mirror of
https://github.com/sqlite/sqlite.git
synced 2025-09-09 21:09:38 +03:00
doing the flattening optimization or evaluating subqueries. Otherwise, the result set column names are generated incorrectly or after they are needed. (CVS 553) FossilOrigin-Name: 08f27cb36805d38648274b6fe91dec43a5910057
1550 lines
49 KiB
C
1550 lines
49 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains C code routines that are called by the parser
|
|
** to handle SELECT statements in SQLite.
|
|
**
|
|
** $Id: select.c,v 1.81 2002/05/08 11:54:15 drh Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** Allocate a new Select structure and return a pointer to that
|
|
** structure.
|
|
*/
|
|
Select *sqliteSelectNew(
|
|
ExprList *pEList, /* which columns to include in the result */
|
|
IdList *pSrc, /* the FROM clause -- which tables to scan */
|
|
Expr *pWhere, /* the WHERE clause */
|
|
ExprList *pGroupBy, /* the GROUP BY clause */
|
|
Expr *pHaving, /* the HAVING clause */
|
|
ExprList *pOrderBy, /* the ORDER BY clause */
|
|
int isDistinct, /* true if the DISTINCT keyword is present */
|
|
int nLimit, /* LIMIT value. -1 means not used */
|
|
int nOffset /* OFFSET value. -1 means not used */
|
|
){
|
|
Select *pNew;
|
|
pNew = sqliteMalloc( sizeof(*pNew) );
|
|
if( pNew==0 ){
|
|
sqliteExprListDelete(pEList);
|
|
sqliteIdListDelete(pSrc);
|
|
sqliteExprDelete(pWhere);
|
|
sqliteExprListDelete(pGroupBy);
|
|
sqliteExprDelete(pHaving);
|
|
sqliteExprListDelete(pOrderBy);
|
|
}else{
|
|
pNew->pEList = pEList;
|
|
pNew->pSrc = pSrc;
|
|
pNew->pWhere = pWhere;
|
|
pNew->pGroupBy = pGroupBy;
|
|
pNew->pHaving = pHaving;
|
|
pNew->pOrderBy = pOrderBy;
|
|
pNew->isDistinct = isDistinct;
|
|
pNew->op = TK_SELECT;
|
|
pNew->nLimit = nLimit;
|
|
pNew->nOffset = nOffset;
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Delete the given Select structure and all of its substructures.
|
|
*/
|
|
void sqliteSelectDelete(Select *p){
|
|
if( p==0 ) return;
|
|
sqliteExprListDelete(p->pEList);
|
|
sqliteIdListDelete(p->pSrc);
|
|
sqliteExprDelete(p->pWhere);
|
|
sqliteExprListDelete(p->pGroupBy);
|
|
sqliteExprDelete(p->pHaving);
|
|
sqliteExprListDelete(p->pOrderBy);
|
|
sqliteSelectDelete(p->pPrior);
|
|
sqliteFree(p->zSelect);
|
|
sqliteFree(p);
|
|
}
|
|
|
|
/*
|
|
** Delete the aggregate information from the parse structure.
|
|
*/
|
|
static void sqliteAggregateInfoReset(Parse *pParse){
|
|
sqliteFree(pParse->aAgg);
|
|
pParse->aAgg = 0;
|
|
pParse->nAgg = 0;
|
|
pParse->useAgg = 0;
|
|
}
|
|
|
|
/*
|
|
** This routine generates the code for the inside of the inner loop
|
|
** of a SELECT.
|
|
**
|
|
** The pEList is used to determine the values for each column in the
|
|
** result row. Except if pEList==NULL, then we just read nColumn
|
|
** elements from the srcTab table.
|
|
*/
|
|
static int selectInnerLoop(
|
|
Parse *pParse, /* The parser context */
|
|
ExprList *pEList, /* List of values being extracted */
|
|
int srcTab, /* Pull data from this table */
|
|
int nColumn, /* Number of columns in the source table */
|
|
ExprList *pOrderBy, /* If not NULL, sort results using this key */
|
|
int distinct, /* If >=0, make sure results are distinct */
|
|
int eDest, /* How to dispose of the results */
|
|
int iParm, /* An argument to the disposal method */
|
|
int iContinue, /* Jump here to continue with next row */
|
|
int iBreak /* Jump here to break out of the inner loop */
|
|
){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
if( v==0 ) return 0;
|
|
|
|
/* Pull the requested columns.
|
|
*/
|
|
if( pEList ){
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
sqliteExprCode(pParse, pEList->a[i].pExpr);
|
|
}
|
|
nColumn = pEList->nExpr;
|
|
}else{
|
|
for(i=0; i<nColumn; i++){
|
|
sqliteVdbeAddOp(v, OP_Column, srcTab, i);
|
|
}
|
|
}
|
|
|
|
/* If the DISTINCT keyword was present on the SELECT statement
|
|
** and this row has been seen before, then do not make this row
|
|
** part of the result.
|
|
*/
|
|
if( distinct>=0 ){
|
|
int lbl = sqliteVdbeMakeLabel(v);
|
|
sqliteVdbeAddOp(v, OP_MakeKey, pEList->nExpr, 1);
|
|
sqliteVdbeAddOp(v, OP_Distinct, distinct, lbl);
|
|
sqliteVdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0);
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
|
|
sqliteVdbeResolveLabel(v, lbl);
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_PutStrKey, distinct, 0);
|
|
}
|
|
|
|
/* If there is an ORDER BY clause, then store the results
|
|
** in a sorter.
|
|
*/
|
|
if( pOrderBy ){
|
|
char *zSortOrder;
|
|
sqliteVdbeAddOp(v, OP_SortMakeRec, nColumn, 0);
|
|
zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 );
|
|
if( zSortOrder==0 ) return 1;
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
zSortOrder[i] = pOrderBy->a[i].sortOrder ? '-' : '+';
|
|
sqliteExprCode(pParse, pOrderBy->a[i].pExpr);
|
|
}
|
|
zSortOrder[pOrderBy->nExpr] = 0;
|
|
sqliteVdbeAddOp(v, OP_SortMakeKey, pOrderBy->nExpr, 0);
|
|
sqliteVdbeChangeP3(v, -1, zSortOrder, strlen(zSortOrder));
|
|
sqliteFree(zSortOrder);
|
|
sqliteVdbeAddOp(v, OP_SortPut, 0, 0);
|
|
}else
|
|
|
|
/* In this mode, write each query result to the key of the temporary
|
|
** table iParm.
|
|
*/
|
|
if( eDest==SRT_Union ){
|
|
sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
|
|
sqliteVdbeAddOp(v, OP_String, iParm, 0);
|
|
sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
|
|
}else
|
|
|
|
/* Store the result as data using a unique key.
|
|
*/
|
|
if( eDest==SRT_Table || eDest==SRT_TempTable ){
|
|
sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
|
|
sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
|
|
sqliteVdbeAddOp(v, OP_Pull, 1, 0);
|
|
sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
|
|
}else
|
|
|
|
/* Construct a record from the query result, but instead of
|
|
** saving that record, use it as a key to delete elements from
|
|
** the temporary table iParm.
|
|
*/
|
|
if( eDest==SRT_Except ){
|
|
int addr = sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
|
|
sqliteVdbeAddOp(v, OP_NotFound, iParm, addr+3);
|
|
sqliteVdbeAddOp(v, OP_Delete, iParm, 0);
|
|
}else
|
|
|
|
/* If we are creating a set for an "expr IN (SELECT ...)" construct,
|
|
** then there should be a single item on the stack. Write this
|
|
** item into the set table with bogus data.
|
|
*/
|
|
if( eDest==SRT_Set ){
|
|
assert( nColumn==1 );
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
|
|
}else
|
|
|
|
|
|
/* If this is a scalar select that is part of an expression, then
|
|
** store the results in the appropriate memory cell and break out
|
|
** of the scan loop.
|
|
*/
|
|
if( eDest==SRT_Mem ){
|
|
assert( nColumn==1 );
|
|
sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, iBreak);
|
|
}else
|
|
|
|
/* If none of the above, send the data to the callback function.
