|
|
};
|
|
|
|
if( xCallback==0 ) return 0;
|
|
azValue[0] = zAddr;
|
|
azValue[2] = zP1;
|
|
azValue[3] = zP2;
|
|
azValue[5] = 0;
|
|
rc = SQLITE_OK;
|
|
for(i=0; rc==SQLITE_OK && i<p->nOp; i++){
|
|
if( db->flags & SQLITE_Interrupt ){
|
|
db->flags &= ~SQLITE_Interrupt;
|
|
if( db->magic!=SQLITE_MAGIC_BUSY ){
|
|
rc = SQLITE_MISUSE;
|
|
}else{
|
|
rc = SQLITE_INTERRUPT;
|
|
}
|
|
sqliteSetString(pzErrMsg, sqlite_error_string(rc), 0);
|
|
break;
|
|
}
|
|
sprintf(zAddr,"%d",i);
|
|
sprintf(zP1,"%d", p->aOp[i].p1);
|
|
sprintf(zP2,"%d", p->aOp[i].p2);
|
|
if( p->aOp[i].p3type==P3_POINTER ){
|
|
sprintf(zP3, "ptr(%#x)", (int)p->aOp[i].p3);
|
|
azValue[4] = zP3;
|
|
}else{
|
|
azValue[4] = p->aOp[i].p3;
|
|
}
|
|
azValue[1] = zOpName[p->aOp[i].opcode];
|
|
if( sqliteSafetyOff(db) ){
|
|
rc = SQLITE_MISUSE;
|
|
break;
|
|
}
|
|
if( xCallback(pArg, 5, azValue, azColumnNames) ){
|
|
rc = SQLITE_ABORT;
|
|
}
|
|
if( sqliteSafetyOn(db) ){
|
|
rc = SQLITE_MISUSE;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The parameters are pointers to the head of two sorted lists
|
|
** of Sorter structures. Merge these two lists together and return
|
|
** a single sorted list. This routine forms the core of the merge-sort
|
|
** algorithm.
|
|
**
|
|
** In the case of a tie, left sorts in front of right.
|
|
*/
|
|
static Sorter *Merge(Sorter *pLeft, Sorter *pRight){
|
|
Sorter sHead;
|
|
Sorter *pTail;
|
|
pTail = &sHead;
|
|
pTail->pNext = 0;
|
|
while( pLeft && pRight ){
|
|
int c = sqliteSortCompare(pLeft->zKey, pRight->zKey);
|
|
if( c<=0 ){
|
|
pTail->pNext = pLeft;
|
|
pLeft = pLeft->pNext;
|
|
}else{
|
|
pTail->pNext = pRight;
|
|
pRight = pRight->pNext;
|
|
}
|
|
pTail = pTail->pNext;
|
|
}
|
|
if( pLeft ){
|
|
pTail->pNext = pLeft;
|
|
}else if( pRight ){
|
|
pTail->pNext = pRight;
|
|
}
|
|
return sHead.pNext;
|
|
}
|
|
|
|
/*
|
|
** Convert an integer in between the native integer format and
|
|
** the bigEndian format used as the record number for tables.
|
|
**
|
|
** The bigEndian format (most significant byte first) is used for
|
|
** record numbers so that records will sort into the correct order
|
|
** even though memcmp() is used to compare the keys. On machines
|
|
** whose native integer format is little endian (ex: i486) the
|
|
** order of bytes is reversed. On native big-endian machines
|
|
** (ex: Alpha, Sparc, Motorola) the byte order is the same.
|
|
**
|
|
** This function is its own inverse. In other words
|
|
**
|
|
** X == byteSwap(byteSwap(X))
|
|
*/
|
|
static int byteSwap(int x){
|
|
union {
|
|
char zBuf[sizeof(int)];
|
|
int i;
|
|
} ux;
|
|
ux.zBuf[3] = x&0xff;
|
|
ux.zBuf[2] = (x>>8)&0xff;
|
|
ux.zBuf[1] = (x>>16)&0xff;
|
|
ux.zBuf[0] = (x>>24)&0xff;
|
|
return ux.i;
|
|
}
|
|
|
|
/*
|
|
** When converting from the native format to the key format and back
|
|
** again, in addition to changing the byte order we invert the high-order
|
|
** bit of the most significant byte. This causes negative numbers to
|
|
** sort before positive numbers in the memcmp() function.
|
|
*/
|
|
#define keyToInt(X) (byteSwap(X) ^ 0x80000000)
|
|
#define intToKey(X) (byteSwap((X) ^ 0x80000000))
|
|
|
|
/*
|
|
** Code contained within the VERIFY() macro is not needed for correct
|
|
** execution. It is there only to catch errors. So when we compile
|
|
** with NDEBUG=1, the VERIFY() code is omitted.
|
|
*/
|
|
#ifdef NDEBUG
|
|
# define VERIFY(X)
|
|
#else
|
|
# define VERIFY(X) X
|
|
#endif
|
|
|
|
/*
|
|
** Execute the program in the VDBE.
|
|
**
|
|
** If an error occurs, an error message is written to memory obtained
|
|
** from sqliteMalloc() and *pzErrMsg is made to point to that memory.
|
|
** The return parameter is the number of errors.
|
|
**
|
|
** If the callback ever returns non-zero, then the program exits
|
|
** immediately. There will be no error message but the function
|
|
** does return SQLITE_ABORT.
|
|
**
|
|
** A memory allocation error causes this routine to return SQLITE_NOMEM
|
|
** and abandon furture processing.
|
|
**
|
|
** Other fatal errors return SQLITE_ERROR.
|
|
**
|
|
** If a database file could not be opened because it is locked by
|
|
** another database instance, then the xBusy() callback is invoked
|
|
** with pBusyArg as its first argument, the name of the table as the
|
|
** second argument, and the number of times the open has been attempted
|
|
** as the third argument. The xBusy() callback will typically wait
|
|
** for the database file to be openable, then return. If xBusy()
|
|
** returns non-zero, another attempt is made to open the file. If
|
|
** xBusy() returns zero, or if xBusy is NULL, then execution halts
|
|
** and this routine returns SQLITE_BUSY.
|
|
*/
|
|
int sqliteVdbeExec(
|
|
Vdbe *p, /* The VDBE */
|
|
sqlite_callback xCallback, /* The callback */
|
|
void *pArg, /* 1st argument to callback */
|
|
char **pzErrMsg, /* Error msg written here */
|
|
void *pBusyArg, /* 1st argument to the busy callback */
|
|
int (*xBusy)(void*,const char*,int) /* Called when a file is busy */
|
|
){
|
|
int pc; /* The program counter */
|
|
Op *pOp; /* Current operation */
|
|
int rc; /* Value to return */
|
|
Btree *pBt = p->pBt; /* The backend driver */
|
|
sqlite *db = p->db; /* The database */
|
|
char **zStack; /* Text stack */
|
|
Stack *aStack; /* Additional stack information */
|
|
int errorAction = OE_Abort; /* Recovery action to do in case of an error */
|
|
int undoTransOnError = 0; /* If error, either ROLLBACK or COMMIT */
|
|
char zBuf[100]; /* Space to sprintf() an integer */
|
|
|
|
|
|
/* No instruction ever pushes more than a single element onto the
|
|
** stack. And the stack never grows on successive executions of the
|
|
** same loop. So the total number of instructions is an upper bound
|
|
** on the maximum stack depth required.
|
|
**
|
|
** Allocation all the stack space we will ever need.
|
|
*/
|
|
NeedStack(p, p->nOp);
|
|
zStack = p->zStack;
|
|
aStack = p->aStack;
|
|
p->tos = -1;
|
|
p->iLimit = 0;
|
|
p->iOffset = 0;
|
|
|
|
/* Initialize the aggregrate hash table.
|
|
*/
|
|
sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0);
|
|
p->agg.pSearch = 0;
|
|
|
|
rc = SQLITE_OK;
|
|
#ifdef MEMORY_DEBUG
|
|
if( access("vdbe_trace",0)==0 ){
|
|
p->trace = stdout;
|
|
}
|
|
#endif
|
|
if( sqlite_malloc_failed ) goto no_mem;
|
|
for(pc=0; !sqlite_malloc_failed && rc==SQLITE_OK && pc<p->nOp
|
|
VERIFY(&& pc>=0); pc++){
|
|
pOp = &p->aOp[pc];
|
|
|
|
/* Interrupt processing if requested.
|
|
*/
|
|
if( db->flags & SQLITE_Interrupt ){
|
|
db->flags &= ~SQLITE_Interrupt;
|
|
if( db->magic!=SQLITE_MAGIC_BUSY ){
|
|
rc = SQLITE_MISUSE;
|
|
}else{
|
|
rc = SQLITE_INTERRUPT;
|
|
}
|
|
sqliteSetString(pzErrMsg, sqlite_error_string(rc), 0);
|
|
break;
|
|
}
|
|
|
|
/* Only allow tracing if NDEBUG is not defined.
|
|
*/
|
|
#ifndef NDEBUG
|
|
if( p->trace ){
|
|
char *zP3;
|
|
char zPtr[40];
|
|
if( pOp->p3type==P3_POINTER ){
|
|
sprintf(zPtr, "ptr(%#x)", (int)pOp->p3);
|
|
zP3 = zPtr;
|
|
}else{
|
|
zP3 = pOp->p3;
|
|
}
|
|
fprintf(p->trace,"%4d %-12s %4d %4d %s\n",
|
|
pc, zOpName[pOp->opcode], pOp->p1, pOp->p2, zP3 ? zP3 : "");
|
|
fflush(p->trace);
|
|
}
|
|
#endif
|
|
|
|
switch( pOp->opcode ){
|
|
|
|
/*****************************************************************************
|
|
** What follows is a massive switch statement where each case implements a
|
|
** separate instruction in the virtual machine. If we follow the usual
|
|
** indentation conventions, each case should be indented by 6 spaces. But
|
|
** that is a lot of wasted space on the left margin. So the code within
|
|
** the switch statement will break with convention and be flush-left. Another
|
|
** big comment (similar to this one) will mark the point in the code where
|
|
** we transition back to normal indentation.
|
|
*****************************************************************************/
|
|
|
|
/* Opcode: Goto * P2 *
|
|
**
|
|
** An unconditional jump to address P2.
|
|
** The next instruction executed will be
|
|
** the one at index P2 from the beginning of
|
|
** the program.
|
|
*/
|
|
case OP_Goto: {
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Halt P1 P2 *
|
|
**
|
|
** Exit immediately. All open cursors, Lists, Sorts, etc are closed
|
|
** automatically.
|
|
**
|
|
** P1 is the result code returned by sqlite_exec(). For a normal
|
|
** halt, this should be SQLITE_OK (0). For errors, it can be some
|
|
** other value. If P1!=0 then P2 will determine whether or not to
|
|
** rollback the current transaction. Do not rollback if P2==OE_Fail.
|
|
** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back
|
|
** out all changes that have occurred during this execution of the
|
|
** VDBE, but do not rollback the transaction. (This last case has
|
|
** not yet been implemented. OE_Abort works like OE_Rollback for
|
|
** now. In the future that may change.)
|
|
**
|
|
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
|
|
** every program. So a jump past the last instruction of the program
|
|
** is the same as executing Halt.
|
|
*/
|
|
case OP_Halt: {
|
|
if( pOp->p1!=SQLITE_OK ){
|
|
rc = pOp->p1;
|
|
errorAction = pOp->p2;
|
|
goto abort_due_to_error;
|
|
}else{
|
|
pc = p->nOp-1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Integer P1 * P3
|
|
**
|
|
** The integer value P1 is pushed onto the stack. If P3 is not zero
|
|
** then it is assumed to be a string representation of the same integer.
|
|
*/
|
|
case OP_Integer: {
|
|
int i = ++p->tos;
|
|
VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; )
|
|
aStack[i].i = pOp->p1;
|
|
aStack[i].flags = STK_Int;
|
|
if( pOp->p3 ){
|
|
zStack[i] = pOp->p3;
|
|
aStack[i].flags |= STK_Str | STK_Static;
|
|
aStack[i].n = strlen(pOp->p3)+1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: String * * P3
|
|
**
|
|
** The string value P3 is pushed onto the stack. If P3==0 then a
|
|
** NULL is pushed onto the stack.
|
|
*/
|
|
case OP_String: {
|
|
int i = ++p->tos;
|
|
char *z;
|
|
VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; )
|
|
z = pOp->p3;
|
|
if( z==0 ){
|
|
zStack[i] = 0;
|
|
aStack[i].n = 0;
|
|
aStack[i].flags = STK_Null;
|
|
}else{
|
|
zStack[i] = z;
|
|
aStack[i].n = strlen(z) + 1;
|
|
aStack[i].flags = STK_Str | STK_Static;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Pop P1 * *
|
|
**
|
|
** P1 elements are popped off of the top of stack and discarded.
|
|
*/
|
|
case OP_Pop: {
|
|
assert( p->tos+1>=pOp->p1 );
|
|
PopStack(p, pOp->p1);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Dup P1 P2 *
|
|
**
|
|
** A copy of the P1-th element of the stack
|
|
** is made and pushed onto the top of the stack.
|
|
** The top of the stack is element 0. So the
|
|
** instruction "Dup 0 0 0" will make a copy of the
|
|
** top of the stack.
|
|
**
|
|
** If the content of the P1-th element is a dynamically
|
|
** allocated string, then a new copy of that string
|
|
** is made if P2==0. If P2!=0, then just a pointer
|
|
** to the string is copied.
|
|
**
|
|
** Also see the Pull instruction.
|
|
*/
|
|
case OP_Dup: {
|
|
int i = p->tos - pOp->p1;
|
|
int j = ++p->tos;
|
|
VERIFY( if( i<0 ) goto not_enough_stack; )
|
|
VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; )
|
|
memcpy(&aStack[j], &aStack[i], sizeof(aStack[i])-NBFS);
|
|
if( aStack[j].flags & STK_Str ){
|
|
if( pOp->p2 || (aStack[j].flags & STK_Static)!=0 ){
|
|
zStack[j] = zStack[i];
|
|
aStack[j].flags &= ~STK_Dyn;
|
|
}else if( aStack[i].n<=NBFS ){
|
|
memcpy(aStack[j].z, zStack[i], aStack[j].n);
|
|
zStack[j] = aStack[j].z;
|
|
aStack[j].flags &= ~(STK_Static|STK_Dyn);
|
|
}else{
|
|
zStack[j] = sqliteMalloc( aStack[j].n );
|
|
if( zStack[j]==0 ) goto no_mem;
|
|
memcpy(zStack[j], zStack[i], aStack[j].n);
|
|
aStack[j].flags &= ~STK_Static;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Pull P1 * *
|
|
**
|
|
** The P1-th element is removed from its current location on
|
|
** the stack and pushed back on top of the stack. The
|
|
** top of the stack is element 0, so "Pull 0 0 0" is
|
|
** a no-op. "Pull 1 0 0" swaps the top two elements of
|
|
** the stack.
|
|
**
|
|
** See also the Dup instruction.
|
|
*/
|
|
case OP_Pull: {
|
|
int from = p->tos - pOp->p1;
|
|
int to = p->tos;
|
|
int i;
|
|
Stack ts;
|
|
char *tz;
|
|
VERIFY( if( from<0 ) goto not_enough_stack; )
|
|
ts = aStack[from];
|
|
tz = zStack[from];
|
|
for(i=from; i<to; i++){
|
|
aStack[i] = aStack[i+1];
|
|
if( aStack[i].flags & (STK_Dyn|STK_Static) ){
|
|
zStack[i] = zStack[i+1];
|
|
}else{
|
|
zStack[i] = aStack[i].z;
|
|
}
|
|
}
|
|
aStack[to] = ts;
|
|
if( aStack[to].flags & (STK_Dyn|STK_Static) ){
|
|
zStack[to] = tz;
|
|
}else{
|
|
zStack[to] = aStack[to].z;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Push P1 * *
|
|
**
|
|
** Overwrite the value of the P1-th element down on the
|
|
** stack (P1==0 is the top of the stack) with the value
|
|
** of the top of the stack. The pop the top of the stack.
|
|
*/
|
|
case OP_Push: {
|
|
int from = p->tos;
|
|
int to = p->tos - pOp->p1;
|
|
|
|
VERIFY( if( to<0 ) goto not_enough_stack; )
|
|
if( aStack[to].flags & STK_Dyn ){
|
|
sqliteFree(zStack[to]);
|
|
}
|
|
aStack[to] = aStack[from];
|
|
if( aStack[to].flags & (STK_Dyn|STK_Static) ){
|
|
zStack[to] = zStack[from];
|
|
}else{
|
|
zStack[to] = aStack[to].z;
|
|
}
|
|
aStack[from].flags &= ~STK_Dyn;