|
|
*/
|
|
{
|
|
sqliteVdbeAddOp(v, OP_Callback, nColumn, iBreak);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** If the inner loop was generated using a non-null pOrderBy argument,
|
|
** then the results were placed in a sorter. After the loop is terminated
|
|
** we need to run the sorter and output the results. The following
|
|
** routine generates the code needed to do that.
|
|
*/
|
|
static void generateSortTail(Vdbe *v, int nColumn){
|
|
int end = sqliteVdbeMakeLabel(v);
|
|
int addr;
|
|
sqliteVdbeAddOp(v, OP_Sort, 0, 0);
|
|
addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end);
|
|
sqliteVdbeAddOp(v, OP_SortCallback, nColumn, end);
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, addr);
|
|
sqliteVdbeResolveLabel(v, end);
|
|
sqliteVdbeAddOp(v, OP_SortReset, 0, 0);
|
|
}
|
|
|
|
/*
|
|
** Generate code that will tell the VDBE how many columns there
|
|
** are in the result and the name for each column. This information
|
|
** is used to provide "argc" and "azCol[]" values in the callback.
|
|
*/
|
|
static void generateColumnNames(
|
|
Parse *pParse, /* Parser context */
|
|
int base, /* VDBE cursor corresponding to first entry in pTabList */
|
|
IdList *pTabList, /* List of tables */
|
|
ExprList *pEList /* Expressions defining the result set */
|
|
){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
if( pParse->colNamesSet || v==0 || sqlite_malloc_failed ) return;
|
|
pParse->colNamesSet = 1;
|
|
sqliteVdbeAddOp(v, OP_ColumnCount, pEList->nExpr, 0);
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
Expr *p;
|
|
int showFullNames;
|
|
if( pEList->a[i].zName ){
|
|
char *zName = pEList->a[i].zName;
|
|
sqliteVdbeAddOp(v, OP_ColumnName, i, 0);
|
|
sqliteVdbeChangeP3(v, -1, zName, strlen(zName));
|
|
continue;
|
|
}
|
|
p = pEList->a[i].pExpr;
|
|
if( p==0 ) continue;
|
|
showFullNames = (pParse->db->flags & SQLITE_FullColNames)!=0;
|
|
if( p->span.z && p->span.z[0] && !showFullNames ){
|
|
int addr = sqliteVdbeAddOp(v,OP_ColumnName, i, 0);
|
|
sqliteVdbeChangeP3(v, -1, p->span.z, p->span.n);
|
|
sqliteVdbeCompressSpace(v, addr);
|
|
}else if( p->op==TK_COLUMN && pTabList ){
|
|
Table *pTab = pTabList->a[p->iTable - base].pTab;
|
|
char *zCol;
|
|
int iCol = p->iColumn;
|
|
if( iCol<0 ) iCol = pTab->iPKey;
|
|
assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
|
|
zCol = iCol<0 ? "_ROWID_" : pTab->aCol[iCol].zName;
|
|
if( pTabList->nId>1 || showFullNames ){
|
|
char *zName = 0;
|
|
char *zTab;
|
|
|
|
zTab = pTabList->a[p->iTable - base].zAlias;
|
|
if( showFullNames || zTab==0 ) zTab = pTab->zName;
|
|
sqliteSetString(&zName, zTab, ".", zCol, 0);
|
|
sqliteVdbeAddOp(v, OP_ColumnName, i, 0);
|
|
sqliteVdbeChangeP3(v, -1, zName, strlen(zName));
|
|
sqliteFree(zName);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_ColumnName, i, 0);
|
|
sqliteVdbeChangeP3(v, -1, zCol, 0);
|
|
}
|
|
}else if( p->span.z && p->span.z[0] ){
|
|
int addr = sqliteVdbeAddOp(v,OP_ColumnName, i, 0);
|
|
sqliteVdbeChangeP3(v, -1, p->span.z, p->span.n);
|
|
sqliteVdbeCompressSpace(v, addr);
|
|
}else{
|
|
char zName[30];
|
|
assert( p->op!=TK_COLUMN || pTabList==0 );
|
|
sprintf(zName, "column%d", i+1);
|
|
sqliteVdbeAddOp(v, OP_ColumnName, i, 0);
|
|
sqliteVdbeChangeP3(v, -1, zName, strlen(zName));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Name of the connection operator, used for error messages.
|
|
*/
|
|
static const char *selectOpName(int id){
|
|
char *z;
|
|
switch( id ){
|
|
case TK_ALL: z = "UNION ALL"; break;
|
|
case TK_INTERSECT: z = "INTERSECT"; break;
|
|
case TK_EXCEPT: z = "EXCEPT"; break;
|
|
default: z = "UNION"; break;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
** Given a SELECT statement, generate a Table structure that describes
|
|
** the result set of that SELECT.
|
|
*/
|
|
Table *sqliteResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
|
|
Table *pTab;
|
|
int i;
|
|
ExprList *pEList;
|
|
static int fillInColumnList(Parse*, Select*);
|
|
|
|
if( fillInColumnList(pParse, pSelect) ){
|
|
return 0;
|
|
}
|
|
pTab = sqliteMalloc( sizeof(Table) );
|
|
if( pTab==0 ){
|
|
return 0;
|
|
}
|
|
pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
|
|
pEList = pSelect->pEList;
|
|
pTab->nCol = pEList->nExpr;
|
|
assert( pTab->nCol>0 );
|
|
pTab->aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
|
|
for(i=0; i<pTab->nCol; i++){
|
|
Expr *p;
|
|
if( pEList->a[i].zName ){
|
|
pTab->aCol[i].zName = sqliteStrDup(pEList->a[i].zName);
|
|
}else if( (p=pEList->a[i].pExpr)->span.z && p->span.z[0] ){
|
|
sqliteSetNString(&pTab->aCol[i].zName, p->span.z, p->span.n, 0);
|
|
}else if( p->op==TK_DOT && p->pRight && p->pRight->token.z &&
|
|
p->pRight->token.z[0] ){
|
|
sqliteSetNString(&pTab->aCol[i].zName,
|
|
p->pRight->token.z, p->pRight->token.n, 0);
|
|
}else{
|
|
char zBuf[30];
|
|
sprintf(zBuf, "column%d", i+1);
|
|
pTab->aCol[i].zName = sqliteStrDup(zBuf);
|
|
}
|
|
}
|
|
pTab->iPKey = -1;
|
|
return pTab;
|
|
}
|
|
|
|
/*
|
|
** For the given SELECT statement, do two things.
|
|
**
|
|
** (1) Fill in the pTabList->a[].pTab fields in the IdList that
|
|
** defines the set of tables that should be scanned.
|
|
**
|
|
** (2) Scan the list of columns in the result set (pEList) looking
|
|
** for instances of the "*" operator or the TABLE.* operator.
|
|
** If found, expand each "*" to be every column in every table
|
|
** and TABLE.* to be every column in TABLE.
|
|
**
|
|
** Return 0 on success. If there are problems, leave an error message
|
|
** in pParse and return non-zero.
|
|
*/
|
|
static int fillInColumnList(Parse *pParse, Select *p){
|
|
int i, j, k, rc;
|
|
IdList *pTabList;
|
|
ExprList *pEList;
|
|
Table *pTab;
|
|
|
|
if( p==0 || p->pSrc==0 ) return 1;
|
|
pTabList = p->pSrc;
|
|
pEList = p->pEList;
|
|
|
|
/* Look up every table in the table list.
|
|
*/
|
|
for(i=0; i<pTabList->nId; i++){
|
|
if( pTabList->a[i].pTab ){
|
|
/* This routine has run before! No need to continue */
|
|
return 0;
|
|
}
|
|
if( pTabList->a[i].zName==0 ){
|
|
/* A sub-query in the FROM clause of a SELECT */
|
|
assert( pTabList->a[i].pSelect!=0 );
|
|
pTabList->a[i].pTab = pTab =
|
|
sqliteResultSetOfSelect(pParse, pTabList->a[i].zAlias,
|
|
pTabList->a[i].pSelect);
|
|
if( pTab==0 ){
|
|
return 1;
|
|
}
|
|
pTab->isTransient = 1;
|
|
}else{
|
|
/* An ordinary table or view name in the FROM clause */
|
|
pTabList->a[i].pTab = pTab =
|
|
sqliteFindTable(pParse->db, pTabList->a[i].zName);
|
|
if( pTab==0 ){
|
|
sqliteSetString(&pParse->zErrMsg, "no such table: ",
|
|
pTabList->a[i].zName, 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
if( pTab->pSelect ){
|
|
if( sqliteViewGetColumnNames(pParse, pTab) ){
|
|
return 1;
|
|
}
|
|
pTabList->a[i].pSelect = sqliteSelectDup(pTab->pSelect);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* For every "*" that occurs in the column list, insert the names of
|
|
** all columns in all tables. And for every TABLE.* insert the names
|
|
** of all columns in TABLE. The parser inserted a special expression
|
|
** with the TK_ALL operator for each "*" that it found in the column list.
|
|
** The following code just has to locate the TK_ALL expressions and expand
|
|
** each one to the list of all columns in all tables.
|
|
**
|
|
** The first loop just checks to see if there are any "*" operators
|
|
** that need expanding.
|
|
*/
|
|
for(k=0; k<pEList->nExpr; k++){
|
|
Expr *pE = pEList->a[k].pExpr;
|
|
if( pE->op==TK_ALL ) break;
|
|
if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
|
|
&& pE->pLeft && pE->pLeft->op==TK_ID ) break;
|
|
}
|
|
rc = 0;
|
|
if( k<pEList->nExpr ){
|
|
/*
|
|
** If we get here it means the result set contains one or more "*"
|
|
** operators that need to be expanded. Loop through each expression
|
|
** in the result set and expand them one by one.
|
|
*/
|
|
struct ExprList_item *a = pEList->a;
|
|
ExprList *pNew = 0;
|
|
for(k=0; k<pEList->nExpr; k++){
|
|
Expr *pE = a[k].pExpr;
|
|
if( pE->op!=TK_ALL &&
|
|
(pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
|
|
/* This particular expression does not need to be expanded.
|
|
*/
|
|
pNew = sqliteExprListAppend(pNew, a[k].pExpr, 0);
|
|
pNew->a[pNew->nExpr-1].zName = a[k].zName;
|
|
a[k].pExpr = 0;
|
|
a[k].zName = 0;
|
|
}else{
|
|
/* This expression is a "*" or a "TABLE.*" and needs to be
|
|
** expanded. */
|
|
int tableSeen = 0; /* Set to 1 when TABLE matches */
|
|
Token *pName; /* text of name of TABLE */
|
|
if( pE->op==TK_DOT && pE->pLeft ){
|
|
pName = &pE->pLeft->token;
|
|
}else{
|
|
pName = 0;
|
|
}
|
|
for(i=0; i<pTabList->nId; i++){
|
|
Table *pTab = pTabList->a[i].pTab;
|
|
char *zTabName = pTabList->a[i].zAlias;
|
|
if( zTabName==0 || zTabName[0]==0 ){
|
|
zTabName = pTab->zName;
|
|
}
|
|
if( pName && (zTabName==0 || zTabName[0]==0 ||
|
|
sqliteStrNICmp(pName->z, zTabName, pName->n)!=0) ){
|
|
continue;
|
|
}
|
|
tableSeen = 1;
|
|
for(j=0; j<pTab->nCol; j++){
|
|
Expr *pExpr, *pLeft, *pRight;
|
|
pRight = sqliteExpr(TK_ID, 0, 0, 0);
|
|
if( pRight==0 ) break;
|
|
pRight->token.z = pTab->aCol[j].zName;
|
|
pRight->token.n = strlen(pTab->aCol[j].zName);
|
|
if( zTabName ){
|
|
pLeft = sqliteExpr(TK_ID, 0, 0, 0);
|
|
if( pLeft==0 ) break;
|
|
pLeft->token.z = zTabName;
|
|
pLeft->token.n = strlen(zTabName);
|
|
pExpr = sqliteExpr(TK_DOT, pLeft, pRight, 0);
|
|
if( pExpr==0 ) break;
|
|
}else{
|
|
pExpr = pRight;
|
|
pExpr->span = pExpr->token;
|
|
}
|
|
pNew = sqliteExprListAppend(pNew, pExpr, 0);
|
|
}
|
|
}
|
|
if( !tableSeen ){
|
|
assert( pName!=0 );
|
|
sqliteSetNString(&pParse->zErrMsg, "no such table: ", -1,
|
|
pName->z, pName->n, 0);
|
|
rc = 1;
|
|
}
|
|
}
|
|
}
|
|
sqliteExprListDelete(pEList);
|
|
p->pEList = pNew;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine recursively unlinks the Select.pSrc.a[].pTab pointers
|
|
** in a select structure. It just sets the pointers to NULL. This
|
|
** routine is recursive in the sense that if the Select.pSrc.a[].pSelect
|
|
** pointer is not NULL, this routine is called recursively on that pointer.
|
|
**
|
|
** This routine is called on the Select structure that defines a
|
|
** VIEW in order to undo any bindings to tables. This is necessary
|
|
** because those tables might be DROPed by a subsequent SQL command.
|
|
*/
|
|
void sqliteSelectUnbind(Select *p){
|
|
int i;
|
|
IdList *pSrc = p->pSrc;
|
|
Table *pTab;
|
|
if( p==0 ) return;
|
|
for(i=0; i<pSrc->nId; i++){
|
|
if( (pTab = pSrc->a[i].pTab)!=0 ){
|
|
if( pTab->isTransient ){
|
|
sqliteDeleteTable(0, pTab);
|
|
sqliteSelectDelete(pSrc->a[i].pSelect);
|
|
pSrc->a[i].pSelect = 0;
|
|
}
|
|
pSrc->a[i].pTab = 0;
|
|
if( pSrc->a[i].pSelect ){
|
|
sqliteSelectUnbind(pSrc->a[i].pSelect);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine associates entries in an ORDER BY expression list with
|
|
** columns in a result. For each ORDER BY expression, the opcode of
|
|
** the top-level node is changed to TK_COLUMN and the iColumn value of
|
|
** the top-level node is filled in with column number and the iTable
|
|
** value of the top-level node is filled with iTable parameter.
|
|
**
|
|
** If there are prior SELECT clauses, they are processed first. A match
|
|
** in an earlier SELECT takes precedence over a later SELECT.
|
|
**
|
|
** Any entry that does not match is flagged as an error. The number
|
|
** of errors is returned.
|
|
*/
|
|
static int matchOrderbyToColumn(
|
|
Parse *pParse, /* A place to leave error messages */
|
|
Select *pSelect, /* Match to result columns of this SELECT */
|
|
ExprList *pOrderBy, /* The ORDER BY values to match against columns */
|
|
int iTable, /* Insert this this value in iTable */
|
|
int mustComplete /* If TRUE all ORDER BYs must match */
|
|
){
|
|
int nErr = 0;
|
|
int i, j;
|
|
ExprList *pEList;
|
|
|
|
if( pSelect==0 || pOrderBy==0 ) return 1;
|
|
if( mustComplete ){
|
|
for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
|
|
}
|
|
if( fillInColumnList(pParse, pSelect) ){
|
|
return 1;
|
|
}
|
|
if( pSelect->pPrior ){
|
|
if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
|
|
return 1;
|
|
}
|
|
}
|
|
pEList = pSelect->pEList;
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
Expr *pE = pOrderBy->a[i].pExpr;
|
|
int match = 0;
|
|
if( pOrderBy->a[i].done ) continue;
|
|
for(j=0; j<pEList->nExpr; j++){
|
|
if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
|
|
char *zName, *zLabel;
|
|
zName = pEList->a[j].zName;
|
|
assert( pE->token.z );
|
|
zLabel = sqliteStrNDup(pE->token.z, pE->token.n);
|
|
sqliteDequote(zLabel);
|
|
if( sqliteStrICmp(zName, zLabel)==0 ){
|
|
match = 1;
|
|
}
|
|
sqliteFree(zLabel);
|
|
}
|
|
if( match==0 && sqliteExprCompare(pE, pEList->a[j].pExpr) ){
|
|
match = 1;
|
|
}
|
|
if( match ){
|
|
pE->op = TK_COLUMN;
|
|
pE->iColumn = j;
|
|
pE->iTable = iTable;
|
|
pOrderBy->a[i].done = 1;
|
|
break;
|
|
}
|
|
}
|
|
if( !match && mustComplete ){
|
|
char zBuf[30];
|
|
sprintf(zBuf,"%d",i+1);
|
|
sqliteSetString(&pParse->zErrMsg, "ORDER BY term number ", zBuf,
|
|
" does not match any result column", 0);
|
|
pParse->nErr++;
|
|
nErr++;
|
|
break;
|
|
}
|
|
}
|
|
return nErr;