|
|
p->tos--;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ColumnCount P1 * *
|
|
**
|
|
** Specify the number of column values that will appear in the
|
|
** array passed as the 4th parameter to the callback. No checking
|
|
** is done. If this value is wrong, a coredump can result.
|
|
*/
|
|
case OP_ColumnCount: {
|
|
char **az = sqliteRealloc(p->azColName, (pOp->p1+1)*sizeof(char*));
|
|
if( az==0 ){ goto no_mem; }
|
|
p->azColName = az;
|
|
p->azColName[pOp->p1] = 0;
|
|
p->nCallback = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ColumnName P1 * P3
|
|
**
|
|
** P3 becomes the P1-th column name (first is 0). An array of pointers
|
|
** to all column names is passed as the 4th parameter to the callback.
|
|
** The ColumnCount opcode must be executed first to allocate space to
|
|
** hold the column names. Failure to do this will likely result in
|
|
** a coredump.
|
|
*/
|
|
case OP_ColumnName: {
|
|
p->azColName[pOp->p1] = pOp->p3 ? pOp->p3 : "";
|
|
p->nCallback = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Callback P1 P2 *
|
|
**
|
|
** Pop P1 values off the stack and form them into an array. Then
|
|
** invoke the callback function using the newly formed array as the
|
|
** 3rd parameter.
|
|
**
|
|
** If the offset counter (set by the OP_Limit opcode) is positive,
|
|
** then decrement the counter and do not invoke the callback.
|
|
**
|
|
** If the callback is invoked, then after the callback returns
|
|
** decrement the limit counter. When the limit counter reaches
|
|
** zero, jump to address P2.
|
|
*/
|
|
case OP_Callback: {
|
|
int i = p->tos - pOp->p1 + 1;
|
|
int j;
|
|
VERIFY( if( i<0 ) goto not_enough_stack; )
|
|
VERIFY( if( NeedStack(p, p->tos+2) ) goto no_mem; )
|
|
for(j=i; j<=p->tos; j++){
|
|
if( aStack[j].flags & STK_Null ){
|
|
zStack[j] = 0;
|
|
}else{
|
|
if( Stringify(p, j) ) goto no_mem;
|
|
}
|
|
}
|
|
zStack[p->tos+1] = 0;
|
|
if( xCallback!=0 ){
|
|
if( p->iOffset>0 ){
|
|
p->iOffset--;
|
|
}else{
|
|
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
|
|
if( xCallback(pArg, pOp->p1, &zStack[i], p->azColName)!=0 ){
|
|
rc = SQLITE_ABORT;
|
|
}
|
|
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
|
|
p->nCallback++;
|
|
if( p->iLimit>0 ){
|
|
p->iLimit--;
|
|
if( p->iLimit==0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
PopStack(p, pOp->p1);
|
|
if( sqlite_malloc_failed ) goto no_mem;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NullCallback P1 * *
|
|
**
|
|
** Invoke the callback function once with the 2nd argument (the
|
|
** number of columns) equal to P1 and with the 4th argument (the
|
|
** names of the columns) set according to prior OP_ColumnName and
|
|
** OP_ColumnCount instructions. This is all like the regular
|
|
** OP_Callback or OP_SortCallback opcodes. But the 3rd argument
|
|
** which normally contains a pointer to an array of pointers to
|
|
** data is NULL.
|
|
**
|
|
** The callback is only invoked if there have been no prior calls
|
|
** to OP_Callback or OP_SortCallback.
|
|
**
|
|
** This opcode is used to report the number and names of columns
|
|
** in cases where the result set is empty.
|
|
*/
|
|
case OP_NullCallback: {
|
|
if( xCallback!=0 && p->nCallback==0 ){
|
|
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
|
|
if( xCallback(pArg, pOp->p1, 0, p->azColName)!=0 ){
|
|
rc = SQLITE_ABORT;
|
|
}
|
|
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
|
|
p->nCallback++;
|
|
}
|
|
if( sqlite_malloc_failed ) goto no_mem;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Concat P1 P2 P3
|
|
**
|
|
** Look at the first P1 elements of the stack. Append them all
|
|
** together with the lowest element first. Use P3 as a separator.
|
|
** Put the result on the top of the stack. The original P1 elements
|
|
** are popped from the stack if P2==0 and retained if P2==1.
|
|
**
|
|
** If P3 is NULL, then use no separator. When P1==1, this routine
|
|
** makes a copy of the top stack element into memory obtained
|
|
** from sqliteMalloc().
|
|
*/
|
|
case OP_Concat: {
|
|
char *zNew;
|
|
int nByte;
|
|
int nField;
|
|
int i, j;
|
|
char *zSep;
|
|
int nSep;
|
|
|
|
nField = pOp->p1;
|
|
zSep = pOp->p3;
|
|
if( zSep==0 ) zSep = "";
|
|
nSep = strlen(zSep);
|
|
VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
|
|
nByte = 1 - nSep;
|
|
for(i=p->tos-nField+1; i<=p->tos; i++){
|
|
if( aStack[i].flags & STK_Null ){
|
|
nByte += nSep;
|
|
}else{
|
|
if( Stringify(p, i) ) goto no_mem;
|
|
nByte += aStack[i].n - 1 + nSep;
|
|
}
|
|
}
|
|
zNew = sqliteMalloc( nByte );
|
|
if( zNew==0 ) goto no_mem;
|
|
j = 0;
|
|
for(i=p->tos-nField+1; i<=p->tos; i++){
|
|
if( (aStack[i].flags & STK_Null)==0 ){
|
|
memcpy(&zNew[j], zStack[i], aStack[i].n-1);
|
|
j += aStack[i].n-1;
|
|
}
|
|
if( nSep>0 && i<p->tos ){
|
|
memcpy(&zNew[j], zSep, nSep);
|
|
j += nSep;
|
|
}
|
|
}
|
|
zNew[j] = 0;
|
|
if( pOp->p2==0 ) PopStack(p, nField);
|
|
VERIFY( NeedStack(p, p->tos+1); )
|
|
p->tos++;
|
|
aStack[p->tos].n = nByte;
|
|
aStack[p->tos].flags = STK_Str|STK_Dyn;
|
|
zStack[p->tos] = zNew;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Add * * *
|
|
**
|
|
** Pop the top two elements from the stack, add them together,
|
|
** and push the result back onto the stack. If either element
|
|
** is a string then it is converted to a double using the atof()
|
|
** function before the addition.
|
|
*/
|
|
/* Opcode: Multiply * * *
|
|
**
|
|
** Pop the top two elements from the stack, multiply them together,
|
|
** and push the result back onto the stack. If either element
|
|
** is a string then it is converted to a double using the atof()
|
|
** function before the multiplication.
|
|
*/
|
|
/* Opcode: Subtract * * *
|
|
**
|
|
** Pop the top two elements from the stack, subtract the
|
|
** first (what was on top of the stack) from the second (the
|
|
** next on stack)
|
|
** and push the result back onto the stack. If either element
|
|
** is a string then it is converted to a double using the atof()
|
|
** function before the subtraction.
|
|
*/
|
|
/* Opcode: Divide * * *
|
|
**
|
|
** Pop the top two elements from the stack, divide the
|
|
** first (what was on top of the stack) from the second (the
|
|
** next on stack)
|
|
** and push the result back onto the stack. If either element
|
|
** is a string then it is converted to a double using the atof()
|
|
** function before the division. Division by zero returns NULL.
|
|
*/
|
|
/* Opcode: Remainder * * *
|
|
**
|
|
** Pop the top two elements from the stack, divide the
|
|
** first (what was on top of the stack) from the second (the
|
|
** next on stack)
|
|
** and push the remainder after division onto the stack. If either element
|
|
** is a string then it is converted to a double using the atof()
|
|
** function before the division. Division by zero returns NULL.
|
|
*/
|
|
case OP_Add:
|
|
case OP_Subtract:
|
|
case OP_Multiply:
|
|
case OP_Divide:
|
|
case OP_Remainder: {
|
|
int tos = p->tos;
|
|
int nos = tos - 1;
|
|
VERIFY( if( nos<0 ) goto not_enough_stack; )
|
|
if( (aStack[tos].flags & aStack[nos].flags & STK_Int)==STK_Int ){
|
|
int a, b;
|
|
a = aStack[tos].i;
|
|
b = aStack[nos].i;
|
|
switch( pOp->opcode ){
|
|
case OP_Add: b += a; break;
|
|
case OP_Subtract: b -= a; break;
|
|
case OP_Multiply: b *= a; break;
|
|
case OP_Divide: {
|
|
if( a==0 ) goto divide_by_zero;
|
|
b /= a;
|
|
break;
|
|
}
|
|
default: {
|
|
if( a==0 ) goto divide_by_zero;
|
|
b %= a;
|
|
break;
|
|
}
|
|
}
|
|
POPSTACK;
|
|
Release(p, nos);
|
|
aStack[nos].i = b;
|
|
aStack[nos].flags = STK_Int;
|
|
}else{
|
|
double a, b;
|
|
Realify(p, tos);
|
|
Realify(p, nos);
|
|
a = aStack[tos].r;
|
|
b = aStack[nos].r;
|
|
switch( pOp->opcode ){
|
|
case OP_Add: b += a; break;
|
|
case OP_Subtract: b -= a; break;
|
|
case OP_Multiply: b *= a; break;
|
|
case OP_Divide: {
|
|
if( a==0.0 ) goto divide_by_zero;
|
|
b /= a;
|
|
break;
|
|
}
|
|
default: {
|
|
int ia = (int)a;
|
|
int ib = (int)b;
|
|
if( ia==0.0 ) goto divide_by_zero;
|
|
b = ib % ia;
|
|
break;
|
|
}
|
|
}
|
|
POPSTACK;
|
|
Release(p, nos);
|
|
aStack[nos].r = b;
|
|
aStack[nos].flags = STK_Real;
|
|
}
|
|
break;
|
|
|
|
divide_by_zero:
|
|
PopStack(p, 2);
|
|
p->tos = nos;
|
|
aStack[nos].flags = STK_Null;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Function P1 * P3
|
|
**
|
|
** Invoke a user function (P3 is a pointer to a Function structure that
|
|
** defines the function) with P1 string arguments taken from the stack.
|
|
** Pop all arguments from the stack and push back the result.
|
|
**
|
|
** See also: AggFunc
|
|
*/
|
|
case OP_Function: {
|
|
int n, i;
|
|
sqlite_func ctx;
|
|
|
|
n = pOp->p1;
|
|
VERIFY( if( n<0 ) goto bad_instruction; )
|
|
VERIFY( if( p->tos+1<n ) goto not_enough_stack; )
|
|
for(i=p->tos-n+1; i<=p->tos; i++){
|
|
if( (aStack[i].flags & STK_Null)==0 ){
|
|
if( Stringify(p, i) ) goto no_mem;
|
|
}
|
|
}
|
|
ctx.pFunc = (FuncDef*)pOp->p3;
|
|
ctx.s.flags = STK_Null;
|
|
ctx.z = 0;
|
|
ctx.isError = 0;
|
|
ctx.isStep = 0;
|
|
(*ctx.pFunc->xFunc)(&ctx, n, (const char**)&zStack[p->tos-n+1]);
|
|
PopStack(p, n);
|
|
VERIFY( NeedStack(p, p->tos+1); )
|
|
p->tos++;
|
|
aStack[p->tos] = ctx.s;
|
|
if( ctx.s.flags & STK_Dyn ){
|
|
zStack[p->tos] = ctx.z;
|
|
}else if( ctx.s.flags & STK_Str ){
|
|
zStack[p->tos] = aStack[p->tos].z;
|
|
}else{
|
|
zStack[p->tos] = 0;
|
|
}
|
|
if( ctx.isError ){
|
|
sqliteSetString(pzErrMsg,
|
|
zStack[p->tos] ? zStack[p->tos] : "user function error", 0);
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: BitAnd * * *
|
|
**
|
|
** Pop the top two elements from the stack. Convert both elements
|
|
** to integers. Push back onto the stack the bit-wise AND of the
|
|
** two elements.
|
|
*/
|
|
/* Opcode: BitOr * * *
|
|
**
|
|
** Pop the top two elements from the stack. Convert both elements
|
|
** to integers. Push back onto the stack the bit-wise OR of the
|
|
** two elements.
|
|
*/
|
|
/* Opcode: ShiftLeft * * *
|
|
**
|
|
** Pop the top two elements from the stack. Convert both elements
|
|
** to integers. Push back onto the stack the top element shifted
|
|
** left by N bits where N is the second element on the stack.
|
|
*/
|
|
/* Opcode: ShiftRight * * *
|
|
**
|
|
** Pop the top two elements from the stack. Convert both elements
|
|
** to integers. Push back onto the stack the top element shifted
|
|
** right by N bits where N is the second element on the stack.
|
|
*/
|
|
case OP_BitAnd:
|
|
case OP_BitOr:
|
|
case OP_ShiftLeft:
|
|
case OP_ShiftRight: {
|
|
int tos = p->tos;
|
|
int nos = tos - 1;
|
|
int a, b;
|
|
VERIFY( if( nos<0 ) goto not_enough_stack; )
|
|
Integerify(p, tos);
|
|
Integerify(p, nos);
|
|
a = aStack[tos].i;
|
|
b = aStack[nos].i;
|
|
switch( pOp->opcode ){
|
|
case OP_BitAnd: a &= b; break;
|
|
case OP_BitOr: a |= b; break;
|
|
case OP_ShiftLeft: a <<= b; break;
|
|
case OP_ShiftRight: a >>= b; break;
|
|
default: /* CANT HAPPEN */ break;
|
|
}
|
|
POPSTACK;
|
|
Release(p, nos);
|
|
aStack[nos].i = a;
|
|
aStack[nos].flags = STK_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AddImm P1 * *
|
|
**
|
|
** Add the value P1 to whatever is on top of the stack. The result
|
|
** is always an integer.
|
|
**
|
|
** To force the top of the stack to be an integer, just add 0.
|
|
*/
|
|
case OP_AddImm: {
|
|
int tos = p->tos;
|
|
VERIFY( if( tos<0 ) goto not_enough_stack; )
|
|
Integerify(p, tos);
|
|
aStack[tos].i += pOp->p1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MustBeInt * P2 *
|
|
**
|
|
** Force the top of the stack to be an integer. If the top of the
|
|
** stack is not an integer and cannot be comverted into an integer
|
|
** with out data loss, then jump immediately to P2, or if P2==0
|
|
** raise an SQLITE_MISMATCH exception.
|
|
*/
|
|
case OP_MustBeInt: {
|
|
int tos = p->tos;
|
|
VERIFY( if( tos<0 ) goto not_enough_stack; )
|
|
if( aStack[tos].flags & STK_Int ){
|
|
/* Do nothing */
|
|
}else if( aStack[tos].flags & STK_Real ){
|
|
int i = aStack[tos].r;
|
|
double r = i;
|
|
if( r!=aStack[tos].r ){
|
|
goto mismatch;
|
|
}
|
|
aStack[tos].i = i;
|
|
}else if( aStack[tos].flags & STK_Str ){
|
|
if( !isInteger(zStack[tos]) ){
|
|
goto mismatch;
|
|
}
|
|
p->aStack[tos].i = atoi(p->zStack[tos]);
|
|
}else{
|
|
goto mismatch;
|
|
}
|
|
Release(p, tos);
|
|
p->aStack[tos].flags = STK_Int;
|
|
break;
|
|
|
|
mismatch:
|
|
if( pOp->p2==0 ){
|
|
rc = SQLITE_MISMATCH;
|
|
goto abort_due_to_error;