|
|
}
|
|
|
|
/*
|
|
** Get a VDBE for the given parser context. Create a new one if necessary.
|
|
** If an error occurs, return NULL and leave a message in pParse.
|
|
*/
|
|
Vdbe *sqliteGetVdbe(Parse *pParse){
|
|
Vdbe *v = pParse->pVdbe;
|
|
if( v==0 ){
|
|
v = pParse->pVdbe = sqliteVdbeCreate(pParse->db);
|
|
}
|
|
return v;
|
|
}
|
|
|
|
|
|
/*
|
|
** This routine is called to process a query that is really the union
|
|
** or intersection of two or more separate queries.
|
|
*/
|
|
static int multiSelect(Parse *pParse, Select *p, int eDest, int iParm){
|
|
int rc; /* Success code from a subroutine */
|
|
Select *pPrior; /* Another SELECT immediately to our left */
|
|
Vdbe *v; /* Generate code to this VDBE */
|
|
int base; /* Baseline value for pParse->nTab */
|
|
|
|
/* Make sure there is no ORDER BY clause on prior SELECTs. Only the
|
|
** last SELECT in the series may have an ORDER BY.
|
|
*/
|
|
if( p==0 || p->pPrior==0 ) return 1;
|
|
pPrior = p->pPrior;
|
|
if( pPrior->pOrderBy ){
|
|
sqliteSetString(&pParse->zErrMsg,"ORDER BY clause should come after ",
|
|
selectOpName(p->op), " not before", 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
|
|
/* Make sure we have a valid query engine. If not, create a new one.
|
|
*/
|
|
v = sqliteGetVdbe(pParse);
|
|
if( v==0 ) return 1;
|
|
|
|
/* Create the destination temporary table if necessary
|
|
*/
|
|
if( eDest==SRT_TempTable ){
|
|
sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
|
|
eDest = SRT_Table;
|
|
}
|
|
|
|
/* Process the UNION or INTERSECTION
|
|
*/
|
|
base = pParse->nTab;
|
|
switch( p->op ){
|
|
case TK_ALL:
|
|
case TK_EXCEPT:
|
|
case TK_UNION: {
|
|
int unionTab; /* Cursor number of the temporary table holding result */
|
|
int op; /* One of the SRT_ operations to apply to self */
|
|
int priorOp; /* The SRT_ operation to apply to prior selects */
|
|
|
|
priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
|
|
if( eDest==priorOp ){
|
|
/* We can reuse a temporary table generated by a SELECT to our
|
|
** right. This also means we are not the right-most select and so
|
|
** we cannot have an ORDER BY clause
|
|
*/
|
|
unionTab = iParm;
|
|
assert( p->pOrderBy==0 );
|
|
}else{
|
|
/* We will need to create our own temporary table to hold the
|
|
** intermediate results.
|
|
*/
|
|
unionTab = pParse->nTab++;
|
|
if( p->pOrderBy
|
|
&& matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){
|
|
return 1;
|
|
}
|
|
if( p->op!=TK_ALL ){
|
|
sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 1);
|
|
sqliteVdbeAddOp(v, OP_KeyAsData, unionTab, 1);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 0);
|
|
}
|
|
}
|
|
|
|
/* Code the SELECT statements to our left
|
|
*/
|
|
rc = sqliteSelect(pParse, pPrior, priorOp, unionTab, 0, 0, 0);
|
|
if( rc ) return rc;
|
|
|
|
/* Code the current SELECT statement
|
|
*/
|
|
switch( p->op ){
|
|
case TK_EXCEPT: op = SRT_Except; break;
|
|
case TK_UNION: op = SRT_Union; break;
|
|
case TK_ALL: op = SRT_Table; break;
|
|
}
|
|
p->pPrior = 0;
|
|
rc = sqliteSelect(pParse, p, op, unionTab, 0, 0, 0);
|
|
p->pPrior = pPrior;
|
|
if( rc ) return rc;
|
|
|
|
/* Convert the data in the temporary table into whatever form
|
|
** it is that we currently need.
|
|
*/
|
|
if( eDest!=priorOp ){
|
|
int iCont, iBreak, iStart;
|
|
assert( p->pEList );
|
|
if( eDest==SRT_Callback ){
|
|
generateColumnNames(pParse, p->base, 0, p->pEList);
|
|
}
|
|
iBreak = sqliteVdbeMakeLabel(v);
|
|
iCont = sqliteVdbeMakeLabel(v);
|
|
sqliteVdbeAddOp(v, OP_Rewind, unionTab, iBreak);
|
|
iStart = sqliteVdbeCurrentAddr(v);
|
|
rc = selectInnerLoop(pParse, 0, unionTab, p->pEList->nExpr,
|
|
p->pOrderBy, -1, eDest, iParm,
|
|
iCont, iBreak);
|
|
if( rc ) return 1;
|
|
sqliteVdbeResolveLabel(v, iCont);
|
|
sqliteVdbeAddOp(v, OP_Next, unionTab, iStart);
|
|
sqliteVdbeResolveLabel(v, iBreak);
|
|
sqliteVdbeAddOp(v, OP_Close, unionTab, 0);
|
|
if( p->pOrderBy ){
|
|
generateSortTail(v, p->pEList->nExpr);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case TK_INTERSECT: {
|
|
int tab1, tab2;
|
|
int iCont, iBreak, iStart;
|
|
|
|
/* INTERSECT is different from the others since it requires
|
|
** two temporary tables. Hence it has its own case. Begin
|
|
** by allocating the tables we will need.
|
|
*/
|
|
tab1 = pParse->nTab++;
|
|
tab2 = pParse->nTab++;
|
|
if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){
|
|
return 1;
|
|
}
|
|
sqliteVdbeAddOp(v, OP_OpenTemp, tab1, 1);
|
|
sqliteVdbeAddOp(v, OP_KeyAsData, tab1, 1);
|
|
|
|
/* Code the SELECTs to our left into temporary table "tab1".
|
|
*/
|
|
rc = sqliteSelect(pParse, pPrior, SRT_Union, tab1, 0, 0, 0);
|
|
if( rc ) return rc;
|
|
|
|
/* Code the current SELECT into temporary table "tab2"
|
|
*/
|
|
sqliteVdbeAddOp(v, OP_OpenTemp, tab2, 1);
|
|
sqliteVdbeAddOp(v, OP_KeyAsData, tab2, 1);
|
|
p->pPrior = 0;
|
|
rc = sqliteSelect(pParse, p, SRT_Union, tab2, 0, 0, 0);
|
|
p->pPrior = pPrior;
|
|
if( rc ) return rc;