|
|
}else{
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Eq * P2 *
|
|
**
|
|
** Pop the top two elements from the stack. If they are equal, then
|
|
** jump to instruction P2. Otherwise, continue to the next instruction.
|
|
*/
|
|
/* Opcode: Ne * P2 *
|
|
**
|
|
** Pop the top two elements from the stack. If they are not equal, then
|
|
** jump to instruction P2. Otherwise, continue to the next instruction.
|
|
*/
|
|
/* Opcode: Lt * P2 *
|
|
**
|
|
** Pop the top two elements from the stack. If second element (the
|
|
** next on stack) is less than the first (the top of stack), then
|
|
** jump to instruction P2. Otherwise, continue to the next instruction.
|
|
** In other words, jump if NOS<TOS.
|
|
*/
|
|
/* Opcode: Le * P2 *
|
|
**
|
|
** Pop the top two elements from the stack. If second element (the
|
|
** next on stack) is less than or equal to the first (the top of stack),
|
|
** then jump to instruction P2. In other words, jump if NOS<=TOS.
|
|
*/
|
|
/* Opcode: Gt * P2 *
|
|
**
|
|
** Pop the top two elements from the stack. If second element (the
|
|
** next on stack) is greater than the first (the top of stack),
|
|
** then jump to instruction P2. In other words, jump if NOS>TOS.
|
|
*/
|
|
/* Opcode: Ge * P2 *
|
|
**
|
|
** Pop the top two elements from the stack. If second element (the next
|
|
** on stack) is greater than or equal to the first (the top of stack),
|
|
** then jump to instruction P2. In other words, jump if NOS>=TOS.
|
|
*/
|
|
case OP_Eq:
|
|
case OP_Ne:
|
|
case OP_Lt:
|
|
case OP_Le:
|
|
case OP_Gt:
|
|
case OP_Ge: {
|
|
int tos = p->tos;
|
|
int nos = tos - 1;
|
|
int c;
|
|
int ft, fn;
|
|
VERIFY( if( nos<0 ) goto not_enough_stack; )
|
|
ft = aStack[tos].flags;
|
|
fn = aStack[nos].flags;
|
|
if( (ft & fn & STK_Int)==STK_Int ){
|
|
c = aStack[nos].i - aStack[tos].i;
|
|
}else if( (ft & STK_Int)!=0 && (fn & STK_Str)!=0 && isInteger(zStack[nos]) ){
|
|
Integerify(p, nos);
|
|
c = aStack[nos].i - aStack[tos].i;
|
|
}else if( (fn & STK_Int)!=0 && (ft & STK_Str)!=0 && isInteger(zStack[tos]) ){
|
|
Integerify(p, tos);
|
|
c = aStack[nos].i - aStack[tos].i;
|
|
}else{
|
|
if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem;
|
|
c = sqliteCompare(zStack[nos], zStack[tos]);
|
|
}
|
|
switch( pOp->opcode ){
|
|
case OP_Eq: c = c==0; break;
|
|
case OP_Ne: c = c!=0; break;
|
|
case OP_Lt: c = c<0; break;
|
|
case OP_Le: c = c<=0; break;
|
|
case OP_Gt: c = c>0; break;
|
|
default: c = c>=0; break;
|
|
}
|
|
POPSTACK;
|
|
POPSTACK;
|
|
if( c ) pc = pOp->p2-1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: And * * *
|
|
**
|
|
** Pop two values off the stack. Take the logical AND of the
|
|
** two values and push the resulting boolean value back onto the
|
|
** stack.
|
|
*/
|
|
/* Opcode: Or * * *
|
|
**
|
|
** Pop two values off the stack. Take the logical OR of the
|
|
** two values and push the resulting boolean value back onto the
|
|
** stack.
|
|
*/
|
|
case OP_And:
|
|
case OP_Or: {
|
|
int tos = p->tos;
|
|
int nos = tos - 1;
|
|
int c;
|
|
VERIFY( if( nos<0 ) goto not_enough_stack; )
|
|
Integerify(p, tos);
|
|
Integerify(p, nos);
|
|
if( pOp->opcode==OP_And ){
|
|
c = aStack[tos].i && aStack[nos].i;
|
|
}else{
|
|
c = aStack[tos].i || aStack[nos].i;
|
|
}
|
|
POPSTACK;
|
|
Release(p, nos);
|
|
aStack[nos].i = c;
|
|
aStack[nos].flags = STK_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Negative * * *
|
|
**
|
|
** Treat the top of the stack as a numeric quantity. Replace it
|
|
** with its additive inverse.
|
|
*/
|
|
/* Opcode: AbsValue * * *
|
|
**
|
|
** Treat the top of the stack as a numeric quantity. Replace it
|
|
** with its absolute value.
|
|
*/
|
|
case OP_Negative:
|
|
case OP_AbsValue: {
|
|
int tos = p->tos;
|
|
VERIFY( if( tos<0 ) goto not_enough_stack; )
|
|
if( aStack[tos].flags & STK_Real ){
|
|
Release(p, tos);
|
|
if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){
|
|
aStack[tos].r = -aStack[tos].r;
|
|
}
|
|
aStack[tos].flags = STK_Real;
|
|
}else if( aStack[tos].flags & STK_Int ){
|
|
Release(p, tos);
|
|
if( pOp->opcode==OP_Negative || aStack[tos].i<0 ){
|
|
aStack[tos].i = -aStack[tos].i;
|
|
}
|
|
aStack[tos].flags = STK_Int;
|
|
}else{
|
|
Realify(p, tos);
|
|
Release(p, tos);
|
|
if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){
|
|
aStack[tos].r = -aStack[tos].r;
|
|
}
|
|
aStack[tos].flags = STK_Real;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Not * * *
|
|
**
|
|
** Interpret the top of the stack as a boolean value. Replace it
|
|
** with its complement.
|
|
*/
|
|
case OP_Not: {
|
|
int tos = p->tos;
|
|
VERIFY( if( p->tos<0 ) goto not_enough_stack; )
|
|
Integerify(p, tos);
|
|
Release(p, tos);
|
|
aStack[tos].i = !aStack[tos].i;
|
|
aStack[tos].flags = STK_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: BitNot * * *
|
|
**
|
|
** Interpret the top of the stack as an value. Replace it
|
|
** with its ones-complement.
|
|
*/
|
|
case OP_BitNot: {
|
|
int tos = p->tos;
|
|
VERIFY( if( p->tos<0 ) goto not_enough_stack; )
|
|
Integerify(p, tos);
|
|
Release(p, tos);
|
|
aStack[tos].i = ~aStack[tos].i;
|
|
aStack[tos].flags = STK_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Noop * * *
|
|
**
|
|
** Do nothing. This instruction is often useful as a jump
|
|
** destination.
|
|
*/
|
|
case OP_Noop: {
|
|
break;
|
|
}
|
|
|
|
/* Opcode: If * P2 *
|
|
**
|
|
** Pop a single boolean from the stack. If the boolean popped is
|
|
** true, then jump to p2. Otherwise continue to the next instruction.
|
|
** An integer is false if zero and true otherwise. A string is
|
|
** false if it has zero length and true otherwise.
|
|
*/
|
|
case OP_If: {
|
|
int c;
|
|
VERIFY( if( p->tos<0 ) goto not_enough_stack; )
|
|
Integerify(p, p->tos);
|
|
c = aStack[p->tos].i;
|
|
POPSTACK;
|
|
if( c ) pc = pOp->p2-1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IsNull * P2 *
|
|
**
|
|
** Pop a single value from the stack. If the value popped is NULL
|
|
** then jump to p2. Otherwise continue to the next
|
|
** instruction.
|
|
*/
|
|
case OP_IsNull: {
|
|
int c;
|
|
VERIFY( if( p->tos<0 ) goto not_enough_stack; )
|
|
c = (aStack[p->tos].flags & STK_Null)!=0;
|
|
POPSTACK;
|
|
if( c ) pc = pOp->p2-1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NotNull * P2 *
|
|
**
|
|
** Pop a single value from the stack. If the value popped is not
|
|
** NULL, then jump to p2. Otherwise continue to the next
|
|
** instruction.
|
|
*/
|
|
case OP_NotNull: {
|
|
int c;
|
|
VERIFY( if( p->tos<0 ) goto not_enough_stack; )
|
|
c = (aStack[p->tos].flags & STK_Null)==0;
|
|
POPSTACK;
|
|
if( c ) pc = pOp->p2-1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MakeRecord P1 * *
|
|
**
|
|
** Convert the top P1 entries of the stack into a single entry
|
|
** suitable for use as a data record in a database table. The
|
|
** details of the format are irrelavant as long as the OP_Column
|
|
** opcode can decode the record later. Refer to source code
|
|
** comments for the details of the record format.
|
|
*/
|
|
case OP_MakeRecord: {
|
|
char *zNewRecord;
|
|
int nByte;
|
|
int nField;
|
|
int i, j;
|
|
int idxWidth;
|
|
u32 addr;
|
|
|
|
/* Assuming the record contains N fields, the record format looks
|
|
** like this:
|
|
**
|
|
** -------------------------------------------------------------------
|
|
** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) |
|
|
** -------------------------------------------------------------------
|
|
**
|
|
** All data fields are converted to strings before being stored and
|
|
** are stored with their null terminators. NULL entries omit the
|
|
** null terminator. Thus an empty string uses 1 byte and a NULL uses
|
|
** zero bytes. Data(0) is taken from the lowest element of the stack
|
|
** and data(N-1) is the top of the stack.
|
|
**
|
|
** Each of the idx() entries is either 1, 2, or 3 bytes depending on
|
|
** how big the total record is. Idx(0) contains the offset to the start
|
|
** of data(0). Idx(k) contains the offset to the start of data(k).
|
|
** Idx(N) contains the total number of bytes in the record.
|
|
*/
|
|
nField = pOp->p1;
|
|
VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
|
|
nByte = 0;
|
|
for(i=p->tos-nField+1; i<=p->tos; i++){
|
|
if( (aStack[i].flags & STK_Null)==0 ){
|
|
if( Stringify(p, i) ) goto no_mem;
|
|
nByte += aStack[i].n;
|
|
}
|
|
}
|
|
if( nByte + nField + 1 < 256 ){
|
|
idxWidth = 1;
|
|
}else if( nByte + 2*nField + 2 < 65536 ){
|
|
idxWidth = 2;
|
|
}else{
|
|
idxWidth = 3;
|
|
}
|
|
nByte += idxWidth*(nField + 1);
|
|
if( nByte>MAX_BYTES_PER_ROW ){
|
|
rc = SQLITE_TOOBIG;
|
|
goto abort_due_to_error;
|
|
}
|
|
zNewRecord = sqliteMalloc( nByte );
|
|
if( zNewRecord==0 ) goto no_mem;
|
|
j = 0;
|
|
addr = idxWidth*(nField+1);
|
|
for(i=p->tos-nField+1; i<=p->tos; i++){
|
|
zNewRecord[j++] = addr & 0xff;
|
|
if( idxWidth>1 ){
|
|
zNewRecord[j++] = (addr>>8)&0xff;
|
|
if( idxWidth>2 ){
|
|
zNewRecord[j++] = (addr>>16)&0xff;
|
|
}
|
|
}
|
|
if( (aStack[i].flags & STK_Null)==0 ){
|
|
addr += aStack[i].n;
|
|
}
|
|
}
|
|
zNewRecord[j++] = addr & 0xff;
|
|
if( idxWidth>1 ){
|
|
zNewRecord[j++] = (addr>>8)&0xff;
|
|
if( idxWidth>2 ){
|
|
zNewRecord[j++] = (addr>>16)&0xff;
|
|
}
|
|
}
|
|
for(i=p->tos-nField+1; i<=p->tos; i++){
|
|
if( (aStack[i].flags & STK_Null)==0 ){
|
|
memcpy(&zNewRecord[j], zStack[i], aStack[i].n);
|
|
j += aStack[i].n;
|
|
}
|
|
}
|
|
PopStack(p, nField);
|
|
VERIFY( NeedStack(p, p->tos+1); )
|
|
p->tos++;
|
|
aStack[p->tos].n = nByte;
|
|
aStack[p->tos].flags = STK_Str | STK_Dyn;
|
|
zStack[p->tos] = zNewRecord;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MakeKey P1 P2 *
|
|
**
|
|
** Convert the top P1 entries of the stack into a single entry suitable
|
|
** for use as the key in an index. The top P1 records are
|
|
** converted to strings and merged. The null-terminators
|
|
** are retained and used as separators.
|
|
** The lowest entry in the stack is the first field and the top of the
|
|
** stack becomes the last.
|
|
**
|
|
** If P2 is not zero, then the original entries remain on the stack
|
|
** and the new key is pushed on top. If P2 is zero, the original
|
|
** data is popped off the stack first then the new key is pushed
|
|
** back in its place.
|
|
**
|
|
** See also: MakeIdxKey, SortMakeKey
|
|
*/
|
|
/* Opcode: MakeIdxKey P1 * *
|
|
**
|
|
** Convert the top P1 entries of the stack into a single entry suitable
|
|
** for use as the key in an index. In addition, take one additional integer
|
|
** off of the stack, treat that integer as a four-byte record number, and
|
|
** append the four bytes to the key. Thus a total of P1+1 entries are
|
|
** popped from the stack for this instruction and a single entry is pushed
|
|
** back. The first P1 entries that are popped are strings and the last
|
|
** entry (the lowest on the stack) is an integer record number.
|
|
**
|
|
** The converstion of the first P1 string entries occurs just like in
|
|
** MakeKey. Each entry is separated from the others by a null.
|
|
** The entire concatenation is null-terminated. The lowest entry
|
|
** in the stack is the first field and the top of the stack becomes the
|
|
** last.
|
|
**
|
|
** See also: MakeKey, SortMakeKey
|
|
*/
|
|
case OP_MakeIdxKey:
|
|
case OP_MakeKey: {
|
|
char *zNewKey;
|
|
int nByte;
|
|
int nField;
|
|
int addRowid;
|
|
int i, j;
|
|
|
|
addRowid = pOp->opcode==OP_MakeIdxKey;
|
|
nField = pOp->p1;
|
|
VERIFY( if( p->tos+1+addRowid<nField ) goto not_enough_stack; )
|
|
nByte = 0;
|
|
for(i=p->tos-nField+1; i<=p->tos; i++){
|
|
int flags = aStack[i].flags;
|
|
int len;
|
|
char *z;
|
|
if( flags & STK_Null ){
|
|
nByte += 2;
|
|
}else if( flags & STK_Real ){
|
|
z = aStack[i].z;
|
|
sqliteRealToSortable(aStack[i].r, &z[1]);
|
|
z[0] = 0;
|
|
Release(p, i);
|
|
len = strlen(&z[1]);
|
|
zStack[i] = 0;
|
|
aStack[i].flags = STK_Real;
|
|
aStack[i].n = len+2;
|
|
nByte += aStack[i].n;
|
|
}else if( flags & STK_Int ){
|
|
z = aStack[i].z;
|
|
aStack[i].r = aStack[i].i;
|
|
sqliteRealToSortable(aStack[i].r, &z[1]);
|
|
z[0] = 0;
|
|
Release(p, i);
|
|
len = strlen(&z[1]);
|
|
zStack[i] = 0;
|
|
aStack[i].flags = STK_Int;
|
|
aStack[i].n = len+2;
|
|
nByte += aStack[i].n;
|
|
}else{
|
|
assert( flags & STK_Str );
|
|
if( isNumber(zStack[i]) ){
|
|
aStack[i].r = atof(zStack[i]);
|
|
Release(p, i);
|
|
z = aStack[i].z;
|
|
sqliteRealToSortable(aStack[i].r, &z[1]);
|
|
z[0] = 0;
|
|
len = strlen(&z[1]);
|
|
zStack[i] = 0;
|
|
aStack[i].flags = STK_Real;
|
|
aStack[i].n = len+2;
|
|
}
|
|
nByte += aStack[i].n;
|
|
}
|
|
}
|
|
if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
|
|
rc = SQLITE_TOOBIG;
|
|
goto abort_due_to_error;
|
|
}
|
|
if( addRowid ) nByte += sizeof(u32);
|
|
zNewKey = sqliteMalloc( nByte );
|
|
if( zNewKey==0 ) goto no_mem;
|
|
j = 0;
|
|
for(i=p->tos-nField+1; i<=p->tos; i++){
|
|
if( aStack[i].flags & STK_Null ){
|
|
zNewKey[j++] = 0;
|
|
zNewKey[j++] = 0;
|
|
}else{
|
|
memcpy(&zNewKey[j], zStack[i] ? zStack[i] : aStack[i].z, aStack[i].n);
|
|
j += aStack[i].n;
|
|
}
|
|
}
|
|
if( addRowid ){
|
|
u32 iKey;
|
|
Integerify(p, p->tos-nField);
|
|
iKey = intToKey(aStack[p->tos-nField].i);
|
|
memcpy(&zNewKey[j], &iKey, sizeof(u32));
|
|
}
|
|
if( pOp->p2==0 ) PopStack(p, nField+addRowid);
|
|
VERIFY( NeedStack(p, p->tos+1); )
|
|
p->tos++;
|
|
aStack[p->tos].n = nByte;
|
|
aStack[p->tos].flags = STK_Str|STK_Dyn;
|
|
zStack[p->tos] = zNewKey;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IncrKey * * *
|
|
**
|
|
** The top of the stack should contain an index key generated by
|
|
** The MakeKey opcode. This routine increases the least significant
|
|
** byte of that key by one. This is used so that the MoveTo opcode
|
|
** will move to the first entry greater than the key rather than to
|
|
** the key itself.
|
|
*/
|
|
case OP_IncrKey: {
|
|
int tos = p->tos;
|
|
|
|
VERIFY( if( tos<0 ) goto bad_instruction );
|
|
if( Stringify(p, tos) ) goto no_mem;
|
|
if( aStack[tos].flags & STK_Static ){
|
|
char *zNew = sqliteMalloc( aStack[tos].n );
|
|
memcpy(zNew, zStack[tos], aStack[tos].n);
|
|
zStack[tos] = zNew;
|
|
aStack[tos].flags = STK_Str | STK_Dyn;
|
|
}
|
|
zStack[tos][aStack[tos].n-1]++;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Checkpoint * * *