|
|
|
|
/* Generate code to take the intersection of the two temporary
|
|
** tables.
|
|
*/
|
|
assert( p->pEList );
|
|
if( eDest==SRT_Callback ){
|
|
generateColumnNames(pParse, p->base, 0, p->pEList);
|
|
}
|
|
iBreak = sqliteVdbeMakeLabel(v);
|
|
iCont = sqliteVdbeMakeLabel(v);
|
|
sqliteVdbeAddOp(v, OP_Rewind, tab1, iBreak);
|
|
iStart = sqliteVdbeAddOp(v, OP_FullKey, tab1, 0);
|
|
sqliteVdbeAddOp(v, OP_NotFound, tab2, iCont);
|
|
rc = selectInnerLoop(pParse, 0, tab1, p->pEList->nExpr,
|
|
p->pOrderBy, -1, eDest, iParm,
|
|
iCont, iBreak);
|
|
if( rc ) return 1;
|
|
sqliteVdbeResolveLabel(v, iCont);
|
|
sqliteVdbeAddOp(v, OP_Next, tab1, iStart);
|
|
sqliteVdbeResolveLabel(v, iBreak);
|
|
sqliteVdbeAddOp(v, OP_Close, tab2, 0);
|
|
sqliteVdbeAddOp(v, OP_Close, tab1, 0);
|
|
if( p->pOrderBy ){
|
|
generateSortTail(v, p->pEList->nExpr);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
assert( p->pEList && pPrior->pEList );
|
|
if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
|
|
sqliteSetString(&pParse->zErrMsg, "SELECTs to the left and right of ",
|
|
selectOpName(p->op), " do not have the same number of result columns", 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
pParse->nTab = base;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Recursively scan through an expression tree. For every reference
|
|
** to a column in table number iFrom, change that reference to the
|
|
** same column in table number iTo.
|
|
*/
|
|
static void changeTables(Expr *pExpr, int iFrom, int iTo){
|
|
if( pExpr==0 ) return;
|
|
if( pExpr->op==TK_COLUMN && pExpr->iTable==iFrom ){
|
|
pExpr->iTable = iTo;
|
|
}else{
|
|
static void changeTablesInList(ExprList*, int, int);
|
|
changeTables(pExpr->pLeft, iFrom, iTo);
|
|
changeTables(pExpr->pRight, iFrom, iTo);
|
|
changeTablesInList(pExpr->pList, iFrom, iTo);
|
|
}
|
|
}
|
|
static void changeTablesInList(ExprList *pList, int iFrom, int iTo){
|
|
if( pList ){
|
|
int i;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
changeTables(pList->a[i].pExpr, iFrom, iTo);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Scan through the expression pExpr. Replace every reference to
|
|
** a column in table number iTable with a copy of the corresponding
|
|
** entry in pEList. (But leave references to the ROWID column
|
|
** unchanged.) When making a copy of an expression in pEList, change
|
|
** references to columns in table iSub into references to table iTable.
|
|
**
|
|
** This routine is part of the flattening procedure. A subquery
|
|
** whose result set is defined by pEList appears as entry in the
|
|
** FROM clause of a SELECT such that the VDBE cursor assigned to that
|
|
** FORM clause entry is iTable. This routine make the necessary
|
|
** changes to pExpr so that it refers directly to the source table
|
|
** of the subquery rather the result set of the subquery.
|
|
*/
|
|
static void substExpr(Expr *pExpr, int iTable, ExprList *pEList, int iSub){
|
|
if( pExpr==0 ) return;
|
|
if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable && pExpr->iColumn>=0 ){
|
|
Expr *pNew;
|
|
assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
|
|
assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
|
|
pNew = pEList->a[pExpr->iColumn].pExpr;
|
|
assert( pNew!=0 );
|
|
pExpr->op = pNew->op;
|
|
pExpr->pLeft = sqliteExprDup(pNew->pLeft);
|
|
pExpr->pRight = sqliteExprDup(pNew->pRight);
|
|
pExpr->pList = sqliteExprListDup(pNew->pList);
|
|
pExpr->iTable = pNew->iTable;
|
|
pExpr->iColumn = pNew->iColumn;
|
|
pExpr->iAgg = pNew->iAgg;
|
|
pExpr->token = pNew->token;
|
|
if( iSub!=iTable ){
|
|
changeTables(pExpr, iSub, iTable);
|
|
}
|
|
}else{
|
|
static void substExprList(ExprList*,int,ExprList*,int);
|
|
substExpr(pExpr->pLeft, iTable, pEList, iSub);
|
|
substExpr(pExpr->pRight, iTable, pEList, iSub);
|
|
substExprList(pExpr->pList, iTable, pEList, iSub);
|
|
}
|
|
}
|
|
static void
|
|
substExprList(ExprList *pList, int iTable, ExprList *pEList, int iSub){
|
|
int i;
|
|
if( pList==0 ) return;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
substExpr(pList->a[i].pExpr, iTable, pEList, iSub);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine attempts to flatten subqueries in order to speed
|
|
** execution. It returns 1 if it makes changes and 0 if no flattening
|
|
** occurs.
|
|
**
|
|
** To understand the concept of flattening, consider the following
|
|
** query:
|
|
**
|
|
** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
|
|
**
|
|
** The default way of implementing this query is to execute the
|
|
** subquery first and store the results in a temporary table, then
|
|
** run the outer query on that temporary table. This requires two
|
|
** passes over the data. Furthermore, because the temporary table
|
|
** has no indices, the WHERE clause on the outer query cannot be
|
|
** optimized.
|
|
**
|
|
** This routine attempts to rewrite queries such as the above into
|
|
** a single flat select, like this:
|
|
**
|
|
** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
|
|
**
|
|
** The code generated for this simpification gives the same result
|
|
** but only has to scan the data once. And because indices might
|
|
** exist on the table t1, a complete scan of the data might be
|
|
** avoided.
|
|
**
|
|
** Flattening is only attempted if all of the following are true:
|
|
**
|
|
** (1) The subquery and the outer query do not both use aggregates.
|
|
**
|
|
** (2) The subquery is not an aggregate or the outer query is not a join.
|
|
**
|
|
** (3) The subquery is not a join.
|
|
**
|
|
** (4) The subquery is not DISTINCT or the outer query is not a join.
|
|
**
|
|
** (5) The subquery is not DISTINCT or the outer query does not use
|
|
** aggregates.
|
|
**
|
|
** (6) The subquery does not use aggregates or the outer query is not
|
|
** DISTINCT.
|
|
**
|
|
** (7) The subquery has a FROM clause.
|
|
**
|
|
** In this routine, the "p" parameter is a pointer to the outer query.
|
|
** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
|
|
** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
|
|
**
|
|
** If flattening is not attempted, this routine is a no-op and return 0.
|
|
** If flattening is attempted this routine returns 1.
|
|
**
|
|
** All of the expression analysis must occur on both the outer query and
|
|
** the subquery before this routine runs.
|
|
*/
|
|
int flattenSubquery(Select *p, int iFrom, int isAgg, int subqueryIsAgg){
|
|
Select *pSub; /* The inner query or "subquery" */
|
|
IdList *pSrc; /* The FROM clause of the outer query */
|
|
IdList *pSubSrc; /* The FROM clause of the subquery */
|
|
ExprList *pList; /* The result set of the outer query */
|
|
int i;
|
|
int iParent, iSub;
|
|
Expr *pWhere;
|
|
|
|
/* Check to see if flattening is permitted. Return 0 if not.
|
|
*/
|
|
if( p==0 ) return 0;
|
|
pSrc = p->pSrc;
|
|
assert( pSrc && iFrom>=0 && iFrom<pSrc->nId );
|
|
pSub = pSrc->a[iFrom].pSelect;
|
|
assert( pSub!=0 );
|
|
if( isAgg && subqueryIsAgg ) return 0;
|
|
if( subqueryIsAgg && pSrc->nId>1 ) return 0;
|
|
pSubSrc = pSub->pSrc;
|
|
assert( pSubSrc );
|
|
if( pSubSrc->nId!=1 ) return 0;
|
|
if( pSub->isDistinct && pSrc->nId>1 ) return 0;
|
|
if( pSub->isDistinct && isAgg ) return 0;
|
|
if( p->isDistinct && subqueryIsAgg ) return 0;