|
|
**
|
|
** Begin a checkpoint. A checkpoint is the beginning of a operation that
|
|
** is part of a larger transaction but which might need to be rolled back
|
|
** itself without effecting the containing transaction. A checkpoint will
|
|
** be automatically committed or rollback when the VDBE halts.
|
|
*/
|
|
case OP_Checkpoint: {
|
|
rc = sqliteBtreeBeginCkpt(pBt);
|
|
if( rc==SQLITE_OK && db->pBeTemp ){
|
|
rc = sqliteBtreeBeginCkpt(db->pBeTemp);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Transaction * * *
|
|
**
|
|
** Begin a transaction. The transaction ends when a Commit or Rollback
|
|
** opcode is encountered. Depending on the ON CONFLICT setting, the
|
|
** transaction might also be rolled back if an error is encountered.
|
|
**
|
|
** A write lock is obtained on the database file when a transaction is
|
|
** started. No other process can read or write the file while the
|
|
** transaction is underway. Starting a transaction also creates a
|
|
** rollback journal. A transaction must be started before any changes
|
|
** can be made to the database.
|
|
*/
|
|
case OP_Transaction: {
|
|
int busy = 0;
|
|
if( db->pBeTemp ){
|
|
rc = sqliteBtreeBeginTrans(db->pBeTemp);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
do{
|
|
rc = sqliteBtreeBeginTrans(pBt);
|
|
switch( rc ){
|
|
case SQLITE_BUSY: {
|
|
if( xBusy==0 || (*xBusy)(pBusyArg, "", ++busy)==0 ){
|
|
sqliteSetString(pzErrMsg, sqlite_error_string(rc), 0);
|
|
busy = 0;
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_OK: {
|
|
busy = 0;
|
|
break;
|
|
}
|
|
default: {
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
}while( busy );
|
|
undoTransOnError = 1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Commit * * *
|
|
**
|
|
** Cause all modifications to the database that have been made since the
|
|
** last Transaction to actually take effect. No additional modifications
|
|
** are allowed until another transaction is started. The Commit instruction
|
|
** deletes the journal file and releases the write lock on the database.
|
|
** A read lock continues to be held if there are still cursors open.
|
|
*/
|
|
case OP_Commit: {
|
|
if( db->pBeTemp==0 || (rc = sqliteBtreeCommit(db->pBeTemp))==SQLITE_OK ){
|
|
rc = sqliteBtreeCommit(pBt);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
sqliteCommitInternalChanges(db);
|
|
}else{
|
|
sqliteRollbackInternalChanges(db);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Rollback * * *
|
|
**
|
|
** Cause all modifications to the database that have been made since the
|
|
** last Transaction to be undone. The database is restored to its state
|
|
** before the Transaction opcode was executed. No additional modifications
|
|
** are allowed until another transaction is started.
|
|
**
|
|
** This instruction automatically closes all cursors and releases both
|
|
** the read and write locks on the database.
|
|
*/
|
|
case OP_Rollback: {
|
|
if( db->pBeTemp ){
|
|
sqliteBtreeRollback(db->pBeTemp);
|
|
}
|
|
rc = sqliteBtreeRollback(pBt);
|
|
sqliteRollbackInternalChanges(db);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ReadCookie * P2 *
|
|
**
|
|
** When P2==0,
|
|
** read the schema cookie from the database file and push it onto the
|
|
** stack. The schema cookie is an integer that is used like a version
|
|
** number for the database schema. Everytime the schema changes, the
|
|
** cookie changes to a new random value. This opcode is used during
|
|
** initialization to read the initial cookie value so that subsequent
|
|
** database accesses can verify that the cookie has not changed.
|
|
**
|
|
** If P2>0, then read global database parameter number P2. There is
|
|
** a small fixed number of global database parameters. P2==1 is the
|
|
** database version number. P2==2 is the recommended pager cache size.
|
|
** Other parameters are currently unused.
|
|
**
|
|
** There must be a read-lock on the database (either a transaction
|
|
** must be started or there must be an open cursor) before
|
|
** executing this instruction.
|
|
*/
|
|
case OP_ReadCookie: {
|
|
int i = ++p->tos;
|
|
int aMeta[SQLITE_N_BTREE_META];
|
|
assert( pOp->p2<SQLITE_N_BTREE_META );
|
|
VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; )
|
|
rc = sqliteBtreeGetMeta(pBt, aMeta);
|
|
aStack[i].i = aMeta[1+pOp->p2];
|
|
aStack[i].flags = STK_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SetCookie * P2 *
|
|
**
|
|
** When P2==0,
|
|
** this operation changes the value of the schema cookie on the database.
|
|
** The new value is top of the stack.
|
|
** When P2>0, the value of global database parameter
|
|
** number P2 is changed. See ReadCookie for more information about
|
|
** global database parametes.
|
|
**
|
|
** The schema cookie changes its value whenever the database schema changes.
|
|
** That way, other processes can recognize when the schema has changed
|
|
** and reread it.
|
|
**
|
|
** A transaction must be started before executing this opcode.
|
|
*/
|
|
case OP_SetCookie: {
|
|
int aMeta[SQLITE_N_BTREE_META];
|
|
assert( pOp->p2<SQLITE_N_BTREE_META );
|
|
VERIFY( if( p->tos<0 ) goto not_enough_stack; )
|
|
Integerify(p, p->tos)
|
|
rc = sqliteBtreeGetMeta(pBt, aMeta);
|
|
if( rc==SQLITE_OK ){
|
|
aMeta[1+pOp->p2] = aStack[p->tos].i;
|
|
rc = sqliteBtreeUpdateMeta(pBt, aMeta);
|
|
}
|
|
POPSTACK;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: VerifyCookie P1 P2 *
|
|
**
|
|
** Check the value of global database parameter number P2 and make
|
|
** sure it is equal to P1. P2==0 is the schema cookie. P1==1 is
|
|
** the database version. If the values do not match, abort with
|
|
** an SQLITE_SCHEMA error.
|
|
**
|
|
** The cookie changes its value whenever the database schema changes.
|
|
** This operation is used to detect when that the cookie has changed
|
|
** and that the current process needs to reread the schema.
|
|
**
|
|
** Either a transaction needs to have been started or an OP_Open needs
|
|
** to be executed (to establish a read lock) before this opcode is
|
|
** invoked.
|
|
*/
|
|
case OP_VerifyCookie: {
|
|
int aMeta[SQLITE_N_BTREE_META];
|
|
assert( pOp->p2<SQLITE_N_BTREE_META );
|
|
rc = sqliteBtreeGetMeta(pBt, aMeta);
|
|
if( rc==SQLITE_OK && aMeta[1+pOp->p2]!=pOp->p1 ){
|
|
sqliteSetString(pzErrMsg, "database schema has changed", 0);
|
|
rc = SQLITE_SCHEMA;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Open P1 P2 P3
|
|
**
|
|
** Open a read-only cursor for the database table whose root page is
|
|
** P2 in the main database file. Give the new cursor an identifier
|
|
** of P1. The P1 values need not be contiguous but all P1 values
|
|
** should be small integers. It is an error for P1 to be negative.
|
|
**
|
|
** If P2==0 then take the root page number from the top of the stack.
|
|
**
|
|
** There will be a read lock on the database whenever there is an
|
|
** open cursor. If the database was unlocked prior to this instruction
|
|
** then a read lock is acquired as part of this instruction. A read
|
|
** lock allows other processes to read the database but prohibits
|
|
** any other process from modifying the database. The read lock is
|
|
** released when all cursors are closed. If this instruction attempts
|
|
** to get a read lock but fails, the script terminates with an
|
|
** SQLITE_BUSY error code.
|
|
**
|
|
** The P3 value is the name of the table or index being opened.
|
|
** The P3 value is not actually used by this opcode and may be
|
|
** omitted. But the code generator usually inserts the index or
|
|
** table name into P3 to make the code easier to read.
|
|
**
|
|
** See also OpenAux and OpenWrite.
|
|
*/
|
|
/* Opcode: OpenAux P1 P2 P3
|
|
**
|
|
** Open a read-only cursor in the auxiliary table set. This opcode
|
|
** works exactly like OP_Open except that it opens the cursor on the
|
|
** auxiliary table set (the file used to store tables created using
|
|
** CREATE TEMPORARY TABLE) instead of in the main database file.
|
|
** See OP_Open for additional information.
|
|
*/
|
|
/* Opcode: OpenWrite P1 P2 P3
|
|
**
|
|
** Open a read/write cursor named P1 on the table or index whose root
|
|
** page is P2. If P2==0 then take the root page number from the stack.
|
|
**
|
|
** This instruction works just like Open except that it opens the cursor
|
|
** in read/write mode. For a given table, there can be one or more read-only
|
|
** cursors or a single read/write cursor but not both.
|
|
**
|
|
** See also OpWrAux.
|
|
*/
|
|
/* Opcode: OpenWrAux P1 P2 P3
|
|
**
|
|
** Open a read/write cursor in the auxiliary table set. This opcode works
|
|
** just like OpenWrite except that the auxiliary table set (the file used
|
|
** to store tables created using CREATE TEMPORARY TABLE) is used in place
|
|
** of the main database file.
|
|
*/
|
|
case OP_OpenAux:
|
|
case OP_OpenWrAux:
|
|
case OP_OpenWrite:
|
|
case OP_Open: {
|
|
int busy = 0;
|
|
int i = pOp->p1;
|
|
int tos = p->tos;
|
|
int p2 = pOp->p2;
|
|
int wrFlag;
|
|
Btree *pX;
|
|
switch( pOp->opcode ){
|
|
case OP_Open: wrFlag = 0; pX = pBt; break;
|
|
case OP_OpenWrite: wrFlag = 1; pX = pBt; break;
|
|
case OP_OpenAux: wrFlag = 0; pX = db->pBeTemp; break;
|
|
case OP_OpenWrAux: wrFlag = 1; pX = db->pBeTemp; break;
|
|
}
|
|
assert( pX!=0 );
|
|
if( p2<=0 ){
|
|
if( tos<0 ) goto not_enough_stack;
|
|
Integerify(p, tos);
|
|
p2 = p->aStack[tos].i;
|
|
POPSTACK;
|
|
if( p2<2 ){
|
|
sqliteSetString(pzErrMsg, "root page number less than 2", 0);
|
|
rc = SQLITE_INTERNAL;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
VERIFY( if( i<0 ) goto bad_instruction; )
|
|
if( i>=p->nCursor ){
|
|
int j;
|
|
Cursor *aCsr = sqliteRealloc( p->aCsr, (i+1)*sizeof(Cursor) );
|
|
if( aCsr==0 ) goto no_mem;
|
|
p->aCsr = aCsr;
|
|
for(j=p->nCursor; j<=i; j++){
|
|
memset(&p->aCsr[j], 0, sizeof(Cursor));
|
|
}
|
|
p->nCursor = i+1;
|
|
}
|
|
cleanupCursor(&p->aCsr[i]);
|
|
memset(&p->aCsr[i], 0, sizeof(Cursor));
|
|
p->aCsr[i].nullRow = 1;
|
|
do{
|
|
rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor);
|
|
switch( rc ){
|
|
case SQLITE_BUSY: {
|
|
if( xBusy==0 || (*xBusy)(pBusyArg, pOp->p3, ++busy)==0 ){
|
|
sqliteSetString(pzErrMsg, sqlite_error_string(rc), 0);
|
|
busy = 0;
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_OK: {
|
|
busy = 0;
|
|
break;
|
|
}
|
|
default: {
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
}while( busy );
|
|
break;
|
|
}
|
|
|
|
/* Opcode: OpenTemp P1 P2 *
|
|
**
|
|
** Open a new cursor that points to a table or index in a temporary
|
|
** database file. The temporary file is opened read/write even if
|
|
** the main database is read-only. The temporary file is deleted
|
|
** when the cursor is closed.
|
|
**
|
|
** The cursor points to a BTree table if P2==0 and to a BTree index
|
|
** if P2==1. A BTree table must have an integer key and can have arbitrary
|
|
** data. A BTree index has no data but can have an arbitrary key.
|
|
**
|
|
** This opcode is used for tables that exist for the duration of a single
|
|
** SQL statement only. Tables created using CREATE TEMPORARY TABLE
|
|
** are opened using OP_OpenAux or OP_OpenWrAux. "Temporary" in the
|
|
** context of this opcode means for the duration of a single SQL statement
|
|
** whereas "Temporary" in the context of CREATE TABLE means for the duration
|
|
** of the connection to the database. Same word; different meanings.
|
|
*/
|
|
case OP_OpenTemp: {
|
|
int i = pOp->p1;
|
|
Cursor *pCx;
|
|
VERIFY( if( i<0 ) goto bad_instruction; )
|
|
if( i>=p->nCursor ){
|
|
int j;
|
|
Cursor *aCsr = sqliteRealloc( p->aCsr, (i+1)*sizeof(Cursor) );
|
|
if( aCsr==0 ){ goto no_mem; }
|
|
p->aCsr = aCsr;
|
|
for(j=p->nCursor; j<=i; j++){
|
|
memset(&p->aCsr[j], 0, sizeof(Cursor));
|
|
}
|
|
p->nCursor = i+1;
|
|
}
|
|
pCx = &p->aCsr[i];
|
|
cleanupCursor(pCx);
|
|
memset(pCx, 0, sizeof(*pCx));
|
|
pCx->nullRow = 1;
|
|
rc = sqliteBtreeOpen(0, 0, TEMP_PAGES, &pCx->pBt);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqliteBtreeBeginTrans(pCx->pBt);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
if( pOp->p2 ){
|
|
int pgno;
|
|
rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor);
|
|
}
|
|
}else{
|
|
rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Close P1 * *
|
|
**
|
|
** Close a cursor previously opened as P1. If P1 is not
|
|
** currently open, this instruction is a no-op.
|
|
*/
|
|
case OP_Close: {
|
|
int i = pOp->p1;
|
|
if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor ){
|
|
cleanupCursor(&p->aCsr[i]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MoveTo P1 P2 *
|
|
**
|
|
** Pop the top of the stack and use its value as a key. Reposition
|
|
** cursor P1 so that it points to an entry with a matching key. If
|
|
** the table contains no record with a matching key, then the cursor
|
|
** is left pointing at the first record that is greater than the key.
|
|
** If there are no records greater than the key and P2 is not zero,
|
|
** then an immediate jump to P2 is made.
|
|
**
|
|
** See also: Found, NotFound, Distinct
|
|
*/
|
|
case OP_MoveTo: {
|
|
int i = pOp->p1;
|
|
int tos = p->tos;
|
|
Cursor *pC;
|
|
|
|
VERIFY( if( tos<0 ) goto not_enough_stack; )
|
|
if( i>=0 && i<p->nCursor && (pC = &p->aCsr[i])->pCursor!=0 ){
|
|
int res;
|
|
if( aStack[tos].flags & STK_Int ){
|
|
int iKey = intToKey(aStack[tos].i);
|
|
sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
|
|
pC->lastRecno = aStack[tos].i;
|
|
pC->recnoIsValid = res==0;
|
|
}else{
|
|
if( Stringify(p, tos) ) goto no_mem;
|
|
sqliteBtreeMoveto(pC->pCursor, zStack[tos], aStack[tos].n, &res);
|
|
pC->recnoIsValid = 0;
|
|
}
|
|
pC->nullRow = 0;
|
|
sqlite_search_count++;
|
|
if( res<0 ){
|
|
sqliteBtreeNext(pC->pCursor, &res);
|
|
pC->recnoIsValid = 0;