|
|
|
|
/* If we reach this point, it means flattening is permitted for the
|
|
** i-th entry of the FROM clause in the outer query.
|
|
*/
|
|
iParent = p->base + iFrom;
|
|
iSub = pSub->base;
|
|
substExprList(p->pEList, iParent, pSub->pEList, iSub);
|
|
pList = p->pEList;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
if( pList->a[i].zName==0 ){
|
|
Expr *pExpr = pList->a[i].pExpr;
|
|
pList->a[i].zName = sqliteStrNDup(pExpr->span.z, pExpr->span.n);
|
|
}
|
|
}
|
|
if( isAgg ){
|
|
substExprList(p->pGroupBy, iParent, pSub->pEList, iSub);
|
|
substExpr(p->pHaving, iParent, pSub->pEList, iSub);
|
|
}
|
|
substExprList(p->pOrderBy, iParent, pSub->pEList, iSub);
|
|
if( pSub->pWhere ){
|
|
pWhere = sqliteExprDup(pSub->pWhere);
|
|
if( iParent!=iSub ){
|
|
changeTables(pWhere, iSub, iParent);
|
|
}
|
|
}else{
|
|
pWhere = 0;
|
|
}
|
|
if( subqueryIsAgg ){
|
|
assert( p->pHaving==0 );
|
|
p->pHaving = p->pWhere;
|
|
p->pWhere = pWhere;
|
|
substExpr(p->pHaving, iParent, pSub->pEList, iSub);
|
|
if( pSub->pHaving ){
|
|
Expr *pHaving = sqliteExprDup(pSub->pHaving);
|
|
if( iParent!=iSub ){
|
|
changeTables(pHaving, iSub, iParent);
|
|
}
|
|
if( p->pHaving ){
|
|
p->pHaving = sqliteExpr(TK_AND, p->pHaving, pHaving, 0);
|
|
}else{
|
|
p->pHaving = pHaving;
|
|
}
|
|
}
|
|
assert( p->pGroupBy==0 );
|
|
p->pGroupBy = sqliteExprListDup(pSub->pGroupBy);
|
|
if( iParent!=iSub ){
|
|
changeTablesInList(p->pGroupBy, iSub, iParent);
|
|
}
|
|
}else if( p->pWhere==0 ){
|
|
p->pWhere = pWhere;
|
|
}else{
|
|
substExpr(p->pWhere, iParent, pSub->pEList, iSub);
|
|
if( pWhere ){
|
|
p->pWhere = sqliteExpr(TK_AND, p->pWhere, pWhere, 0);
|
|
}
|
|
}
|
|
p->isDistinct = p->isDistinct || pSub->isDistinct;
|
|
if( pSrc->a[iFrom].pTab && pSrc->a[iFrom].pTab->isTransient ){
|
|
sqliteDeleteTable(0, pSrc->a[iFrom].pTab);
|
|
}
|
|
pSrc->a[iFrom].pTab = pSubSrc->a[0].pTab;
|
|
pSubSrc->a[0].pTab = 0;
|
|
pSrc->a[iFrom].pSelect = pSubSrc->a[0].pSelect;
|
|
pSubSrc->a[0].pSelect = 0;
|
|
sqliteSelectDelete(pSub);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Analyze the SELECT statement passed in as an argument to see if it
|
|
** is a simple min() or max() query. If it is and this query can be
|
|
** satisfied using a single seek to the beginning or end of an index,
|
|
** then generate the code for this SELECT return 1. If this is not a
|
|
** simple min() or max() query, then return 0;
|
|
**
|
|
** A simply min() or max() query looks like this:
|
|
**
|
|
** SELECT min(a) FROM table;
|
|
** SELECT max(a) FROM table;
|
|
**
|
|
** The query may have only a single table in its FROM argument. There
|
|
** can be no GROUP BY or HAVING or WHERE clauses. The result set must
|
|
** be the min() or max() of a single column of the table. The column
|
|
** in the min() or max() function must be indexed.
|
|
**
|
|
** The parameters to this routine are the same as for sqliteSelect().
|
|
** See the header comment on that routine for additional information.
|
|
*/
|
|
static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
|
|
Expr *pExpr;
|
|
int iCol;
|
|
Table *pTab;
|
|
Index *pIdx;
|
|
int base;
|
|
Vdbe *v;
|
|
int openOp;
|
|
int seekOp;
|
|
int cont;
|
|
ExprList eList;
|
|
struct ExprList_item eListItem;
|
|
|
|
/* Check to see if this query is a simple min() or max() query. Return
|
|
** zero if it is not.
|
|
*/
|
|
if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
|
|
if( p->pSrc->nId!=1 ) return 0;
|
|
if( p->pEList->nExpr!=1 ) return 0;
|
|
pExpr = p->pEList->a[0].pExpr;
|
|
if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
|
|
if( pExpr->pList==0 || pExpr->pList->nExpr!=1 ) return 0;
|
|
if( pExpr->token.n!=3 ) return 0;
|
|
if( sqliteStrNICmp(pExpr->token.z,"min",3)==0 ){
|
|
seekOp = OP_Rewind;
|
|
}else if( sqliteStrNICmp(pExpr->token.z,"max",3)==0 ){
|
|
seekOp = OP_Last;
|
|
}else{
|
|
return 0;
|
|
}
|
|
pExpr = pExpr->pList->a[0].pExpr;
|
|
if( pExpr->op!=TK_COLUMN ) return 0;
|
|
iCol = pExpr->iColumn;
|
|
pTab = p->pSrc->a[0].pTab;
|
|
|
|
/* If we get to here, it means the query is of the correct form.
|
|
** Check to make sure we have an index and make pIdx point to the
|
|
** appropriate index. If the min() or max() is on an INTEGER PRIMARY
|
|
** key column, no index is necessary so set pIdx to NULL. If no
|
|
** usable index is found, return 0.
|
|
*/
|
|
if( iCol<0 ){
|
|
pIdx = 0;
|
|
}else{
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
assert( pIdx->nColumn>=1 );
|
|
if( pIdx->aiColumn[0]==iCol ) break;
|
|
}
|
|
if( pIdx==0 ) return 0;
|
|
}
|
|
|
|
/* Identify column names if we will be using the callback. This
|
|
** step is skipped if the output is going to a table or a memory cell.
|
|
*/
|
|
v = sqliteGetVdbe(pParse);
|
|
if( v==0 ) return 0;
|
|
if( eDest==SRT_Callback ){
|
|
generateColumnNames(pParse, p->base, p->pSrc, p->pEList);
|
|
}
|
|
|
|
/* Generating code to find the min or the max. Basically all we have
|
|
** to do is find the first or the last entry in the chosen index. If
|
|
** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
|
|
** or last entry in the main table.
|
|
*/
|
|
if( !pParse->schemaVerified && (pParse->db->flags & SQLITE_InTrans)==0 ){
|
|
sqliteVdbeAddOp(v, OP_VerifyCookie, pParse->db->schema_cookie, 0);
|
|
pParse->schemaVerified = 1;
|
|
}
|
|
openOp = pTab->isTemp ? OP_OpenAux : OP_Open;
|
|
base = p->base;
|
|
sqliteVdbeAddOp(v, openOp, base, pTab->tnum);
|
|
sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
|
|
if( pIdx==0 ){
|
|
sqliteVdbeAddOp(v, seekOp, base, 0);
|
|
}else{
|
|
sqliteVdbeAddOp(v, openOp, base+1, pIdx->tnum);
|
|
sqliteVdbeChangeP3(v, -1, pIdx->zName, P3_STATIC);
|
|
sqliteVdbeAddOp(v, seekOp, base+1, 0);
|
|
sqliteVdbeAddOp(v, OP_IdxRecno, base+1, 0);
|
|
sqliteVdbeAddOp(v, OP_Close, base+1, 0);
|
|
sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
|
|
}
|
|
eList.nExpr = 1;
|
|
memset(&eListItem, 0, sizeof(eListItem));
|
|
eList.a = &eListItem;
|
|
eList.a[0].pExpr = pExpr;
|
|
cont = sqliteVdbeMakeLabel(v);
|
|
selectInnerLoop(pParse, &eList, base, 1, 0, -1, eDest, iParm, cont, cont);
|
|
sqliteVdbeResolveLabel(v, cont);
|
|
sqliteVdbeAddOp(v, OP_Close, base, 0);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Generate code for the given SELECT statement.