|
|
if( res && pOp->p2>0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}
|
|
}
|
|
POPSTACK;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Distinct P1 P2 *
|
|
**
|
|
** Use the top of the stack as a string key. If a record with that key does
|
|
** not exist in the table of cursor P1, then jump to P2. If the record
|
|
** does already exist, then fall thru. The cursor is left pointing
|
|
** at the record if it exists. The key is not popped from the stack.
|
|
**
|
|
** This operation is similar to NotFound except that this operation
|
|
** does not pop the key from the stack.
|
|
**
|
|
** See also: Found, NotFound, MoveTo
|
|
*/
|
|
/* Opcode: Found P1 P2 *
|
|
**
|
|
** Use the top of the stack as a string key. If a record with that key
|
|
** does exist in table of P1, then jump to P2. If the record
|
|
** does not exist, then fall thru. The cursor is left pointing
|
|
** to the record if it exists. The key is popped from the stack.
|
|
**
|
|
** See also: Distinct, NotFound, MoveTo
|
|
*/
|
|
/* Opcode: NotFound P1 P2 *
|
|
**
|
|
** Use the top of the stack as a string key. If a record with that key
|
|
** does not exist in table of P1, then jump to P2. If the record
|
|
** does exist, then fall thru. The cursor is left pointing to the
|
|
** record if it exists. The key is popped from the stack.
|
|
**
|
|
** The difference between this operation and Distinct is that
|
|
** Distinct does not pop the key from the stack.
|
|
**
|
|
** See also: Distinct, Found, MoveTo, NotExists, IsUnique
|
|
*/
|
|
case OP_Distinct:
|
|
case OP_NotFound:
|
|
case OP_Found: {
|
|
int i = pOp->p1;
|
|
int tos = p->tos;
|
|
int alreadyExists = 0;
|
|
Cursor *pC;
|
|
VERIFY( if( tos<0 ) goto not_enough_stack; )
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){
|
|
int res, rx;
|
|
if( Stringify(p, tos) ) goto no_mem;
|
|
rx = sqliteBtreeMoveto(pC->pCursor, zStack[tos], aStack[tos].n, &res);
|
|
alreadyExists = rx==SQLITE_OK && res==0;
|
|
}
|
|
if( pOp->opcode==OP_Found ){
|
|
if( alreadyExists ) pc = pOp->p2 - 1;
|
|
}else{
|
|
if( !alreadyExists ) pc = pOp->p2 - 1;
|
|
}
|
|
if( pOp->opcode!=OP_Distinct ){
|
|
POPSTACK;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IsUnique P1 P2 *
|
|
**
|
|
** The top of the stack is an integer record number. Call this
|
|
** record number R. The next on the stack is an index key created
|
|
** using MakeIdxKey. Call it K. This instruction pops R from the
|
|
** stack but it leaves K unchanged.
|
|
**
|
|
** P1 is an index. So all but the last four bytes of K are an
|
|
** index string. The last four bytes of K are a record number.
|
|
**
|
|
** This instruction asks if there is an entry in P1 where the
|
|
** index string matches K but the record number is different
|
|
** from R. If there is no such entry, then there is an immediate
|
|
** jump to P2. If any entry does exist where the index string
|
|
** matches K but the record number is not R, then the record
|
|
** number for that entry is pushed onto the stack and control
|
|
** falls through to the next instruction.
|
|
**
|
|
** See also: Distinct, NotFound, NotExists
|
|
*/
|
|
case OP_IsUnique: {
|
|
int i = pOp->p1;
|
|
int tos = p->tos;
|
|
int nos = tos-1;
|
|
BtCursor *pCrsr;
|
|
int R;
|
|
|
|
/* Pop the value R off the top of the stack
|
|
*/
|
|
VERIFY( if( nos<0 ) goto not_enough_stack; )
|
|
Integerify(p, tos);
|
|
R = aStack[tos].i;
|
|
POPSTACK;
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
int res, rc;
|
|
int v; /* The record number on the P1 entry that matches K */
|
|
char *zKey; /* The value of K */
|
|
int nKey; /* Number of bytes in K */
|
|
|
|
/* Make sure K is a string and make zKey point to K
|
|
*/
|
|
if( Stringify(p, nos) ) goto no_mem;
|
|
zKey = zStack[nos];
|
|
nKey = aStack[nos].n;
|
|
assert( nKey >= 4 );
|
|
|
|
/* Search for an entry in P1 where all but the last four bytes match K.
|
|
** If there is no such entry, jump immediately to P2.
|
|
*/
|
|
rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
if( res<0 ){
|
|
rc = sqliteBtreeNext(pCrsr, &res);
|
|
if( res ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
}
|
|
rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
if( res>0 ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* At this point, pCrsr is pointing to an entry in P1 where all but
|
|
** the last for bytes of the key match K. Check to see if the last
|
|
** four bytes of the key are different from R. If the last four
|
|
** bytes equal R then jump immediately to P2.
|
|
*/
|
|
sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v);
|
|
v = keyToInt(v);
|
|
if( v==R ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* The last four bytes of the key are different from R. Convert the
|
|
** last four bytes of the key into an integer and push it onto the
|
|
** stack. (These bytes are the record number of an entry that
|
|
** violates a UNIQUE constraint.)
|
|
*/
|
|
p->tos++;
|
|
VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; )
|
|
aStack[tos].i = v;
|
|
aStack[tos].flags = STK_Int;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NotExists P1 P2 *
|
|
**
|
|
** Use the top of the stack as a integer key. If a record with that key
|
|
** does not exist in table of P1, then jump to P2. If the record
|
|
** does exist, then fall thru. The cursor is left pointing to the
|
|
** record if it exists. The integer key is popped from the stack.
|
|
**
|
|
** The difference between this operation and NotFound is that this
|
|
** operation assumes the key is an integer and NotFound assumes it
|
|
** is a string.
|
|
**
|
|
** See also: Distinct, Found, MoveTo, NotExists
|
|
*/
|
|
case OP_NotExists: {
|
|
int i = pOp->p1;
|
|
int tos = p->tos;
|
|
BtCursor *pCrsr;
|
|
VERIFY( if( tos<0 ) goto not_enough_stack; )
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
int res, rx, iKey;
|
|
assert( aStack[tos].flags & STK_Int );
|
|
iKey = intToKey(aStack[tos].i);
|
|
rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
|
|
p->aCsr[i].lastRecno = aStack[tos].i;
|
|
p->aCsr[i].recnoIsValid = res==0;
|
|
p->aCsr[i].nullRow = 0;
|
|
if( rx!=SQLITE_OK || res!=0 ){
|
|
pc = pOp->p2 - 1;
|
|
p->aCsr[i].recnoIsValid = 0;
|
|
}
|
|
}
|
|
POPSTACK;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NewRecno P1 * *
|
|
**
|
|
** Get a new integer record number used as the key to a table.
|
|
** The record number is not previously used as a key in the database
|
|
** table that cursor P1 points to. The new record number is pushed
|
|
** onto the stack.
|
|
*/
|
|
case OP_NewRecno: {
|
|
int i = pOp->p1;
|
|
int v = 0;
|
|
Cursor *pC;
|
|
if( VERIFY( i<0 || i>=p->nCursor || ) (pC = &p->aCsr[i])->pCursor==0 ){
|
|
v = 0;
|
|
}else{
|
|
/* The next rowid or record number (different terms for the same
|
|
** thing) is obtained in a two-step algorithm.
|
|
**
|
|
** First we attempt to find the largest existing rowid and add one
|
|
** to that. But if the largest existing rowid is already the maximum
|
|
** positive integer, we have to fall through to the second
|
|
** probabilistic algorithm
|
|
**
|
|
** The second algorithm is to select a rowid at random and see if
|
|
** it already exists in the table. If it does not exist, we have
|
|
** succeeded. If the random rowid does exist, we select a new one
|
|
** and try again, up to 1000 times.
|
|
**
|
|
** For a table with less than 2 billion entries, the probability
|
|
** of not finding a unused rowid is about 1.0e-300. This is a
|
|
** non-zero probability, but it is still vanishingly small and should
|
|
** never cause a problem. You are much, much more likely to have a
|
|
** hardware failure than for this algorithm to fail.
|
|
**
|
|
** The analysis in the previous paragraph assumes that you have a good
|
|
** source of random numbers. Is a library function like lrand48()
|
|
** good enough? Maybe. Maybe not. It's hard to know whether there
|
|
** might be subtle bugs is some implementations of lrand48() that
|
|
** could cause problems. To avoid uncertainty, SQLite uses its own
|
|
** random number generator based on the RC4 algorithm.
|
|
**
|
|
** To promote locality of reference for repetitive inserts, the
|
|
** first few attempts at chosing a random rowid pick values just a little
|
|
** larger than the previous rowid. This has been shown experimentally
|
|
** to double the speed of the COPY operation.
|
|
*/
|
|
int res, rx, cnt, x;
|
|
cnt = 0;
|
|
if( !pC->useRandomRowid ){
|
|
rx = sqliteBtreeLast(pC->pCursor, &res);
|
|
if( res ){
|
|
v = 1;
|
|
}else{
|
|
sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v);
|
|
v = keyToInt(v);
|
|
if( v==0x7fffffff ){
|
|
pC->useRandomRowid = 1;
|
|
}else{
|
|
v++;
|
|
}
|
|
}
|
|
}
|
|
if( pC->useRandomRowid ){
|
|
v = db->priorNewRowid;
|
|
cnt = 0;
|
|
do{
|
|
if( v==0 || cnt>2 ){
|
|
v = sqliteRandomInteger();
|
|
if( cnt<5 ) v &= 0xffffff;
|
|
}else{
|
|
v += sqliteRandomByte() + 1;
|
|
}
|
|
if( v==0 ) continue;
|
|
x = intToKey(v);
|
|
rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res);
|
|
cnt++;
|
|
}while( cnt<1000 && rx==SQLITE_OK && res==0 );
|
|
db->priorNewRowid = v;
|
|
if( rx==SQLITE_OK && res==0 ){
|
|
rc = SQLITE_FULL;
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
pC->recnoIsValid = 0;
|
|
}
|
|
VERIFY( NeedStack(p, p->tos+1); )
|
|
p->tos++;
|
|
aStack[p->tos].i = v;
|
|
aStack[p->tos].flags = STK_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: PutIntKey P1 P2 *
|
|
**
|
|
** Write an entry into the database file P1. A new entry is
|
|
** created if it doesn't already exist or the data for an existing
|
|
** entry is overwritten. The data is the value on the top of the
|
|
** stack. The key is the next value down on the stack. The key must
|
|
** be an integer. The stack is popped twice by this instruction.
|
|
**
|
|
** If P2==1 then the row change count is incremented. If P2==0 the
|
|
** row change count is unmodified.
|
|
*/
|
|
/* Opcode: PutStrKey P1 * *
|
|
**
|
|
** Write an entry into the database file P1. A new entry is
|
|
** created if it doesn't already exist or the data for an existing
|
|
** entry is overwritten. The data is the value on the top of the
|
|
** stack. The key is the next value down on the stack. The key must
|
|
** be a string. The stack is popped twice by this instruction.
|
|
*/
|
|
case OP_PutIntKey:
|
|
case OP_PutStrKey: {
|
|
int tos = p->tos;
|
|
int nos = p->tos-1;
|
|
int i = pOp->p1;
|
|
VERIFY( if( nos<0 ) goto not_enough_stack; )
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) p->aCsr[i].pCursor!=0 ){
|
|
char *zKey;
|
|
int nKey, iKey;
|
|
if( pOp->opcode==OP_PutStrKey ){
|
|
if( Stringify(p, nos) ) goto no_mem;
|
|
nKey = aStack[nos].n;
|
|
zKey = zStack[nos];
|
|
}else{
|
|
assert( aStack[nos].flags & STK_Int );
|
|
nKey = sizeof(int);
|
|
iKey = intToKey(aStack[nos].i);
|
|
zKey = (char*)&iKey;
|
|
db->lastRowid = aStack[nos].i;
|
|
if( pOp->p2 ) db->nChange++;
|
|
}
|
|
rc = sqliteBtreeInsert(p->aCsr[i].pCursor, zKey, nKey,
|
|
zStack[tos], aStack[tos].n);
|
|
p->aCsr[i].recnoIsValid = 0;
|
|
}
|
|
POPSTACK;
|
|
POPSTACK;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Delete P1 P2 *
|
|
**
|
|
** Delete the record at which the P1 cursor is currently pointing.
|
|
**
|
|
** The cursor will be left pointing at either the next or the previous
|
|
** record in the table. If it is left pointing at the next record, then
|
|
** the next Next instruction will be a no-op. Hence it is OK to delete
|
|
** a record from within an Next loop.
|
|
**
|
|
** The row change counter is incremented if P2==1 and is unmodified
|
|
** if P2==0.
|
|
*/
|
|
case OP_Delete: {
|
|
int i = pOp->p1;
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) p->aCsr[i].pCursor!=0 ){
|
|
rc = sqliteBtreeDelete(p->aCsr[i].pCursor);
|
|
}
|
|
if( pOp->p2 ) db->nChange++;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: KeyAsData P1 P2 *
|
|
**
|
|
** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
|
|
** off (if P2==0). In key-as-data mode, the Field opcode pulls
|
|
** data off of the key rather than the data. This is useful for
|
|
** processing compound selects.
|
|
*/
|
|
case OP_KeyAsData: {
|
|
int i = pOp->p1;
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) p->aCsr[i].pCursor!=0 ){
|
|
p->aCsr[i].keyAsData = pOp->p2;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Column P1 P2 *
|
|
**
|
|
** Interpret the data that cursor P1 points to as
|
|
** a structure built using the MakeRecord instruction.
|
|
** (See the MakeRecord opcode for additional information about
|
|
** the format of the data.)
|
|
** Push onto the stack the value of the P2-th column contained
|
|
** in the data.
|
|
**
|
|
** If the KeyAsData opcode has previously executed on this cursor,
|
|
** then the field might be extracted from the key rather than the
|
|
** data.
|
|
*/
|
|
case OP_Column: {
|
|
int amt, offset, end, payloadSize;
|
|
int i = pOp->p1;
|
|
int p2 = pOp->p2;
|
|
int tos = p->tos+1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
int idxWidth;
|
|
unsigned char aHdr[10];
|
|
int (*xRead)(BtCursor*, int, int, char*);
|
|
|
|
VERIFY( if( NeedStack(p, tos+1) ) goto no_mem; )
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){
|
|
|
|
/* Use different access functions depending on whether the information
|
|
** is coming from the key or the data of the record.
|
|
*/
|
|
pCrsr = pC->pCursor;
|
|
if( pC->nullRow ){
|
|
payloadSize = 0;
|
|
}else if( pC->keyAsData ){
|
|
sqliteBtreeKeySize(pCrsr, &payloadSize);
|
|
xRead = sqliteBtreeKey;
|
|
}else{
|
|
sqliteBtreeDataSize(pCrsr, &payloadSize);
|
|
xRead = sqliteBtreeData;
|
|
}
|
|
|
|
/* Figure out how many bytes in the column data and where the column
|
|
** data begins.
|
|
*/
|
|
if( payloadSize==0 ){
|
|
aStack[tos].flags = STK_Null;
|
|
p->tos = tos;
|
|
break;
|
|
}else if( payloadSize<256 ){
|
|
idxWidth = 1;
|
|
}else if( payloadSize<65536 ){
|
|
idxWidth = 2;
|
|
}else{
|
|
idxWidth = 3;
|
|
}
|
|
|
|
/* Figure out where the requested column is stored and how big it is.
|
|
*/
|
|
if( payloadSize < idxWidth*(p2+1) ){
|
|
rc = SQLITE_CORRUPT;
|
|
goto abort_due_to_error;
|
|
}
|
|
(*xRead)(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
|
|
offset = aHdr[0];
|
|
end = aHdr[idxWidth];
|
|
if( idxWidth>1 ){
|
|
offset |= aHdr[1]<<8;
|
|
end |= aHdr[idxWidth+1]<<8;
|
|
if( idxWidth>2 ){
|
|
offset |= aHdr[2]<<16;
|
|
end |= aHdr[idxWidth+2]<<16;
|
|
}
|
|
}
|
|
amt = end - offset;
|
|
if( amt<0 || offset<0 || end>payloadSize ){
|
|
rc = SQLITE_CORRUPT;
|
|
goto abort_due_to_error;
|
|
}
|
|
|
|
/* amt and offset now hold the offset to the start of data and the
|
|
** amount of data. Go get the data and put it on the stack.
|
|
*/
|
|
if( amt==0 ){
|
|
aStack[tos].flags = STK_Null;
|
|
}else if( amt<=NBFS ){
|
|
(*xRead)(pCrsr, offset, amt, aStack[tos].z);
|
|
aStack[tos].flags = STK_Str;
|
|
zStack[tos] = aStack[tos].z;
|
|
aStack[tos].n = amt;
|
|
}else{
|
|
char *z = sqliteMalloc( amt );
|
|
if( z==0 ) goto no_mem;
|
|
(*xRead)(pCrsr, offset, amt, z);
|
|
aStack[tos].flags = STK_Str | STK_Dyn;
|
|
zStack[tos] = z;
|
|
aStack[tos].n = amt;
|
|
}
|
|
p->tos = tos;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Recno P1 * *
|
|
**
|
|
** Push onto the stack an integer which is the first 4 bytes of the
|
|
** the key to the current entry in a sequential scan of the database
|
|
** file P1. The sequential scan should have been started using the
|
|
** Next opcode.
|
|
*/
|
|
case OP_Recno: {
|
|
int i = pOp->p1;
|
|
int tos = ++p->tos;
|
|
BtCursor *pCrsr;
|
|
|
|
VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; )
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
int v;
|
|
if( p->aCsr[i].recnoIsValid ){
|
|
v = p->aCsr[i].lastRecno;
|
|
}else if( p->aCsr[i].nullRow ){
|
|
aStack[tos].flags = STK_Null;
|
|
break;
|
|
}else{
|
|
sqliteBtreeKey(pCrsr, 0, sizeof(u32), (char*)&v);
|
|
v = keyToInt(v);
|
|
}
|
|
aStack[tos].i = v;
|
|
aStack[tos].flags = STK_Int;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: FullKey P1 * *
|
|
**
|
|
** Extract the complete key from the record that cursor P1 is currently
|
|
** pointing to and push the key onto the stack as a string.
|
|
**
|
|
** Compare this opcode to Recno. The Recno opcode extracts the first
|
|
** 4 bytes of the key and pushes those bytes onto the stack as an
|
|
** integer. This instruction pushes the entire key as a string.
|
|
*/
|
|
case OP_FullKey: {
|
|
int i = pOp->p1;
|
|
int tos = ++p->tos;
|
|
BtCursor *pCrsr;
|
|
|
|
VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; )
|
|
VERIFY( if( !p->aCsr[i].keyAsData ) goto bad_instruction; )
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
int amt;
|
|
char *z;
|
|
|
|
sqliteBtreeKeySize(pCrsr, &amt);
|
|
if( amt<=0 ){
|
|
rc = SQLITE_CORRUPT;
|
|
goto abort_due_to_error;
|
|
}
|
|
if( amt>NBFS ){
|
|
z = sqliteMalloc( amt );
|
|
aStack[tos].flags = STK_Str | STK_Dyn;
|
|
}else{
|
|
z = aStack[tos].z;
|
|
aStack[tos].flags = STK_Str;
|
|
}
|
|
sqliteBtreeKey(pCrsr, 0, amt, z);
|
|
zStack[tos] = z;
|
|
aStack[tos].n = amt;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NullRow P1 * *
|
|
**
|
|
** Move the cursor P1 to a null row. Any OP_Column operations
|
|
** that occur while the cursor is on the null row will always push
|
|
** a NULL onto the stack.
|
|
*/
|
|
case OP_NullRow: {
|
|
int i = pOp->p1;
|
|
BtCursor *pCrsr;
|
|
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
p->aCsr[i].nullRow = 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Last P1 P2 *
|
|
**
|
|
** The next use of the Recno or Column or Next instruction for P1
|
|
** will refer to the last entry in the database table or index.
|
|
** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
** If P2 is 0 or if the table or index is not empty, fall through
|
|
** to the following instruction.
|
|
*/
|
|
case OP_Last: {
|
|
int i = pOp->p1;
|
|
BtCursor *pCrsr;
|
|
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
int res;
|
|
sqliteBtreeLast(pCrsr, &res);
|
|
p->aCsr[i].nullRow = res;
|
|
if( res && pOp->p2>0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Rewind P1 P2 *
|
|
**
|
|
** The next use of the Recno or Column or Next instruction for P1
|
|
** will refer to the first entry in the database table or index.
|
|
** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
** If P2 is 0 or if the table or index is not empty, fall through
|
|
** to the following instruction.
|
|
*/
|
|
case OP_Rewind: {
|
|
int i = pOp->p1;
|
|
BtCursor *pCrsr;
|
|
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
int res;
|
|
sqliteBtreeFirst(pCrsr, &res);
|
|
p->aCsr[i].atFirst = res==0;
|
|
p->aCsr[i].nullRow = res;
|
|
if( res && pOp->p2>0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Next P1 P2 *
|
|
**
|
|
** Advance cursor P1 so that it points to the next key/data pair in its
|
|
** table or index. If there are no more key/value pairs then fall through
|
|
** to the following instruction. But if the cursor advance was successful,
|
|
** jump immediately to P2.
|
|
*/
|
|
case OP_Next: {
|
|
int i = pOp->p1;
|
|
BtCursor *pCrsr;
|
|
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
int res;
|
|
rc = sqliteBtreeNext(pCrsr, &res);
|
|
p->aCsr[i].nullRow = res;
|
|
if( res==0 ){
|
|
pc = pOp->p2 - 1;
|
|
sqlite_search_count++;
|
|
}
|
|
p->aCsr[i].recnoIsValid = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxPut P1 P2 P3
|
|
**
|
|
** The top of the stack hold an SQL index key made using the
|
|
** MakeIdxKey instruction. This opcode writes that key into the
|
|
** index P1. Data for the entry is nil.
|
|
**
|
|
** If P2==1, then the key must be unique. If the key is not unique,
|
|
** the program aborts with a SQLITE_CONSTRAINT error and the database
|
|
** is rolled back. If P3 is not null, then it because part of the
|
|
** error message returned with the SQLITE_CONSTRAINT.
|
|
*/
|
|
case OP_IdxPut: {
|
|
int i = pOp->p1;
|
|
int tos = p->tos;
|
|
BtCursor *pCrsr;
|
|
VERIFY( if( tos<0 ) goto not_enough_stack; )
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
int nKey = aStack[tos].n;
|
|
const char *zKey = zStack[tos];
|
|
if( pOp->p2 ){
|
|
int res, n;
|
|
assert( aStack[tos].n >= 4 );
|
|
rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
while( res!=0 ){
|
|
int c;
|
|
sqliteBtreeKeySize(pCrsr, &n);
|
|
if( n==nKey
|
|
&& sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK
|
|
&& c==0
|
|
){
|
|
rc = SQLITE_CONSTRAINT;
|
|
if( pOp->p3 && pOp->p3[0] ){
|
|
sqliteSetString(pzErrMsg, "duplicate index entry: ", pOp->p3,0);
|
|
}
|
|
goto abort_due_to_error;
|
|
}
|
|
if( res<0 ){
|
|
sqliteBtreeNext(pCrsr, &res);
|
|
res = +1;
|
|
}else{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0);
|
|
}
|
|
POPSTACK;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxDelete P1 * *
|
|
**
|
|
** The top of the stack is an index key built using the MakeIdxKey opcode.
|
|
** This opcode removes that entry from the index.
|
|
*/
|
|
case OP_IdxDelete: {
|
|
int i = pOp->p1;
|
|
int tos = p->tos;
|
|
BtCursor *pCrsr;
|
|
VERIFY( if( tos<0 ) goto not_enough_stack; )
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
int rx, res;
|
|
rx = sqliteBtreeMoveto(pCrsr, zStack[tos], aStack[tos].n, &res);
|
|
if( rx==SQLITE_OK && res==0 ){
|
|
rc = sqliteBtreeDelete(pCrsr);
|
|
}
|
|
}
|
|
POPSTACK;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxRecno P1 * *
|
|
**
|
|
** Push onto the stack an integer which is the last 4 bytes of the
|
|
** the key to the current entry in index P1. These 4 bytes should
|
|
** be the record number of the table entry to which this index entry
|
|
** points.
|
|
**
|
|
** See also: Recno, MakeIdxKey.
|
|
*/
|
|
case OP_IdxRecno: {
|
|
int i = pOp->p1;
|
|
int tos = ++p->tos;
|
|
BtCursor *pCrsr;
|
|
|
|
VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; )
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
int v;
|
|
int sz;
|
|
sqliteBtreeKeySize(pCrsr, &sz);
|
|
sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
|
|
v = keyToInt(v);
|
|
aStack[tos].i = v;
|
|
aStack[tos].flags = STK_Int;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxGT P1 P2 *
|
|
**
|
|
** Compare the top of the stack against the key on the index entry that
|
|
** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
|
|
** index entry. If the index entry is greater than the top of the stack
|
|
** then jump to P2. Otherwise fall through to the next instruction.
|
|
** In either case, the stack is popped once.
|
|
*/
|
|
/* Opcode: IdxGE P1 P2 *
|
|
**
|
|
** Compare the top of the stack against the key on the index entry that
|
|
** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
|
|
** index entry. If the index entry is greater than or equal to
|
|
** the top of the stack
|
|
** then jump to P2. Otherwise fall through to the next instruction.
|
|
** In either case, the stack is popped once.
|
|
*/
|
|
case OP_IdxGT:
|
|
case OP_IdxGE: {
|
|
int i= pOp->p1;
|
|
int tos = p->tos;
|
|
BtCursor *pCrsr;
|
|
|
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
int res, rc;
|
|
|
|
if( Stringify(p, tos) ) goto no_mem;
|
|
rc = sqliteBtreeKeyCompare(pCrsr, zStack[tos], aStack[tos].n, 4, &res);
|
|
if( rc!=SQLITE_OK ){
|
|
break;
|
|
}
|
|
if( pOp->opcode==OP_IdxGE ){
|
|
res++;
|
|
}
|
|
if( res>0 ){
|
|
pc = pOp->p2 - 1 ;
|
|
}
|
|
}
|
|
POPSTACK;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Destroy P1 P2 *
|
|
**
|
|
** Delete an entire database table or index whose root page in the database
|
|
** file is given by P1.
|
|
**
|
|
** The table being destroyed is in the main database file if P2==0. If
|
|
** P2==1 then the table to be clear is in the auxiliary database file
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
**
|
|
** See also: Clear
|
|
*/
|
|
case OP_Destroy: {
|
|
sqliteBtreeDropTable(pOp->p2 ? db->pBeTemp : pBt, pOp->p1);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Clear P1 P2 *
|
|
**
|
|
** Delete all contents of the database table or index whose root page
|
|
** in the database file is given by P1. But, unlike Destroy, do not
|
|
** remove the table or index from the database file.
|
|
**
|
|
** The table being clear is in the main database file if P2==0. If
|
|
** P2==1 then the table to be clear is in the auxiliary database file
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
**
|
|
** See also: Destroy
|
|
*/
|
|
case OP_Clear: {
|
|
sqliteBtreeClearTable(pOp->p2 ? db->pBeTemp : pBt, pOp->p1);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: CreateTable * P2 P3
|
|
**
|
|
** Allocate a new table in the main database file if P2==0 or in the
|
|
** auxiliary database file if P2==1. Push the page number
|
|
** for the root page of the new table onto the stack.
|
|
**
|
|
** The root page number is also written to a memory location that P3
|
|
** points to. This is the mechanism is used to write the root page
|
|
** number into the parser's internal data structures that describe the
|
|
** new table.
|
|
**
|
|
** The difference between a table and an index is this: A table must
|
|
** have a 4-byte integer key and can have arbitrary data. An index
|
|
** has an arbitrary key but no data.
|
|
**
|
|
** See also: CreateIndex
|
|
*/
|
|
/* Opcode: CreateIndex * P2 P3
|
|
**
|
|
** Allocate a new index in the main database file if P2==0 or in the
|
|
** auxiliary database file if P2==1. Push the page number of the
|
|
** root page of the new index onto the stack.
|
|
**
|
|
** See documentation on OP_CreateTable for additional information.
|
|
*/
|
|
case OP_CreateIndex:
|
|
case OP_CreateTable: {
|
|
int i = ++p->tos;
|
|
int pgno;
|
|
VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; )
|
|
assert( pOp->p3!=0 && pOp->p3type==P3_POINTER );
|
|
if( pOp->opcode==OP_CreateTable ){
|
|
rc = sqliteBtreeCreateTable(pOp->p2 ? db->pBeTemp : pBt, &pgno);
|
|
}else{
|
|
rc = sqliteBtreeCreateIndex(pOp->p2 ? db->pBeTemp : pBt, &pgno);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
aStack[i].i = pgno;
|
|
aStack[i].flags = STK_Int;
|
|
*(u32*)pOp->p3 = pgno;
|
|
pOp->p3 = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IntegrityCk P1 * *
|
|
**
|
|
** Do an analysis of the currently open database. Push onto the
|
|
** stack the text of an error message describing any problems.
|
|
** If there are no errors, push a "ok" onto the stack.
|
|
**
|
|
** P1 is the index of a set that contains the root page numbers
|
|
** for all tables and indices in this database.
|
|
**
|
|
** This opcode is used for testing purposes only.
|
|
*/
|
|
case OP_IntegrityCk: {
|
|
int nRoot;
|
|
int *aRoot;
|
|
int tos = ++p->tos;
|
|
int iSet = pOp->p1;
|
|
Set *pSet;
|
|
int j;
|
|
HashElem *i;
|
|
char *z;
|
|
|
|
VERIFY( if( iSet<0 || iSet>=p->nSet ) goto bad_instruction; )
|
|
VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; )
|
|
pSet = &p->aSet[iSet];
|
|
nRoot = sqliteHashCount(&pSet->hash);
|
|
aRoot = sqliteMalloc( sizeof(int)*(nRoot+1) );
|
|
for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){
|
|
aRoot[j] = atoi((char*)sqliteHashKey(i));
|
|
}
|
|
aRoot[j] = 0;
|
|
z = sqliteBtreeIntegrityCheck(pBt, aRoot, nRoot);
|
|
if( z==0 || z[0]==0 ){
|
|
zStack[tos] = "ok";
|
|
aStack[tos].n = 3;
|
|
aStack[tos].flags = STK_Str | STK_Static;
|
|
if( z ) sqliteFree(z);
|
|
}else{
|
|
zStack[tos] = z;
|
|
aStack[tos].n = strlen(z) + 1;
|
|
aStack[tos].flags = STK_Str | STK_Dyn;
|
|
}
|
|
sqliteFree(aRoot);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Limit P1 P2 *
|
|
**
|
|
** Set a limit and offset on callbacks. P1 is the limit and P2 is
|
|
** the offset. If the offset counter is positive, no callbacks are
|
|
** invoked but instead the counter is decremented. Once the offset
|
|
** counter reaches zero, callbacks are invoked and the limit
|
|
** counter is decremented. When the limit counter reaches zero,
|
|
** the OP_Callback or OP_SortCallback instruction executes a jump
|
|
** that should end the query.
|
|
**
|
|
** This opcode is used to implement the "LIMIT x OFFSET y" clause
|
|
** of a SELECT statement.
|
|
*/
|
|
case OP_Limit: {
|
|
p->iLimit = pOp->p1;
|
|
p->iOffset = pOp->p2;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ListWrite * * *
|
|
**
|
|
** Write the integer on the top of the stack
|
|
** into the temporary storage list.
|
|
*/
|
|
case OP_ListWrite: {
|
|
Keylist *pKeylist;
|
|
VERIFY( if( p->tos<0 ) goto not_enough_stack; )
|
|
pKeylist = p->pList;
|
|
if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
|
|
pKeylist = sqliteMalloc( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
|
|
if( pKeylist==0 ) goto no_mem;
|
|
pKeylist->nKey = 1000;
|
|
pKeylist->nRead = 0;
|
|
pKeylist->nUsed = 0;
|
|
pKeylist->pNext = p->pList;
|
|
p->pList = pKeylist;
|
|
}
|
|
Integerify(p, p->tos);
|
|
pKeylist->aKey[pKeylist->nUsed++] = aStack[p->tos].i;
|
|
POPSTACK;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ListRewind * * *
|
|
**
|
|
** Rewind the temporary buffer back to the beginning.
|
|
*/
|
|
case OP_ListRewind: {
|
|
/* This is now a no-op */
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ListRead * P2 *
|
|
**
|
|
** Attempt to read an integer from the temporary storage buffer
|
|
** and push it onto the stack. If the storage buffer is empty,
|
|
** push nothing but instead jump to P2.
|
|
*/
|
|
case OP_ListRead: {
|
|
Keylist *pKeylist;
|
|
pKeylist = p->pList;
|
|
if( pKeylist!=0 ){
|
|
VERIFY(
|
|
if( pKeylist->nRead<0
|
|
|| pKeylist->nRead>=pKeylist->nUsed
|
|
|| pKeylist->nRead>=pKeylist->nKey ) goto bad_instruction;
|
|
)
|
|
p->tos++;
|
|
if( NeedStack(p, p->tos) ) goto no_mem;
|
|
aStack[p->tos].i = pKeylist->aKey[pKeylist->nRead++];
|
|
aStack[p->tos].flags = STK_Int;
|
|
zStack[p->tos] = 0;
|
|
if( pKeylist->nRead>=pKeylist->nUsed ){
|
|
p->pList = pKeylist->pNext;
|
|
sqliteFree(pKeylist);
|
|
}
|
|
}else{
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ListReset * * *
|
|
**
|
|
** Reset the temporary storage buffer so that it holds nothing.
|
|
*/
|
|
case OP_ListReset: {
|
|
if( p->pList ){
|
|
KeylistFree(p->pList);
|
|
p->pList = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SortPut * * *
|
|
**
|
|
** The TOS is the key and the NOS is the data. Pop both from the stack
|
|
** and put them on the sorter. The key and data should have been
|
|
** made using SortMakeKey and SortMakeRec, respectively.
|
|
*/
|
|
case OP_SortPut: {
|
|
int tos = p->tos;
|
|
int nos = tos - 1;
|
|
Sorter *pSorter;
|
|
VERIFY( if( tos<1 ) goto not_enough_stack; )
|
|
if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem;
|
|
pSorter = sqliteMalloc( sizeof(Sorter) );
|
|
if( pSorter==0 ) goto no_mem;
|
|
pSorter->pNext = p->pSort;
|
|
p->pSort = pSorter;
|
|
assert( aStack[tos].flags & STK_Dyn );
|
|
assert( aStack[nos].flags & STK_Dyn );
|
|
pSorter->nKey = aStack[tos].n;
|
|
pSorter->zKey = zStack[tos];
|
|
pSorter->nData = aStack[nos].n;
|
|
pSorter->pData = zStack[nos];
|
|
aStack[tos].flags = 0;
|
|
aStack[nos].flags = 0;
|
|
zStack[tos] = 0;
|
|
zStack[nos] = 0;
|
|
p->tos -= 2;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SortMakeRec P1 * *