|
|
**
|
|
** The results are distributed in various ways depending on the
|
|
** value of eDest and iParm.
|
|
**
|
|
** eDest Value Result
|
|
** ------------ -------------------------------------------
|
|
** SRT_Callback Invoke the callback for each row of the result.
|
|
**
|
|
** SRT_Mem Store first result in memory cell iParm
|
|
**
|
|
** SRT_Set Store results as keys of a table with cursor iParm
|
|
**
|
|
** SRT_Union Store results as a key in a temporary table iParm
|
|
**
|
|
** SRT_Except Remove results form the temporary table iParm.
|
|
**
|
|
** SRT_Table Store results in temporary table iParm
|
|
**
|
|
** This routine returns the number of errors. If any errors are
|
|
** encountered, then an appropriate error message is left in
|
|
** pParse->zErrMsg.
|
|
**
|
|
** This routine does NOT free the Select structure passed in. The
|
|
** calling function needs to do that.
|
|
**
|
|
** The pParent, parentTab, and *pParentAgg fields are filled in if this
|
|
** SELECT is a subquery. This routine may try to combine this SELECT
|
|
** with its parent to form a single flat query. In so doing, it might
|
|
** change the parent query from a non-aggregate to an aggregate query.
|
|
** For that reason, the pParentAgg flag is passed as a pointer, so it
|
|
** can be changed.
|
|
*/
|
|
int sqliteSelect(
|
|
Parse *pParse, /* The parser context */
|
|
Select *p, /* The SELECT statement being coded. */
|
|
int eDest, /* One of: SRT_Callback Mem Set Union Except */
|
|
int iParm, /* Save result in this memory location, if >=0 */
|
|
Select *pParent, /* Another SELECT for which this is a sub-query */
|
|
int parentTab, /* Index in pParent->pSrc of this query */
|
|
int *pParentAgg /* True if pParent uses aggregate functions */
|
|
){
|
|
int i;
|
|
WhereInfo *pWInfo;
|
|
Vdbe *v;
|
|
int isAgg = 0; /* True for select lists like "count(*)" */
|
|
ExprList *pEList; /* List of columns to extract. */
|
|
IdList *pTabList; /* List of tables to select from */
|
|
Expr *pWhere; /* The WHERE clause. May be NULL */
|
|
ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
|
|
ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
|
|
Expr *pHaving; /* The HAVING clause. May be NULL */
|
|
int isDistinct; /* True if the DISTINCT keyword is present */
|
|
int distinct; /* Table to use for the distinct set */
|
|
int base; /* First cursor available for use */
|
|
int rc = 1; /* Value to return from this function */
|
|
|
|
if( sqlite_malloc_failed || pParse->nErr || p==0 ) return 1;
|
|
|
|
/* If there is are a sequence of queries, do the earlier ones first.
|
|
*/
|
|
if( p->pPrior ){
|
|
return multiSelect(pParse, p, eDest, iParm);
|
|
}
|
|
|
|
/* Make local copies of the parameters for this query.
|
|
*/
|
|
pTabList = p->pSrc;
|
|
pWhere = p->pWhere;
|
|
pOrderBy = p->pOrderBy;
|
|
pGroupBy = p->pGroupBy;
|
|
pHaving = p->pHaving;
|
|
isDistinct = p->isDistinct;
|
|
|
|
/* Allocate a block of VDBE cursors, one for each table in the FROM clause.
|
|
** The WHERE processing requires that the cursors for the tables in the
|
|
** FROM clause be consecutive.
|
|
*/
|
|
base = p->base = pParse->nTab;
|
|
pParse->nTab += pTabList->nId;
|
|
|
|
/*
|
|
** Do not even attempt to generate any code if we have already seen
|
|
** errors before this routine starts.
|
|
*/
|
|
if( pParse->nErr>0 ) goto select_end;
|
|
|
|
/* Look up every table in the table list and create an appropriate
|
|
** columnlist in pEList if there isn't one already. (The parser leaves
|
|
** a NULL in the p->pEList if the SQL said "SELECT * FROM ...")
|
|
*/
|
|
if( fillInColumnList(pParse, p) ){
|
|
goto select_end;
|
|
}
|
|
pEList = p->pEList;
|
|
if( pEList==0 ) goto select_end;
|
|
|
|
/* If writing to memory or generating a set
|
|
** only a single column may be output.
|
|
*/
|
|
if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
|
|
sqliteSetString(&pParse->zErrMsg, "only a single result allowed for "
|
|
"a SELECT that is part of an expression", 0);
|
|
pParse->nErr++;
|
|
goto select_end;
|
|
}
|
|
|
|
/* ORDER BY is ignored if we are not sending the result to a callback.
|
|
*/
|
|
if( eDest!=SRT_Callback ){
|
|
pOrderBy = 0;
|
|
}
|
|
|
|
/* At this point, we should have allocated all the cursors that we
|
|
** need to handle subquerys and temporary tables.
|
|
**
|
|
** Resolve the column names and do a semantics check on all the expressions.
|
|
*/
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
if( sqliteExprResolveIds(pParse, base, pTabList, 0, pEList->a[i].pExpr) ){
|
|
goto select_end;
|
|
}
|
|
if( sqliteExprCheck(pParse, pEList->a[i].pExpr, 1, &isAgg) ){
|
|
goto select_end;
|
|
}
|
|
}
|
|
if( pWhere ){
|
|
if( sqliteExprResolveIds(pParse, base, pTabList, pEList, pWhere) ){
|
|
goto select_end;
|
|
}
|
|
if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
|
|
goto select_end;
|
|
}
|
|
}
|
|
if( pOrderBy ){
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
Expr *pE = pOrderBy->a[i].pExpr;
|
|
if( sqliteExprIsConstant(pE) ){
|
|
sqliteSetString(&pParse->zErrMsg,
|
|
"ORDER BY expressions should not be constant", 0);
|
|
pParse->nErr++;
|
|
goto select_end;
|
|
}
|
|
if( sqliteExprResolveIds(pParse, base, pTabList, pEList, pE) ){
|
|
goto select_end;
|
|
}
|
|
if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
|
|
goto select_end;
|
|
}
|
|
}
|
|
}
|
|
if( pGroupBy ){
|
|
for(i=0; i<pGroupBy->nExpr; i++){
|
|
Expr *pE = pGroupBy->a[i].pExpr;
|
|
if( sqliteExprIsConstant(pE) ){
|
|
sqliteSetString(&pParse->zErrMsg,
|
|
"GROUP BY expressions should not be constant", 0);
|
|
pParse->nErr++;
|
|
goto select_end;
|
|
}
|
|
if( sqliteExprResolveIds(pParse, base, pTabList, pEList, pE) ){
|
|
goto select_end;
|
|
}
|
|
if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
|
|
goto select_end;
|
|
}
|
|
}
|
|
}
|
|
if( pHaving ){
|
|
if( pGroupBy==0 ){
|
|
sqliteSetString(&pParse->zErrMsg, "a GROUP BY clause is required "
|
|
"before HAVING", 0);
|
|
pParse->nErr++;
|
|
goto select_end;
|
|
}
|
|
if( sqliteExprResolveIds(pParse, base, pTabList, pEList, pHaving) ){
|
|
goto select_end;
|
|
}
|
|
if( sqliteExprCheck(pParse, pHaving, isAgg, 0) ){
|
|
goto select_end;
|
|
}
|
|
}
|
|
|
|
/* Check for the special case of a min() or max() function by itself
|
|
** in the result set.
|
|
*/
|
|
if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
|
|
rc = 0;
|
|
goto select_end;
|
|
}
|
|
|
|
/* Begin generating code.
|
|
*/
|
|
v = sqliteGetVdbe(pParse);
|
|
if( v==0 ) goto select_end;
|
|
|
|
/* Identify column names if we will be using in the callback. This
|
|
** step is skipped if the output is going to a table or a memory cell.
|
|
*/
|
|
if( eDest==SRT_Callback ){
|
|
generateColumnNames(pParse, p->base, pTabList, pEList);
|
|
}
|
|
|
|
/* Set the limiter
|
|
*/
|
|
if( p->nLimit<=0 ){
|
|
p->nOffset = 0;
|
|
}else{
|
|
if( p->nOffset<0 ) p->nOffset = 0;
|
|
sqliteVdbeAddOp(v, OP_Limit, p->nLimit, p->nOffset);
|
|
}
|
|
|
|
/* Generate code for all sub-queries in the FROM clause
|
|
*/
|
|
for(i=0; i<pTabList->nId; i++){
|
|
if( pTabList->a[i].pSelect==0 ) continue;
|
|
sqliteSelect(pParse, pTabList->a[i].pSelect, SRT_TempTable, base+i,
|
|
p, i, &isAgg);
|
|
pTabList = p->pSrc;
|
|
pWhere = p->pWhere;
|
|
if( eDest==SRT_Callback ){
|
|
pOrderBy = p->pOrderBy;
|
|
}
|
|
pGroupBy = p->pGroupBy;
|
|
pHaving = p->pHaving;
|
|
isDistinct = p->isDistinct;
|
|
}
|
|
|
|
/* Check to see if this is a subquery that can be "flattened" into its parent.