|
|
**
|
|
** The top P1 elements are the arguments to a callback. Form these
|
|
** elements into a single data entry that can be stored on a sorter
|
|
** using SortPut and later fed to a callback using SortCallback.
|
|
*/
|
|
case OP_SortMakeRec: {
|
|
char *z;
|
|
char **azArg;
|
|
int nByte;
|
|
int nField;
|
|
int i, j;
|
|
|
|
nField = pOp->p1;
|
|
VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
|
|
nByte = 0;
|
|
for(i=p->tos-nField+1; i<=p->tos; i++){
|
|
if( (aStack[i].flags & STK_Null)==0 ){
|
|
if( Stringify(p, i) ) goto no_mem;
|
|
nByte += aStack[i].n;
|
|
}
|
|
}
|
|
nByte += sizeof(char*)*(nField+1);
|
|
azArg = sqliteMalloc( nByte );
|
|
if( azArg==0 ) goto no_mem;
|
|
z = (char*)&azArg[nField+1];
|
|
for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){
|
|
if( aStack[i].flags & STK_Null ){
|
|
azArg[j] = 0;
|
|
}else{
|
|
azArg[j] = z;
|
|
strcpy(z, zStack[i]);
|
|
z += aStack[i].n;
|
|
}
|
|
}
|
|
PopStack(p, nField);
|
|
VERIFY( NeedStack(p, p->tos+1); )
|
|
p->tos++;
|
|
aStack[p->tos].n = nByte;
|
|
zStack[p->tos] = (char*)azArg;
|
|
aStack[p->tos].flags = STK_Str|STK_Dyn;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SortMakeKey * * P3
|
|
**
|
|
** Convert the top few entries of the stack into a sort key. The
|
|
** number of stack entries consumed is the number of characters in
|
|
** the string P3. One character from P3 is prepended to each entry.
|
|
** The first character of P3 is prepended to the element lowest in
|
|
** the stack and the last character of P3 is appended to the top of
|
|
** the stack. All stack entries are separated by a \000 character
|
|
** in the result. The whole key is terminated by two \000 characters
|
|
** in a row.
|
|
**
|
|
** See also the MakeKey and MakeIdxKey opcodes.
|
|
*/
|
|
case OP_SortMakeKey: {
|
|
char *zNewKey;
|
|
int nByte;
|
|
int nField;
|
|
int i, j, k;
|
|
|
|
nField = strlen(pOp->p3);
|
|
VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
|
|
nByte = 1;
|
|
for(i=p->tos-nField+1; i<=p->tos; i++){
|
|
if( Stringify(p, i) ) goto no_mem;
|
|
nByte += aStack[i].n+2;
|
|
}
|
|
zNewKey = sqliteMalloc( nByte );
|
|
if( zNewKey==0 ) goto no_mem;
|
|
j = 0;
|
|
k = 0;
|
|
for(i=p->tos-nField+1; i<=p->tos; i++){
|
|
zNewKey[j++] = pOp->p3[k++];
|
|
memcpy(&zNewKey[j], zStack[i], aStack[i].n-1);
|
|
j += aStack[i].n-1;
|
|
zNewKey[j++] = 0;
|
|
}
|
|
zNewKey[j] = 0;
|
|
assert( j<nByte );
|
|
PopStack(p, nField);
|
|
VERIFY( NeedStack(p, p->tos+1); )
|
|
p->tos++;
|
|
aStack[p->tos].n = nByte;
|
|
aStack[p->tos].flags = STK_Str|STK_Dyn;
|
|
zStack[p->tos] = zNewKey;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Sort * * *
|
|
**
|
|
** Sort all elements on the sorter. The algorithm is a
|
|
** mergesort.
|
|
*/
|
|
case OP_Sort: {
|
|
int i;
|
|
Sorter *pElem;
|
|
Sorter *apSorter[NSORT];
|
|
for(i=0; i<NSORT; i++){
|
|
apSorter[i] = 0;
|
|
}
|
|
while( p->pSort ){
|
|
pElem = p->pSort;
|
|
p->pSort = pElem->pNext;
|
|
pElem->pNext = 0;
|
|
for(i=0; i<NSORT-1; i++){
|
|
if( apSorter[i]==0 ){
|
|
apSorter[i] = pElem;
|
|
break;
|
|
}else{
|
|
pElem = Merge(apSorter[i], pElem);
|
|
apSorter[i] = 0;
|
|
}
|
|
}
|
|
if( i>=NSORT-1 ){
|
|
apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem);
|
|
}
|
|
}
|
|
pElem = 0;
|
|
for(i=0; i<NSORT; i++){
|
|
pElem = Merge(apSorter[i], pElem);
|
|
}
|
|
p->pSort = pElem;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SortNext * P2 *
|
|
**
|
|
** Push the data for the topmost element in the sorter onto the
|
|
** stack, then remove the element from the sorter. If the sorter
|
|
** is empty, push nothing on the stack and instead jump immediately
|
|
** to instruction P2.
|
|
*/
|
|
case OP_SortNext: {
|
|
Sorter *pSorter = p->pSort;
|
|
if( pSorter!=0 ){
|
|
p->pSort = pSorter->pNext;
|
|
p->tos++;
|
|
VERIFY( NeedStack(p, p->tos); )
|
|
zStack[p->tos] = pSorter->pData;
|
|
aStack[p->tos].n = pSorter->nData;
|
|
aStack[p->tos].flags = STK_Str|STK_Dyn;
|
|
sqliteFree(pSorter->zKey);
|
|
sqliteFree(pSorter);
|
|
}else{
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SortCallback P1 P2 *
|
|
**
|
|
** The top of the stack contains a callback record built using
|
|
** the SortMakeRec operation with the same P1 value as this
|
|
** instruction. Pop this record from the stack and invoke the
|
|
** callback on it.
|
|
**
|
|
** If the offset counter (set by the OP_Limit opcode) is positive,
|
|
** then decrement the counter and do not invoke the callback.
|
|
**
|
|
** If the callback is invoked, then after the callback returns
|
|
** decrement the limit counter. When the limit counter reaches
|
|
** zero, jump to address P2.
|
|
*/
|
|
case OP_SortCallback: {
|
|
int i = p->tos;
|
|
VERIFY( if( i<0 ) goto not_enough_stack; )
|
|
if( xCallback!=0 ){
|
|
if( p->iOffset>0 ){
|
|
p->iOffset--;
|
|
}else{
|
|
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
|
|
if( xCallback(pArg, pOp->p1, (char**)zStack[i], p->azColName)!=0 ){
|
|
rc = SQLITE_ABORT;
|
|
}
|
|
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
|
|
p->nCallback++;
|
|
if( p->iLimit>0 ){
|
|
p->iLimit--;
|
|
if( p->iLimit==0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}
|
|
}
|
|
p->nCallback++;
|
|
}
|
|
POPSTACK;
|
|
if( sqlite_malloc_failed ) goto no_mem;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SortReset * * *
|
|
**
|
|
** Remove any elements that remain on the sorter.
|
|
*/
|
|
case OP_SortReset: {
|
|
SorterReset(p);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: FileOpen * * P3
|
|
**
|
|
** Open the file named by P3 for reading using the FileRead opcode.
|
|
** If P3 is "stdin" then open standard input for reading.
|
|
*/
|
|
case OP_FileOpen: {
|
|
VERIFY( if( pOp->p3==0 ) goto bad_instruction; )
|
|
if( p->pFile ){
|
|
if( p->pFile!=stdin ) fclose(p->pFile);
|
|
p->pFile = 0;
|
|
}
|
|
if( sqliteStrICmp(pOp->p3,"stdin")==0 ){
|
|
p->pFile = stdin;
|
|
}else{
|
|
p->pFile = fopen(pOp->p3, "r");
|
|
}
|
|
if( p->pFile==0 ){
|
|
sqliteSetString(pzErrMsg,"unable to open file: ", pOp->p3, 0);
|
|
rc = SQLITE_ERROR;
|
|
goto cleanup;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: FileRead P1 P2 P3
|
|
**
|
|
** Read a single line of input from the open file (the file opened using
|
|
** FileOpen). If we reach end-of-file, jump immediately to P2. If
|
|
** we are able to get another line, split the line apart using P3 as
|
|
** a delimiter. There should be P1 fields. If the input line contains
|
|
** more than P1 fields, ignore the excess. If the input line contains
|
|
** fewer than P1 fields, assume the remaining fields contain NULLs.
|
|
**
|
|
** Input ends if a line consists of just "\.". A field containing only
|
|
** "\N" is a null field. The backslash \ character can be used be used
|
|
** to escape newlines or the delimiter.
|
|
*/
|
|
case OP_FileRead: {
|
|
int n, eol, nField, i, c, nDelim;
|
|
char *zDelim, *z;
|
|
if( p->pFile==0 ) goto fileread_jump;
|
|
nField = pOp->p1;
|
|
if( nField<=0 ) goto fileread_jump;
|
|
if( nField!=p->nField || p->azField==0 ){
|
|
char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1);
|
|
if( azField==0 ){ goto no_mem; }
|
|
p->azField = azField;
|
|
p->nField = nField;
|
|
}
|
|
n = 0;
|
|
eol = 0;
|
|
while( eol==0 ){
|
|
if( p->zLine==0 || n+200>p->nLineAlloc ){
|
|
char *zLine;
|
|
p->nLineAlloc = p->nLineAlloc*2 + 300;
|
|
zLine = sqliteRealloc(p->zLine, p->nLineAlloc);
|
|
if( zLine==0 ){
|
|
p->nLineAlloc = 0;
|
|
sqliteFree(p->zLine);
|
|
p->zLine = 0;
|
|
goto no_mem;
|
|
}
|
|
p->zLine = zLine;
|
|
}
|
|
if( fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){
|
|
eol = 1;
|
|
p->zLine[n] = 0;
|
|
}else{
|
|
int c;
|
|
while( (c = p->zLine[n])!=0 ){
|
|
if( c=='\\' ){
|
|
if( p->zLine[n+1]==0 ) break;
|
|
n += 2;
|
|
}else if( c=='\n' ){
|
|
p->zLine[n] = 0;
|
|
eol = 1;
|
|
break;
|
|
}else{
|
|
n++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if( n==0 ) goto fileread_jump;
|
|
z = p->zLine;
|
|
if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){
|
|
goto fileread_jump;
|
|
}
|
|
zDelim = pOp->p3;
|
|
if( zDelim==0 ) zDelim = "\t";
|
|
c = zDelim[0];
|
|
nDelim = strlen(zDelim);
|
|
p->azField[0] = z;
|
|
for(i=1; *z!=0 && i<=nField; i++){
|
|
int from, to;
|
|
from = to = 0;
|
|
if( z[0]=='\\' && z[1]=='N'
|
|
&& (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){
|
|
if( i<=nField ) p->azField[i-1] = 0;
|
|
z += 2 + nDelim;
|
|
if( i<nField ) p->azField[i] = z;
|
|
continue;
|
|
}
|
|
while( z[from] ){
|
|
if( z[from]=='\\' && z[from+1]!=0 ){
|
|
z[to++] = z[from+1];
|
|
from += 2;
|
|
continue;
|
|
}
|
|
if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break;
|
|
z[to++] = z[from++];
|
|
}
|
|
if( z[from] ){
|
|
z[to] = 0;
|
|
z += from + nDelim;
|
|
if( i<nField ) p->azField[i] = z;
|
|
}else{
|
|
z[to] = 0;
|
|
z = "";
|
|
}
|
|
}
|
|
while( i<nField ){
|
|
p->azField[i++] = 0;
|
|
}
|
|
break;
|
|
|
|
/* If we reach end-of-file, or if anything goes wrong, jump here.
|
|
** This code will cause a jump to P2 */
|
|
fileread_jump:
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: FileColumn P1 * *
|
|
**
|
|
** Push onto the stack the P1-th column of the most recently read line
|
|
** from the input file.
|
|
*/
|
|
case OP_FileColumn: {
|
|
int i = pOp->p1;
|
|
char *z;
|
|
VERIFY( if( NeedStack(p, p->tos+1) ) goto no_mem; )
|
|
if( VERIFY( i>=0 && i<p->nField && ) p->azField ){
|
|
z = p->azField[i];
|
|
}else{
|
|
z = 0;
|
|
}
|
|
p->tos++;
|
|
if( z ){
|
|
aStack[p->tos].n = strlen(z) + 1;
|
|
zStack[p->tos] = z;
|
|
aStack[p->tos].flags = STK_Str;
|
|
}else{
|
|
aStack[p->tos].n = 0;
|
|
zStack[p->tos] = 0;
|
|
aStack[p->tos].flags = STK_Null;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MemStore P1 P2 *
|
|
**
|
|
** Write the top of the stack into memory location P1.
|
|
** P1 should be a small integer since space is allocated
|
|
** for all memory locations between 0 and P1 inclusive.
|
|
**
|
|
** After the data is stored in the memory location, the
|
|
** stack is popped once if P2 is 1. If P2 is zero, then
|
|
** the original data remains on the stack.
|
|
*/
|
|
case OP_MemStore: {
|
|
int i = pOp->p1;
|
|
int tos = p->tos;
|
|
char *zOld;
|
|
Mem *pMem;
|
|
VERIFY( if( tos<0 ) goto not_enough_stack; )
|
|
if( i>=p->nMem ){
|
|
int nOld = p->nMem;
|
|
Mem *aMem;
|
|
p->nMem = i + 5;
|
|
aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
|
|
if( aMem==0 ) goto no_mem;
|
|
p->aMem = aMem;
|
|
if( nOld<p->nMem ){
|
|
memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
|
|
}
|
|
}
|
|
pMem = &p->aMem[i];
|
|
if( pMem->s.flags & STK_Dyn ){
|
|
zOld = pMem->z;
|
|
}else{
|
|
zOld = 0;
|
|
}
|
|
pMem->s = aStack[tos];
|
|
if( pMem->s.flags & (STK_Static|STK_Dyn) ){
|
|
if( pOp->p2==0 && (pMem->s.flags & STK_Dyn)!=0 ){
|
|
pMem->z = sqliteMalloc( pMem->s.n );
|
|
if( pMem->z==0 ) goto no_mem;
|
|
memcpy(pMem->z, zStack[tos], pMem->s.n);
|
|
}else{
|
|
pMem->z = zStack[tos];
|
|
}
|
|
}else{
|
|
pMem->z = pMem->s.z;
|
|
}
|
|
if( zOld ) sqliteFree(zOld);
|
|
if( pOp->p2 ){
|
|
zStack[tos] = 0;
|
|
aStack[tos].flags = 0;
|
|
POPSTACK;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MemLoad P1 * *
|
|
**
|
|
** Push a copy of the value in memory location P1 onto the stack.
|
|
**
|
|
** If the value is a string, then the value pushed is a pointer to
|
|
** the string that is stored in the memory location. If the memory
|
|
** location is subsequently changed (using OP_MemStore) then the
|
|
** value pushed onto the stack will change too.
|
|
*/
|
|
case OP_MemLoad: {
|
|
int tos = ++p->tos;
|
|
int i = pOp->p1;
|
|
VERIFY( if( NeedStack(p, tos) ) goto no_mem; )
|
|
VERIFY( if( i<0 || i>=p->nMem ) goto bad_instruction; )
|
|
memcpy(&aStack[tos], &p->aMem[i].s, sizeof(aStack[tos])-NBFS);;
|
|
if( aStack[tos].flags & STK_Str ){
|
|
zStack[tos] = p->aMem[i].z;
|
|
aStack[tos].flags |= STK_Static;
|
|
aStack[tos].flags &= ~STK_Dyn;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggReset * P2 *
|
|
**
|
|
** Reset the aggregator so that it no longer contains any data.
|
|
** Future aggregator elements will contain P2 values each.
|
|
*/
|
|
case OP_AggReset: {
|
|
AggReset(&p->agg);
|
|
p->agg.nMem = pOp->p2;
|
|
p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggInit * P2 P3
|
|
**
|
|
** Initialize the function parameters for an aggregate function.
|
|
** The aggregate will operate out of aggregate column P2.
|
|
** P3 is a pointer to the FuncDef structure for the function.
|
|
*/
|
|
case OP_AggInit: {
|
|
int i = pOp->p2;
|
|
VERIFY( if( i<0 || i>=p->agg.nMem ) goto bad_instruction; )
|
|
p->agg.apFunc[i] = (FuncDef*)pOp->p3;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggFunc * P2 P3
|
|
**
|
|
** Execute the step function for an aggregate. The
|
|
** function has P2 arguments. P3 is a pointer to the FuncDef
|
|
** structure that specifies the function.
|
|
**
|
|
** The top of the stack must be an integer which is the index of
|
|
** the aggregate column that corresponds to this aggregate function.
|
|
** Ideally, this index would be another parameter, but there are
|
|
** no free parameters left. The integer is popped from the stack.
|
|
*/
|
|
case OP_AggFunc: {
|
|
int n = pOp->p2;
|
|
int i;
|
|
Mem *pMem;
|
|
sqlite_func ctx;
|
|
|
|
VERIFY( if( n<0 ) goto bad_instruction; )
|
|
VERIFY( if( p->tos+1<n ) goto not_enough_stack; )
|
|
VERIFY( if( aStack[p->tos].flags!=STK_Int ) goto bad_instruction; )
|
|
for(i=p->tos-n; i<p->tos; i++){
|
|
if( (aStack[i].flags & STK_Null)==0 ){
|
|
if( Stringify(p, i) ) goto no_mem;
|
|
}
|
|
}
|
|
i = aStack[p->tos].i;
|
|
VERIFY( if( i<0 || i>=p->agg.nMem ) goto bad_instruction; )
|
|
ctx.pFunc = (FuncDef*)pOp->p3;
|
|
pMem = &p->agg.pCurrent->aMem[i];
|
|
ctx.z = pMem->s.z;
|
|
ctx.pAgg = pMem->z;
|
|
ctx.cnt = ++pMem->s.i;
|
|
ctx.isError = 0;
|
|
ctx.isStep = 1;
|
|
(ctx.pFunc->xStep)(&ctx, n, (const char**)&zStack[p->tos-n]);
|
|
pMem->z = ctx.pAgg;
|
|
pMem->s.flags = STK_AggCtx;
|
|
PopStack(p, n+1);
|
|
if( ctx.isError ){
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggFocus * P2 *
|
|
**
|
|
** Pop the top of the stack and use that as an aggregator key. If
|
|
** an aggregator with that same key already exists, then make the
|
|
** aggregator the current aggregator and jump to P2. If no aggregator
|
|
** with the given key exists, create one and make it current but
|
|
** do not jump.
|
|
**
|
|
** The order of aggregator opcodes is important. The order is:
|
|
** AggReset AggFocus AggNext. In other words, you must execute
|
|
** AggReset first, then zero or more AggFocus operations, then
|
|
** zero or more AggNext operations. You must not execute an AggFocus
|
|
** in between an AggNext and an AggReset.
|
|
*/
|
|
case OP_AggFocus: {
|
|
int tos = p->tos;
|
|
AggElem *pElem;
|
|
char *zKey;
|
|
int nKey;
|
|
|
|
VERIFY( if( tos<0 ) goto not_enough_stack; )
|
|
if( Stringify(p, tos) ) goto no_mem;
|
|
zKey = zStack[tos];
|
|
nKey = aStack[tos].n;
|
|
pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
|
|
if( pElem ){
|
|
p->agg.pCurrent = pElem;
|
|
pc = pOp->p2 - 1;
|
|
}else{
|
|
AggInsert(&p->agg, zKey, nKey);
|
|
if( sqlite_malloc_failed ) goto no_mem;
|
|
}
|
|
POPSTACK;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggSet * P2 *
|
|
**
|
|
** Move the top of the stack into the P2-th field of the current
|
|
** aggregate. String values are duplicated into new memory.
|
|
*/
|
|
case OP_AggSet: {
|
|
AggElem *pFocus = AggInFocus(p->agg);
|
|
int i = pOp->p2;
|
|
int tos = p->tos;
|
|
VERIFY( if( tos<0 ) goto not_enough_stack; )
|
|
if( pFocus==0 ) goto no_mem;
|
|
if( VERIFY( i>=0 && ) i<p->agg.nMem ){
|
|
Mem *pMem = &pFocus->aMem[i];
|
|
char *zOld;
|
|
if( pMem->s.flags & STK_Dyn ){
|
|
zOld = pMem->z;
|
|
}else{
|
|
zOld = 0;
|
|
}
|
|
pMem->s = aStack[tos];
|
|
if( pMem->s.flags & STK_Dyn ){
|
|
pMem->z = zStack[tos];
|
|
zStack[tos] = 0;
|
|
aStack[tos].flags = 0;
|
|
}else if( pMem->s.flags & (STK_Static|STK_AggCtx) ){
|
|
pMem->z = zStack[tos];
|
|
}else if( pMem->s.flags & STK_Str ){
|
|
pMem->z = pMem->s.z;
|
|
}
|
|
if( zOld ) sqliteFree(zOld);
|
|
}
|
|
POPSTACK;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggGet * P2 *
|
|
**
|
|
** Push a new entry onto the stack which is a copy of the P2-th field
|
|
** of the current aggregate. Strings are not duplicated so
|
|
** string values will be ephemeral.
|
|
*/
|
|
case OP_AggGet: {
|
|
AggElem *pFocus = AggInFocus(p->agg);
|
|
int i = pOp->p2;
|
|
int tos = ++p->tos;
|
|
VERIFY( if( NeedStack(p, tos) ) goto no_mem; )
|
|
if( pFocus==0 ) goto no_mem;
|
|
if( VERIFY( i>=0 && ) i<p->agg.nMem ){
|
|
Mem *pMem = &pFocus->aMem[i];
|
|
aStack[tos] = pMem->s;
|
|
zStack[tos] = pMem->z;
|
|
aStack[tos].flags &= ~STK_Dyn;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggNext * P2 *
|
|
**
|
|
** Make the next aggregate value the current aggregate. The prior
|
|
** aggregate is deleted. If all aggregate values have been consumed,
|
|
** jump to P2.
|
|
**
|
|
** The order of aggregator opcodes is important. The order is:
|
|
** AggReset AggFocus AggNext. In other words, you must execute
|
|
** AggReset first, then zero or more AggFocus operations, then
|
|
** zero or more AggNext operations. You must not execute an AggFocus
|
|
** in between an AggNext and an AggReset.
|
|
*/
|
|
case OP_AggNext: {
|
|
if( p->agg.pSearch==0 ){
|
|
p->agg.pSearch = sqliteHashFirst(&p->agg.hash);
|
|
}else{
|
|
p->agg.pSearch = sqliteHashNext(p->agg.pSearch);
|
|
}
|
|
if( p->agg.pSearch==0 ){
|
|
pc = pOp->p2 - 1;
|
|
} else {
|
|
int i;
|
|
sqlite_func ctx;
|
|
Mem *aMem;
|
|
int nErr = 0;
|
|
p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
|
|
aMem = p->agg.pCurrent->aMem;
|
|
for(i=0; i<p->agg.nMem; i++){
|
|
int freeCtx;
|
|
if( p->agg.apFunc[i]==0 ) continue;
|
|
if( p->agg.apFunc[i]->xFinalize==0 ) continue;
|
|
ctx.s.flags = STK_Null;
|
|
ctx.z = 0;
|
|
ctx.pAgg = (void*)aMem[i].z;
|
|
freeCtx = aMem[i].z && aMem[i].z!=aMem[i].s.z;
|
|
ctx.cnt = aMem[i].s.i;
|
|
ctx.isStep = 0;
|
|
ctx.pFunc = p->agg.apFunc[i];
|
|
(*p->agg.apFunc[i]->xFinalize)(&ctx);
|
|
if( freeCtx ){
|
|
sqliteFree( aMem[i].z );
|
|
}
|
|
aMem[i].s = ctx.s;
|
|
aMem[i].z = ctx.z;
|
|
if( (aMem[i].s.flags & STK_Str) &&
|
|
(aMem[i].s.flags & (STK_Dyn|STK_Static))==0 ){
|
|
aMem[i].z = aMem[i].s.z;
|
|
}
|
|
nErr += ctx.isError;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SetInsert P1 * P3
|
|
**
|
|
** If Set P1 does not exist then create it. Then insert value
|
|
** P3 into that set. If P3 is NULL, then insert the top of the
|
|
** stack into the set.
|
|
*/
|
|
case OP_SetInsert: {
|
|
int i = pOp->p1;
|
|
if( p->nSet<=i ){
|
|
int k;
|
|
Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) );
|
|
if( aSet==0 ) goto no_mem;
|
|
p->aSet = aSet;
|
|
for(k=p->nSet; k<=i; k++){
|
|
sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1);
|
|
}
|
|
p->nSet = i+1;
|
|
}
|
|
if( pOp->p3 ){
|
|
sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
|
|
}else{
|
|
int tos = p->tos;
|
|
if( tos<0 ) goto not_enough_stack;
|
|
if( Stringify(p, tos) ) goto no_mem;
|
|
sqliteHashInsert(&p->aSet[i].hash, zStack[tos], aStack[tos].n, p);
|
|
POPSTACK;
|
|
}
|
|
if( sqlite_malloc_failed ) goto no_mem;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SetFound P1 P2 *
|
|
**
|
|
** Pop the stack once and compare the value popped off with the
|
|
** contents of set P1. If the element popped exists in set P1,
|
|
** then jump to P2. Otherwise fall through.
|
|
*/
|
|
case OP_SetFound: {
|
|
int i = pOp->p1;
|
|
int tos = p->tos;
|
|
VERIFY( if( tos<0 ) goto not_enough_stack; )
|
|
if( Stringify(p, tos) ) goto no_mem;
|
|
if( VERIFY( i>=0 && i<p->nSet &&)
|
|
sqliteHashFind(&p->aSet[i].hash, zStack[tos], aStack[tos].n)){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
POPSTACK;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: PushList * * *
|
|
**
|
|
** Save the current Vdbe list such that it can be restored by a PopList
|
|
** opcode. The list is empty after this is executed.
|
|
*/
|
|
case OP_PushList: {
|
|
p->keylistStackDepth++;
|
|
assert(p->keylistStackDepth > 0);
|
|
p->keylistStack = sqliteRealloc(p->keylistStack,
|
|
sizeof(Keylist *) * p->keylistStackDepth);
|
|
p->keylistStack[p->keylistStackDepth - 1] = p->pList;
|
|
p->pList = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: PopList * * *
|
|
**
|
|
** Restore the Vdbe list to the state it was in when PushList was last
|
|
** executed.
|
|
*/
|
|
case OP_PopList: {
|
|
assert(p->keylistStackDepth > 0);
|
|
p->keylistStackDepth--;
|
|
KeylistFree(p->pList);
|
|
p->pList = p->keylistStack[p->keylistStackDepth];
|
|
p->keylistStack[p->keylistStackDepth] = 0;
|
|
if (p->keylistStackDepth == 0) {
|
|
sqliteFree(p->keylistStack);
|
|
p->keylistStack = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SetNotFound P1 P2 *
|
|
**
|
|
** Pop the stack once and compare the value popped off with the
|
|
** contents of set P1. If the element popped does not exists in
|
|
** set P1, then jump to P2. Otherwise fall through.
|
|
*/
|
|
case OP_SetNotFound: {
|
|
int i = pOp->p1;
|
|
int tos = p->tos;
|
|
VERIFY( if( tos<0 ) goto not_enough_stack; )
|
|
if( Stringify(p, tos) ) goto no_mem;
|
|
if(VERIFY( i>=0 && i<p->nSet &&)
|
|
sqliteHashFind(&p->aSet[i].hash, zStack[tos], aStack[tos].n)==0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
POPSTACK;
|
|
break;
|
|
}
|
|
|
|
|
|
/* An other opcode is illegal...
|
|
*/
|
|
default: {
|
|
sprintf(zBuf,"%d",pOp->opcode);
|
|
sqliteSetString(pzErrMsg, "unknown opcode ", zBuf, 0);
|
|
rc = SQLITE_INTERNAL;
|
|
break;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
** The cases of the switch statement above this line should all be indented
|
|
** by 6 spaces. But the left-most 6 spaces have been removed to improve the
|
|
** readability. From this point on down, the normal indentation rules are
|
|
** restored.
|
|
*****************************************************************************/
|
|
}
|
|
|
|
/* The following code adds nothing to the actual functionality
|
|
** of the program. It is only here for testing and debugging.
|
|
** On the other hand, it does burn CPU cycles every time through
|
|
** the evaluator loop. So we can leave it out when NDEBUG is defined.
|
|
*/
|
|
#ifndef NDEBUG
|
|
if( pc<-1 || pc>=p->nOp ){
|
|
sqliteSetString(pzErrMsg, "jump destination out of range", 0);
|
|
rc = SQLITE_INTERNAL;
|
|
}
|
|
if( p->trace && p->tos>=0 ){
|
|
int i;
|
|
fprintf(p->trace, "Stack:");
|
|
for(i=p->tos; i>=0 && i>p->tos-5; i--){
|
|
if( aStack[i].flags & STK_Null ){
|
|
fprintf(p->trace, " NULL");
|
|
}else if( (aStack[i].flags & (STK_Int|STK_Str))==(STK_Int|STK_Str) ){
|
|
fprintf(p->trace, " si:%d", aStack[i].i);
|
|
}else if( aStack[i].flags & STK_Int ){
|
|
fprintf(p->trace, " i:%d", aStack[i].i);
|
|
}else if( aStack[i].flags & STK_Real ){
|
|
fprintf(p->trace, " r:%g", aStack[i].r);
|
|
}else if( aStack[i].flags & STK_Str ){
|
|
int j, k;
|
|
char zBuf[100];
|
|
zBuf[0] = ' ';
|
|
if( aStack[i].flags & STK_Dyn ){
|
|
zBuf[1] = 'z';
|
|
}else if( aStack[i].flags & STK_Static ){
|
|
zBuf[1] = 't';
|
|
}else{
|
|
zBuf[1] = 's';
|
|
}
|
|
zBuf[2] = '[';
|
|
k = 3;
|
|
for(j=0; j<20 && j<aStack[i].n; j++){
|
|
int c = zStack[i][j];
|
|
if( c==0 && j==aStack[i].n-1 ) break;
|
|
if( isprint(c) && !isspace(c) ){
|
|
zBuf[k++] = c;
|
|
}else{
|
|
zBuf[k++] = '.';
|
|
}
|
|
}
|
|
zBuf[k++] = ']';
|
|
zBuf[k++] = 0;
|
|
fprintf(p->trace, "%s", zBuf);
|
|
}else{
|
|
fprintf(p->trace, " ???");
|
|
}
|
|
}
|
|
fprintf(p->trace,"\n");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
cleanup:
|
|
Cleanup(p);
|
|
if( rc!=SQLITE_OK ){
|
|
switch( errorAction ){
|
|
case OE_Abort: {
|
|
if( !undoTransOnError ){
|
|
sqliteBtreeRollbackCkpt(pBt);
|
|
if( db->pBeTemp ) sqliteBtreeRollbackCkpt(db->pBeTemp);
|
|
break;
|
|
}
|
|
/* Fall through to ROLLBACK */
|
|
}
|
|
case OE_Rollback: {
|
|
sqliteBtreeRollback(pBt);
|
|
if( db->pBeTemp ) sqliteBtreeRollback(db->pBeTemp);
|
|
sqliteRollbackInternalChanges(db);
|
|
db->flags &= ~SQLITE_InTrans;
|
|
db->onError = OE_Default;
|
|
break;
|
|
}
|
|
default: {
|
|
if( undoTransOnError ){
|
|
sqliteBtreeCommit(pBt);
|
|
if( db->pBeTemp ) sqliteBtreeCommit(db->pBeTemp);
|
|
sqliteCommitInternalChanges(db);
|
|
db->flags &= ~SQLITE_InTrans;
|
|
db->onError = OE_Default;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
sqliteBtreeCommitCkpt(pBt);
|
|
if( db->pBeTemp ) sqliteBtreeCommitCkpt(db->pBeTemp);
|
|
assert( p->tos<pc );
|
|
return rc;
|
|
|
|
/* Jump to here if a malloc() fails. It's hard to get a malloc()
|
|
** to fail on a modern VM computer, so this code is untested.
|
|
*/
|
|
no_mem:
|
|
sqliteSetString(pzErrMsg, "out of memory", 0);
|
|
rc = SQLITE_NOMEM;
|
|
goto cleanup;
|
|
|
|
/* Jump to here for an SQLITE_MISUSE error.
|
|
*/
|
|
abort_due_to_misuse:
|
|
rc = SQLITE_MISUSE;
|
|
/* Fall thru into abort_due_to_error */
|
|
|
|
/* Jump to here for any other kind of fatal error. The "rc" variable
|
|
** should hold the error number.
|
|
*/
|
|
abort_due_to_error:
|
|
sqliteSetString(pzErrMsg, sqlite_error_string(rc), 0);
|
|
goto cleanup;
|
|
|
|
/* Jump to here if a operator is encountered that requires more stack
|
|
** operands than are currently available on the stack.
|
|
*/
|
|
not_enough_stack:
|
|
sprintf(zBuf,"%d",pc);
|
|
sqliteSetString(pzErrMsg, "too few operands on stack at ", zBuf, 0);
|
|
rc = SQLITE_INTERNAL;
|
|
goto cleanup;
|
|
|
|
/* Jump here if an illegal or illformed instruction is executed.
|
|
*/
|
|
VERIFY(
|
|
bad_instruction:
|
|
sprintf(zBuf,"%d",pc);
|
|
sqliteSetString(pzErrMsg, "illegal operation at ", zBuf, 0);
|
|
rc = SQLITE_INTERNAL;
|
|
goto cleanup;
|
|
)
|
|
}
|