|
|
** If flattening is a possiblity, do so and return immediately.
|
|
*/
|
|
if( pParent && pParentAgg &&
|
|
flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){
|
|
if( isAgg ) *pParentAgg = 1;
|
|
return rc;
|
|
}
|
|
|
|
/* If the output is destined for a temporary table, open that table.
|
|
*/
|
|
if( eDest==SRT_TempTable ){
|
|
sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
|
|
}
|
|
|
|
/* Do an analysis of aggregate expressions.
|
|
*/
|
|
sqliteAggregateInfoReset(pParse);
|
|
if( isAgg ){
|
|
assert( pParse->nAgg==0 );
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
if( sqliteExprAnalyzeAggregates(pParse, pEList->a[i].pExpr) ){
|
|
goto select_end;
|
|
}
|
|
}
|
|
if( pGroupBy ){
|
|
for(i=0; i<pGroupBy->nExpr; i++){
|
|
if( sqliteExprAnalyzeAggregates(pParse, pGroupBy->a[i].pExpr) ){
|
|
goto select_end;
|
|
}
|
|
}
|
|
}
|
|
if( pHaving && sqliteExprAnalyzeAggregates(pParse, pHaving) ){
|
|
goto select_end;
|
|
}
|
|
if( pOrderBy ){
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
if( sqliteExprAnalyzeAggregates(pParse, pOrderBy->a[i].pExpr) ){
|
|
goto select_end;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reset the aggregator
|
|
*/
|
|
if( isAgg ){
|
|
sqliteVdbeAddOp(v, OP_AggReset, 0, pParse->nAgg);
|
|
for(i=0; i<pParse->nAgg; i++){
|
|
FuncDef *pFunc;
|
|
if( (pFunc = pParse->aAgg[i].pFunc)!=0 && pFunc->xFinalize!=0 ){
|
|
sqliteVdbeAddOp(v, OP_AggInit, 0, i);
|
|
sqliteVdbeChangeP3(v, -1, (char*)pFunc, P3_POINTER);
|
|
}
|
|
}
|
|
if( pGroupBy==0 ){
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_AggFocus, 0, 0);
|
|
}
|
|
}
|
|
|
|
/* Initialize the memory cell to NULL
|
|
*/
|
|
if( eDest==SRT_Mem ){
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
|
|
}
|
|
|
|
/* Open a temporary table to use for the distinct set.
|
|
*/
|
|
if( isDistinct ){
|
|
distinct = pParse->nTab++;
|
|
sqliteVdbeAddOp(v, OP_OpenTemp, distinct, 1);
|
|
}else{
|
|
distinct = -1;
|
|
}
|
|
|
|
/* Begin the database scan
|
|
*/
|
|
pWInfo = sqliteWhereBegin(pParse, p->base, pTabList, pWhere, 0);
|
|
if( pWInfo==0 ) goto select_end;
|
|
|
|
/* Use the standard inner loop if we are not dealing with
|
|
** aggregates
|
|
*/
|
|
if( !isAgg ){
|
|
if( selectInnerLoop(pParse, pEList, 0, 0, pOrderBy, distinct, eDest, iParm,
|
|
pWInfo->iContinue, pWInfo->iBreak) ){
|
|
goto select_end;
|
|
}
|
|
}
|
|
|
|
/* If we are dealing with aggregates, then to the special aggregate
|
|
** processing.
|
|
*/
|
|
else{
|
|
if( pGroupBy ){
|
|
int lbl1;
|
|
for(i=0; i<pGroupBy->nExpr; i++){
|
|
sqliteExprCode(pParse, pGroupBy->a[i].pExpr);
|
|
}
|
|
sqliteVdbeAddOp(v, OP_MakeKey, pGroupBy->nExpr, 0);
|
|
lbl1 = sqliteVdbeMakeLabel(v);
|
|
sqliteVdbeAddOp(v, OP_AggFocus, 0, lbl1);
|
|
for(i=0; i<pParse->nAgg; i++){
|
|
if( pParse->aAgg[i].isAgg ) continue;
|
|
sqliteExprCode(pParse, pParse->aAgg[i].pExpr);
|
|
sqliteVdbeAddOp(v, OP_AggSet, 0, i);
|
|
}
|
|
sqliteVdbeResolveLabel(v, lbl1);
|
|
}
|
|
for(i=0; i<pParse->nAgg; i++){
|
|
Expr *pE;
|
|
int j;
|
|
if( !pParse->aAgg[i].isAgg ) continue;
|
|
pE = pParse->aAgg[i].pExpr;
|
|
assert( pE->op==TK_AGG_FUNCTION );
|
|
if( pE->pList ){
|
|
for(j=0; j<pE->pList->nExpr; j++){
|
|
sqliteExprCode(pParse, pE->pList->a[j].pExpr);
|
|
}
|
|
}
|
|
sqliteVdbeAddOp(v, OP_Integer, i, 0);
|
|
sqliteVdbeAddOp(v, OP_AggFunc, 0, pE->pList ? pE->pList->nExpr : 0);
|
|
assert( pParse->aAgg[i].pFunc!=0 );
|
|
assert( pParse->aAgg[i].pFunc->xStep!=0 );
|
|
sqliteVdbeChangeP3(v, -1, (char*)pParse->aAgg[i].pFunc, P3_POINTER);
|
|
}
|
|
}
|
|
|
|
/* End the database scan loop.
|
|
*/
|
|
sqliteWhereEnd(pWInfo);
|
|
|
|
/* If we are processing aggregates, we need to set up a second loop
|
|
** over all of the aggregate values and process them.
|
|
*/
|
|
if( isAgg ){
|
|
int endagg = sqliteVdbeMakeLabel(v);
|
|
int startagg;
|
|
startagg = sqliteVdbeAddOp(v, OP_AggNext, 0, endagg);
|
|
pParse->useAgg = 1;
|
|
if( pHaving ){
|
|
sqliteExprIfFalse(pParse, pHaving, startagg);
|
|
}
|
|
if( selectInnerLoop(pParse, pEList, 0, 0, pOrderBy, distinct, eDest, iParm,
|
|
startagg, endagg) ){
|
|
goto select_end;
|
|
}
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, startagg);
|
|
sqliteVdbeResolveLabel(v, endagg);
|
|
sqliteVdbeAddOp(v, OP_Noop, 0, 0);
|
|
pParse->useAgg = 0;
|
|
}
|
|
|
|
/* If there is an ORDER BY clause, then we need to sort the results
|
|
** and send them to the callback one by one.
|
|
*/
|
|
if( pOrderBy ){
|
|
generateSortTail(v, pEList->nExpr);
|
|
}
|
|
|
|
|
|
/* Issue a null callback if that is what the user wants.
|
|
*/
|
|
if( (pParse->db->flags & SQLITE_NullCallback)!=0 && eDest==SRT_Callback ){
|
|
sqliteVdbeAddOp(v, OP_NullCallback, pEList->nExpr, 0);
|
|
}
|
|
|
|
/* The SELECT was successfully coded. Set the return code to 0
|
|
** to indicate no errors.
|
|
*/
|
|
rc = 0;
|
|
|
|
/* Control jumps to here if an error is encountered above, or upon
|
|
** successful coding of the SELECT.
|
|
*/
|
|
select_end:
|
|
pParse->nTab = base;
|
|
sqliteAggregateInfoReset(pParse);
|
|
return rc;
|
|
}
|